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1.Introduction
In this paper, we explore a specialized concatenation model, initially proposed by Ankiewicz

et al. in 2014 [1-3], which integrates several well-known equations from the field of
photonics. Specifically, it combines the Lakshmanan-Porsezian-Daniel (LPD) model [4-6], the
Sasa-Satsuma equation (SSE) [7-9], and the nonlinear Schrédinger equation (NLSE) [10-12].
This model has been extensively studied to retrieve soliton solutions, locate conservation
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laws, perform Painlevé analysis, and analyze various features such as magneto-optics,
bifurcation analysis, and nonlinear chromatic dispersion (CD).

Further developments have led to studying the model in the context of birefringent
fibers by integrating the Schrodinger-Hirota equation (SHE), the LPD model, and the fifth-
order NLSE, encompassing fifth-order dispersion [13-15]. This enhanced model is commonly
referred to as the dispersive concatenation model [14]. The current research focuses on
locating soliton solutions within this model using two novel methods: the F-expansion
method [16-18] and a new generalized method [19, 20].

Earlier methods for recovering soliton solutions for the dispersive concatenation model
include the generalized sine-Gordon equation method, the projective Riccati equation
approach, the Weierstrass-type Riccati equation expansion, and the enhanced Kudryashov
method [11, 12, 14]. However, the F-expansion and new generalized methods stand out due
to their effectiveness and simplicity. The Lie symmetry approach further enhances these
methods by reducing the complexity of the partial differential equations (PDEs), making the
integration process more convenient.

Key findings of this research include the successful retrieval of a wide range of optical
solitons within the dispersive concatenation model. The F-expansion and new generalized
methods facilitated this recovery, representing new and practical approaches to solving the
problem. Applying the Lie symmetry approach to reduce ordinary differential equations
(ODEs) significantly simplified the solution process. The study uncovers the essential
parameter restrictions for soliton existence, naturally emerging through the process of
soliton derivation.

These results notably advance the knowledge of optical solitons in the dispersive
concatenation model and reveal potential applications in optical signal processing, nonlinear
optics, optical communication, and the enhancement of soliton-based technologies. [11].

2.Governing equation
We will investigate the concatenation model in this paper, which can be described by the

following expression:
iq; +aqyy +b|q > g—ic;(61Gxx + 219 qy)
+C5 (O3 + 04|02 G + 35| q 1* +3 | qy P q+ 8,020" + 550,42) 1)
ic, [59qxxxxx + 510|q 12 Gy +511|q * q, J
+01200xxx + 0139 x0T 614993 xx + O1592

Eq. (1) presents the dispersive concatenation model, incorporating the Kerr law of self-phase
modulation (SPM). In this context, terms such as q(x,t), Q.. » 9%, n, x, and t represent the

wave profile, higher-order derivatives, conjugate terms, natural numbers, spatial variables,
and temporal variables, respectively. The equation captures the intricate interplay between
nonlinearity and dispersion, reflecting the rate of change of the pulse envelope, the impact of
nonlinear CD (a), and the effects of nonlinear self-phase modulation (b).

The term c¢; encompasses the additional components of the SHE, which can be derived
from the standard NLSE using the Lie transform [13, 15, 16]. The coefficients c; and c3 are
associated with the LPD model [9] and the fifth-order NLSE, respectively. The real-valued
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constant coefficients 61 and &, originate from the SHE model, §3 to &s are derived from the
LPD model, and &9 to 615 stem from the fifth-order NLSE. Adjusting these parameters and
coefficients allows the equation to be tailored to different physical contexts. For instance,
setting ¢, =c3=0 converts the equation into the SSE, which accentuates higher-order

dispersion effects. With both c; and c; set to zero, the equation simplifies to the fifth-order
NLSE, concentrating on the essential features of soliton propagation. Removing c¢1 and c3
transforms the equation into the LPD model, focusing on dispersion and nonlinearity in
soliton dynamics. When ¢; =c¢, =c3 =0, Eq. (1) simplifies to the standard NLSE.

In this paper, we initially obtain the reduced ordinary differential equation (ODE) of the
specified system through the application of the Lie symmetry method. Subsequently, we
reduced the system utilizing the F-expansion method and a new generalized approach to
attain a wide array of exact solutions for the governing equation. Lastly, we illustrate several
graphs of the solutions and provide their interpretations.

3.Lie symmetry analysis
By identifying transformations that leave PDEs invariant, the Lie symmetry method [13, 15, 16]

provides an effective approach to solving them. The technique is extensively applied to find exact
solutions for PDEs. This technique utilizes Lie group analysis to simplify the equations. The
derivation of symmetry reductions for a system of equations starts with the characterization of

q(x,t). Subsequently, the system in Eq.(1) undergoes symmetry reduction through the
application of Lie group analysis.
The function q(x,t) is defined as follows:
q(x’t)=U(X’t)ei(—kx+wt+6)_ (2)
Here, 6, @, and k correspond to the phase constant, frequency, and wave number of the

soliton, respectively. Eq. (2) decomposes Eq. (1) into its real and imaginary components, as
shown below

3
+[ k3(c 03k + 161 ) — c309K5 +ak2 +w U + [ c3k3(81 + 85 + 813 — 814 — Sp5) (3)
+k(Cok (84 + 87 +8g) +3y¢1 )+ C,06k2 + b |U3 + (¢, — €301,k )US =0,
€309V e +(10638K2 + €38, 0U2 + A€ 03k + €18y JU y +€3( 815 + 813+ 814 )UUU
(Se40ok3 + 4Cyd5k2 +3¢,8,k + 20 ) KU, +[26,k (S, + 8, — 5g) +¢,0, 4)

+C3k2 (36, — 819 +38,3 = 814 — 615 )IU2U,, + €3615U3 +¢36,,U4U, U, =0.
Assuming the Lie group of point transformations, as detailed below, is necessary to identify
the symmetries of Eqgs. (3-4):
x*=x +5§(x,t,U)+0(62),
t*=t+et(xt,U)+0(e2), (5)
U*=U+ed(x,t,U)+0(e?),
where &, 7 and ¢ are the infinitesimal parameters [13, 15, 16]. The vector field for Eq. (5)

is specified as:
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0 0 0
V=¢&(xt,U)—+1(x,t,U)—+d(x,t,U)—. 6
£t Sre(xeU) e (xt) ©
The fifth prolongation formula [13, 15] of Eq. (6) for the Egs. (3-4) is provided as:
rGV =v + ti_}_ xi_;_ XX 0
P EPTRAATALAET
0 0 0 )
+ Pxxx + PXxxx + PXXXXX i
¢ al])(XX ¢ 6UXXXX ¢ al])(XXXX

To determine the extended infinitesimals, denoted ¢t, ¢, ¢, gux, guxx, and @gexxx, we apply
the invariance condition pr(5)V'(A)=0 for A=0 in the Egs. (3-4). We derive a system of

PDEs by substituting the infinitesimals and ensuring that the coefficients of the different
derivative terms are zero. The resulting infinitesimals from solving this system are as
follows:

¢=C, =65 ¢=0, (8)
where C; and C, are arbitrary constants. Therefore, the infinitesimal generators span the

Lie algebra of the Egs. (3-4), specified as:
0 0
v,=<2, v,=2.
ottt ax

The resultant characteristic equation, obtained by taking the linear combination of the vector

9)

field in Eq. (9), yields the following similarity variables when solved:

q(x,t)=Q(c )eit(xt),
o (x,t) = h(x—At), (59

where o is identified as the wave variable, and Q(a) are the new dependent variable. Here,
¢(x,t) indicates the phase part, Q(o) signifies the amplitude part, and A and h represent
the velocity and wave width of the soliton, respectively. Let us consider

d(x,t)=—kx+at+0, (11)

where 6, o, and k correspond to the phase constant, frequency, and wave number of the
soliton, respectively. Upon substituting Eq. (10) into Eq. (1), the real component is obtained
as follows:

(€203 —=5¢309k ) Ui +((=3810 = 812 = B13 + 814 ) €3k — € (84 + 3) ) U 5
+(c3(—2613 + 281, — 815 — 2614 )k +C5 (85 + 57 ) )UUZ + (10c3k364 — 6¢,k 255
—3¢1kS1 +a)U 5 —(€3kS;1 — €205 )US —(c3k589 — c k485 — k38, +ak2 +w)U
—(—c3(8yp + 13 =814 — 015+ 819 ) k3 +¢5 (87 + 8 + 84 — 56 ) k2 + ¢1k5, — b)U3 = 0.

(12)

The result for the imaginary component is:
360U w000 T (€101 +4C,03k —10c380k2 + €3610U2 U, +C3(815 + 815+ 614 )UU U
+C36,U4U ; +¢36,5U3 +(20,k (64 + 6, — 8g ) —€3k2 (38,3 — 615 — 14 — 615+ 35y (13)
+¢185 + 580k 2U . +(—4c k355 — 3¢1k25, +2ak + A)U,, =0.

[o)ezen

By analyzing the imaginary component, the velocity is:
/1 =—8C2k353 —Zak, (14)

with the following additional parametric restrictions:
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59 =510 =511 =515 =0,
2(84 + 6, —8g)Ck + 16, —4k2c36,3 =0, (15)
C151 + 4kC352 = 0,
512 +513 +514 =0.

By using the aforementioned restrictions, the Egs. (12) and (13) are transformed into:
203U g0 + (2301 4k — 5 (8 + 8, ) )U2 — 6¢,33k2 —3c151k +a)U g,
+(4c381k + 5 (8 + 87 ) )UUZ + (c,03k4 +¢16,k3 —ak2 —w)U (16)
+(—236,4k3 =5 (84 — ¢ + 8, + 8 )k2 — 16,k + b)U3 +¢,65U5 = 0.
4.Integration methodologies

4.1. A quick review of the F-expansion principle
A nonlinear PDE featuring two independent variables, x and t, is formulated as:

D(4,45,9¢,9x¢9xx0+) =O- (17)
Unknown functions D and g in the standard F-expansion principle include both linear and

nonlinear higher-order derivatives. The following summary provides an outline of the main
steps involved [7, 8].

Step 1: Through the application of the given traveling wave transformation, the nonlinear
evolution equation (NLEE) (17) is simplified to a single-variable equation as described:

q(x,t)=Q(c),0 =h(x—vt). (18)

Eq.(18) transforms the NLEE described by Eq.(17) into a nonlinear ODE, involving wave
velocity (v ), wave variable (o ), and wave width (h ), leading to the specified expression:

S(Q,—HVQ',HQ',HZQ”,---)=0- (19)
Step 2: Let us consider the following form for the solution of Eq. (19):

Q(o)%uﬁf(o) (20)

The equation in question involves real constants ;, a positive integer N, and a function
Gi(o) that satisfies a first-order ODE. It is obtained by applying a balancing principle to the

nonlinear and higher-order linear terms in Eq. (19), leading to a first-order ODE for G(U) :

G'(c)=/XG2(c)+YG(c)+Z, (21)
using the constants X, Y, and Z . The solutions of Eq. (21) are provided as follows:
(6), X=m2, Y=—(1+m2), Z=1, m—1,
(6), X=1, Y=—(1+m2), Z=m2, m—1,
an(c), X=1-m?, Y=2-m2, Z=1, m—0,
=cot(o), X=1, Y=2-m?, Z=1-m2, m—0,
X=-m2, Y=2m2-1, Z=1-m?2, m—1,
, X=1, Y=2m2-1, Z=-m2(1-m2), m—1, (22)
=csc(o), X=1,Y=—(1-m2),R=m2,m— 0,

)
SN N
Il
[wd
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G(o)=ns(o)+ds(o)=coth(c)+csch(o),

2_
le’ yzu’ sz_z’ m—1,
4 2 4
G(o)=sn(o)*icn(o)=csc(o)+cot(o),
1, 1-2m? ., 1
X_Z' Y= 5 Z_Z' m—1, . (22)
6(o)=ns(c)cs(o)=csc(o) £cot (o), (continued)
le’ Y=1—2m2’ =l’ m_>0’
4 2 4
G(o)=nc(o)*ics(o)=sec(o)+itan(o),
X=1—m2’ Y=1+m2’ Z=1—m2’ m—>0.
4 2 4

Step 3: This method involves placing Egs. (20)-(21) into Eq. (19) to derive the strategic
equations, which yield essential results when solved. Furthermore, inserting these
significant outcomes along with Eq. (22) into Eq. (20) allows for the soliton solutions.
4.2. Overview of the new generalized method
Assume the following form for the nonlinear PDE:

E(H,nx,flpflxxﬂlxtrﬂw~-)=0' (23)

-

where Z signifies a polynomial that incorporates the unknown function nzn(x,t), its
partial derivatives, and nonlinear terms.
The steps for the new generalized method [11, 12, 14] to solve these equations are as
follows:
Step 1: Use the transformation to convert the PDE (23) into an ODE:

n(xt)=A(&), &=kx-vt, (24)
where x and v are constants to be defined. The substitution of Eq. (24) into the original
PDE transforms it into a nonlinear ODE:

P(AN,A"A",...)=0. (25)
Step 2: Suppose the solution of Eq. (25) is expressed as:

LAY (A (9))
B T

where ag,a;,5; (for i=1,2,...,N) are constants to be determined subsequently, and the

(26)

function v (&) adheres to the relation:

[v'(&) ] =[w(&R - p]In(@p, (27)
in addition to:
v (&)In(d)n, n is even,
y()(&)= nx2." (28)
y'(£)In(d)p-1, nis odd,

The form given below is considered as the solution for Eq. (27):
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_ 1%
w (&) =kIn(d)ds + Wi (@) (29)

where p and k represent arbitrary constants, also, d is a new independent variable.

Step 3: The value of the positive integer N in Eq.(26) can be determined using the
balancing principle by balancing the nonlinear term with the highest-order derivative term
in Eq. (25).

Step 4: To derive exact solutions for Eq. (23), substitute Egs. (26) and (27), as well as their

derivatives, into Eq.(25). This process generates a polynomial in L(wj By
(S w(é)

collecting all terms with the same powers and setting them to zero, we determine the values
of the unknown parameters «,v,p,k,aq, 0,5 (for i=1,2,..., N). Solving this system of
algebraic equations will yield the parameter values required for the exact solutions to
Eq. (23).

5.New optical solitons
5.1. Implementation of F-expansion method
Incorporating the transformation in Eq. (18) into Eq. (1), the real part emerges as:

3h*63U g5 + ((263k814 + €5 (84 + 55 ) )U2 — 6,k255 3¢, kS +a ) h2U o,
+(c3 (86 + 87 ))R2UUZ + (4c3kd,, + cok483 + ¢, k38 —ak2 —w)U (30)
+(—2c3k3514 —Cy (64 =8+ 8 +67) k2 —c kS, + b)U3 +¢,05U5 =0,
with the wave velocity defined by:
v =-8c,k365 —2ak. (31)
With the balancing principle applied from Eq. (30), we ascertain N=1. Thus, Eq. (20)
becomes:

Q(o)=ay+a,G(o). (32)
With Eq. (21) and Eq. (32) substituted into Eq. (30), a set of polynomials containing G(o)
emerges. Setting all the coefficients to zero, we find:
. [[(4c3k512 +5(86 + 87 ) ) h2SIR + 35558 + k435 +c1k38, ]SO’
+(—2c3k368,4 — ¢, (84 — ¢ + O + 5, )k2 —c1kS, + b) s —ak2 —w
R, =5, (12PR+Q2)c,h455 +
[ (263k814 + €5 (54 + 5g)) 53 — 6¢,k255 —3c ko, +a |h2s,Q
(4c3kS1y + ¢y (86 + 87 ) ) h2sTR + ¢, 0558 + ok 463 + ¢, k368,
+|:+(—2C3k3514 — (84— O + 5 + 57 ) k2 — kS, + b) s§ —ak? —W:|S
+[ 405535y +2(~2c3k30,4 — €5 (84 — 55 + O + 87 ) K2 — 1k, + b) 551 |0,
Ry =2(2c3kS14 +¢5 (84 + 33) ) sos3h2Q
+[ 4c,05535) +2—203k31, — €5 (84 — O + 5g + 87 ) k2 — €1k, + b)sys, |5,
(4c3kS1y + o (86 + 87 ) ) h2s7Q + 6C,055357
+L(—2c3k3614 —y (84— g+ g+, )k2 —c kS, + b)s%}o'

(33)
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203k, + ¢y (5, +5g))s2
R4=2051PQc2h453+2[( K014+ C2(34 +3y)) Othslp

—6C,k203 —3c1kd; +a
+(203k81 4 + ¢, (6,4 + 55 ) ) s3h2Q
{(4c3k512 +¢y(8g +67 )) h2s3Q + 6¢,555§s7 }
1

S
H(=205k36,, — (8, — 5 + 55 + 6, )K2 — .k, + b) 2 (33)

(continued)
+4¢,055853,

R =4(2c3k6,4 + ¢, (84 + 5y ) ) SgSTh2P + 4c,555)5¢
+((4c3kyg + o (36 + 7)) h2s2P + ¢y 3557 ) 50,

Gg =245, P2cyh453 + 2(203kS14 + €5 (5,4 + 5g ) ) s3h2P
+((4c3kSy, + ¢, (86 +87) )h2sTP + ¢y 5551 ) 55

We solve the system of algebraic equations and arrive at the solutions:
Casel: X=m2,Y=—(1+m2), Z=1, m=1.

20c,h265 — 6¢,k2
SO = Sl' w = QC2h2k253 - 64‘C2h453 —Zakz —C2k453,51 = Ocz 53 6C2 53 +a y
3 3 3¢,k

_ h2(4c3k,; 587 + 48Cyh255 +Cy045E + 30757 )

5 =

’

3c,s¢
16c3h2k 8,557 +8c3k38, 557 + 240c,h455 + 60c,h2k 265 + 4c,h25, 57 + (34)
| 4cyh25,5% + 5,k 25452 — cok25,5% + 3bs?
2- 3c,ks?
8c3kG1,5% + 6C3kS; 457 + 60C,h255 + 20,5457 + 2¢,875F +3¢,5g57

2
3c,sf

Oy =

The dark soliton is found by substituting the above parameters into Eq. (18), which derives
the solution for Eq. (30):

q(x,t)=s; (tanh(h(x —vt))+ 1)ei(*’0‘+0’”‘9). (35)
1g(x, )

Fig. 1. Dark soliton’s waveform, given by Eq. (35).
Case2: m=1,Z=m2,Y=—(1+m2), X=1.
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20c,h265 — 6¢,k2
SO = Sl' [0 =2_30C2h2k253 —64‘C2h453 —éakz —C2k453, 51 = Ocz 53 6C2 53 +a )

3cik
_ h2(4c3k, 587 + 48c,h255 + Cp05T + 20757 )
> 3c,st '
16312k, 553 +8c3k35,,52 + 240,h*5, +60c,h2k25, (36)
| +4cyh25¢52 + 4cyh25,57 + 50,k 25652 — c,k25,5% + 3bs?
3c,ks? '
5, = 8c3k51,55% +6C3kS, 457 +60C,h255 + 20,8457 + 20,5757 + 3¢, 5657 .

2
3c,s%

The singular soliton is derived by plugging the above parameters into Eq. (18), yielding the
solution for Eq. (30):

q(x,t)=s;(coth(h(x—vt))+1)ei(-hx+ot+0), (37)
Tjjﬁf,tn

Fig. 2. Singular soliton’s waveform given by Eq. (37).
Case3: m=0,7Z=1,Y=2-m2, X=1-m=.
36C,h4655% + 360,046,557 —120,h2k 26555 — 8c,h2k2535% +3c,k 46557 + 2ak2s?
3s? '
12¢,h28553 + 8c,h2855% — 60,k2555% + as? 12h45,
01 = 2 » %= G2 )
3c,ks$ % (SO +s )
5 —4c3k36,,5857 — 4c3k361,5¢ + 24c,h46358 — 24c,h465557
2 =

2(c2 1 o2
C8% (50 + 57 )

2 22 4 22 4
| —60c,h2k25555 — 20,k 25, 5§57 — 20,k?8; 51 + bsgst + bsy
N 2(c2 1 o2

st (50 + % )clk
22 4 2 2 2¢2 4
_ —2C3k5145051 —2C3k51451 + 12C2h25350 - 12C2h25351 —C2585051 —C26851

s? (s% + s%)clk

(38)

’

04

5= 4c3kS, 55357 + 4cskS, 55t + 48c,h28,55% +120,h2655% +¢,6,535% + ¢,0,5¢ .

c,s?(s3+5?)
The singular periodic solution emerges when deriving the solution of Eq. (30) from Eq. (18)
with the parameters mentioned above:

q(x,t)=sy +sytan(h(x —vt))ei(-hcrat+0), (39)
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Case4: X=—m2Y=2m2-1,Z7=1-m2,m=1.
50=0,
= cyh*65 — 6c,h2k205 + ¢k 403 —3c1h2kS; + ¢ k36, +ah? —akz?,
—4c3h2k6, 557 — 2c3h2kS1 457 + 203k35, 457 + 20,0465 — 12c,h2k 26,

2 2 2 2 2 2
—Ch25 57 — Ch20¢ 5§ — c,h26,57 — ch26g8% + c k20,55 — k20455

(40)
+c,k25,57 + c,k28g5% — 6¢,h2k S, + 2ah? — bs?
27 c1ks? ’
1781
s h2 (—4c3kSy557 — 4c3kSy 457 + 240,028 — 20,0453 — ;365 — €20,57 — 20,557 )
5 = 7 :
c,5t

The bright soliton is obtained by applying the above parameters to Eq. (18) to derive the
solution for Eq. (30):

q(x,t)=s;sech(h(x —vt))ei(-kxrot+0), (41)

1a(x, 1)

ey

Fig. 3: Bright soliton’s waveform [see Eq. (41)].
Case5: m=1,Z=(m2)/4,Y=(m2-2)/2, X=1/4.

h25. — 6¢-k2
SO = Sl' w = —C2k453 +§C2h2k253 —zakz - 4‘C2h453, 51 = 5C2 53 6C2 53 +a )
3 3 3¢,k

_h? (4c3kd, 553 +120,h285 +C,8657 + 20,5 )
5 12c,st
4312k, 52 + 8e5k38, 52 + 150,45, + 150,h2k25, + c,h25,s? (42)
| +coh26,5% +5¢,k2545% — k25,53 +3bs?
2 3c,ks?
8c3k5155% + 603k, 457 + 15¢,h255 + 20,8457 + 20,5757 + 3¢, 5657
3c,s? '

’

’

8y =

To derive the solution for Eq. (30), one needs to insert the given parameters into Eq. (18),
which then results in the straddled singular-singular soliton:

q(x,t)=s;(1+coth(h(x—vt))+csch(h(x —vt)))ei(-kx+or+0), (43)
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Case6: m=0, Z=(1-m2)/4,Y=(1+m2)/2, X=(1-m2) /4.
50=0, ©=Csh?ks28,, +C,h48, —3c,h?k25, + %czhzs%% + %czh2s%57
+e,k45, —%c1h2k51 + k38, +%ah2 —ak?,

4e;h2KS26, + 205h2KG, 45 — 4esk36,4 52 + 50,1465 — 6c,h2K28,

+0,h28,8% + c,h253 56 + c,h25365; + o h28gsT — 20,k 28457 + 2c,k2545% (44)

—2c,k25,5% —2c,k25gs? —3c1h2kS, + ah? + 2bs?
2c,ks?

R (43K, 553 + 403k 457 + 60,h255 + 2)0,457 +Cx0453 + C10,5% + 20,5557 )

5 - .
4c,st

)=

)’

The solution to Eq. (30) can be found by applying the parameters from Eq. (18), leading to
the singular periodic solution:

q(x.t)=s;(tan(h(x —vt))+sec(h(x —vt)))ei(-kxtat+0), (45)
Case7: X=m4—-m2,Y =2m2-1,Z=1,m=0.
So=0, 85=0,®=4c3h2ks}S,, + c,h455 + 6¢,h2k25; + c,h2s35,,
+c,h25%6, + ¢,k 465 + 3¢, h2k Sy + ¢, k38, —ah? —ak?, (46)
—4c3h2kd, 5 — 2032k S, 4 — 203k38, 4 — 20, — c;h25,
| =€2h%67 — c;h26g — k264 + ¢,k 26 — € k267 —c k25 + b

c1k

5,

By inserting the specified parameters into Eq. (18), the solution for Eq. (30) is derived, which
gives us the singular periodic solution:

q(x,t)=sysin( h(x —vt))ei(-kx+at+0), (47)

The solutions in Egs. (39), (45), and (47) differ in their physical behavior due to the distinct forms
of their amplitude functions. Eq. (39) features a tangent function, which is singular at regular
intervals. It represents a periodic wave with sharp intensity peaks over a constant background.
Such profiles may correspond to localized wave trains exhibiting periodic blow-up. Eq. (45)
combines tangent and secant terms, resulting in stronger and more asymmetric singularities. The
solution indicates steeper intensity growth and may describe more abrupt nonlinear localization.
Unlike the others, Eq. (47) is smooth and bounded. It models a regular periodic wave without
singularities, corresponding to stable, repeating pulse trains in a nonlinear medium. Thus,
Egs. (39) and (45) describe singular periodic solitons with varying sharpness, while Eq. (47)
gives a regular, non-singular periodic solution. These distinctions reflect different types of
nonlinear wave behavior.

5.2. Implementation of the new generalized technique

By applying the technique from Section 3.2 to Eq. 24, we obtain the solutions to Eq. (1) in this
section, which leads to the model reduction described by:

KAC) 03U i + 12 ( (20301 4K + €5 (84 + 55 ) U2 — 663k 2%c, =36, key +a)U g
K2(4c3812k +cy (86 + 87 ) \UUZ +(cok 455 + ¢1k36; —ak2 —w)U (48)
—(203014k3 + ¢ (84 — 8 + 87 + 8¢ ) k2 + ¢1kS, — b)U3 + USc, 85 =0.
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The positive integer N is derived using the balance principle. Balancing Uz with US> in

Eq. (48) gives N =1. Therefore, we have:
u+Ay'(E)
v (¢)
as a solution obtained from Eq. (48). After substituting Eq. (49) into Eq. (48) and including

U(g)=ag+ (49)

Egs. (27) and (28), the resulting polynomial is 1 {wj Collecting all terms with the
v () w(S)

same powers and setting them to zero yields an over-determined system of algebraic
equations. We solve the system and obtain the results given below:
Result 1:

55 f o
ay=—L—, B =0, = 25,0 —%K253k2c2 — e k45, —%akZ,

2

5 < 60c,k2K2 pd; +8cok 4 pdy — 4esk3ai Sy, — 2a%c,k26, + atb

2 - )

afeik (50)
1265¢,K2p + 2036, 4k + afc, S
54_ = 2 ) 55 = 0,
0

5 < —24685k2c, —31c,k285 + 4a 5. = 4855¢,k2 p — 4afcsby.k — afe,dy,

! 12c,k e c,0f '

Incorporating the above result with Egs. (49) and (29) into Eq. (2) allows us to derive the
soliton solution of the concatenation model as:

&L
p . 4](111(?)515 ei(—](x+wt+§)’ (51)
4 4k2n(d)"d% +p

Ch(x't) =0

where k¥ and @ are provided by Eq. (50).

Result 2:
i —4c3 (815 +7614)k3 1
18ﬂfc255 + +(1756 -196, — 1465 - 1454)c2k2 ﬂlz —12ak?2 |4
1 —18¢c1kd, +18b

=
18| (2085 8c, +12c3(815 —614) k3
20| +3(56, —38, — 255 — 25, )c,k? [k2R2 + 120,k B

|\ -12c1k5, +12b | (52)
(=36 — 87 + 455 + 48, ) ¢y — 4kes (81, — 20,4)) BE + 6a) it
5 = 1801# +2(1085 B7c, +3(385 — 37 ) k2c, +12c3k30,, — 6¢, kS, +6b) B2 |,
+24c,k2 5,
5 - B? (41(2035121( +4ic20301 4k + 2k2C,84 + K200 + K200, + 2K2¢,64 + 465 BEc, )

6c, x4
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By inserting the above result together with Eqgs. (49) and (29) into Eq. (2), we derive the
exact solution of the concatenation model as:

. ﬂ1(4k21n(d)2d20 +4=pin(d)kdo —p)ln(d)

> ei(—lcx+wt+§)’ (53)
4k?In(d )P d? + p

a1 (x.t

where k¥ and @ are outlined in Eq. (52). For instance, setting d =e, p =*4k2, and all other

parameters to unity in Eq. (53) gives us the complexiton solutions:
q(zl) (x,t)=2p, (tanh(kx —vt)+isech(kx —vt))ei(-rxt+et+l), (54)
q(zz) (x,t)=2p, (coth(kx —vt)+icsch(kx —vt))ei(-kx+ot+), (55)
Result 3:

20In(d)? ¢, B45- + 325, ke
oy =0, alzﬂl—pln(d)ﬂl’ a= ( ) 2P10s 1 1’

K2

Tek?In(d)" fids + 200,k255In (d)" + 20, k352

2 ) 3—Y

) ) (56)
be —8In(d)” ¢, BE65Kk2 — c,k2K254 + c k26,2 — 8c,k2 3265 + ¢ kS jic2
K2 '
2C3k K2514 + C2K258 + 8C255ﬁ12 (K256 + K257 - 12ﬂ1255 )CZ
54 = 2 ) 512 = > .
CoK 4cski

Applying the aforementioned result obtained along with Egs. (49) and (29) into Eq. (2)
provides the exact solution for the concatenation model as:

i ﬂ1(4k21n(d)2d2§ +4=pin(d)kdé —p)ln(d)

4k2In(d)’ d2 + p
where @ and x are defined by Eq. (56). The solution given by Eq. (57) exists under the

ei(—lcx+wt+§)’ (57)

4 (x.t)

conditions 4k21n(d)2 d% +p>0 and p<0. For example, choosing d=e, p=-4k2, and

setting the remaining parameters to unity in Eq. (57) results in the straddled dark-bright
and singular-singular solitons:

q(zl) (x,t)=2p,; (tanh(kx —vt)+sech(kx —vt))ei(-rx+at+l), (58)
q(zz) (x,t)=2p; (coth(kx —vt)+csch(kx —vt))el(-kx+at+l), (59)
where @ and x are detailed in Eq. (56), and v is expressed as v = —(8c2k353 +2ak)rc .

In Figs.1-4, we address soliton solutions by setting the parameters: s; =1.3, a=0.35,
k=15, c,=12, 6;=04, h=0.1, f;=04,and v=25.

Result 4:
2 —4¢2k38,, — 2c,k2
=_2ak’ 5=-4 5= C3k361, —2¢) 57+b’ 5,=0,
3 3C1k Clk
(60)
5e =0, &5, =_2301k+c0g o Acsdipk+cpd;
5 4 4 C2 ’ 6 Cz

Combining the above result with Egs. (49) and (29) in Eq. (2), we get the soliton solution for
the concatenation model as:
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‘ 1qtx, )]

Fig. 4. Bright-dark soliton’s waveform [see Eq. (58)].
(ln(d)ﬁl +a )d2§ +
2 +4ln(d)d§ka1 - p(ln(d)ﬂl - ao)

5 ei(—lcx+a)t+§)’ (61)
4k2In(d)"d2 + p

q,(x,t)=4k2In(d)

where ® and x are provided in Eq. (60). For the solution given by Eq. (61) to exist, the

conditions 4k21n(d)2 d2% + p>0 and p <0 must be satisfied.
Result 5:
ao = 0, al = O,

1028410 (d)* c,05kc4 +145In(d ) c,k2ic2 B55 +3c,k4 BitSs + 7 2ak2ict

)’

108x4
5 —145In(d )’ ¢, 34552 — 60,k2 B35 +36K%a
1_ 108c; kit ’
_ Bids (62)
37 36k4’
5 35In(d ) ¢, 8255k — 72¢3k3K25, — 36¢,k25,2 +195¢,k2 3255 + 18bic2
2 18c,kk2 ’
_ 12C3k’(2514 +6C2K258 +25C255ﬁ12 5 _ 12C3kK2612 +3K2C257 —20C255ﬂ12 .
* 6c,Kk2 e 3cyK2

Inserting the above result, along with Egs. (49) and (29), into Eq. (2) yields the exact solution
of the concatenation model as:
By 4kan(d)? d2o - pin(d)

q,(x,t)= ei(—lcx+a)t+§)’ (63)
1) 4k2In(d)? d2o + p

where v = —(8c2k363 +2ak)r<, with ¥ and o derived from Eq. (21). For instance, choosing

d=e and p==4k2 in Eq. (63) results in the dark and singular solitons:
qgl) (x,t)= pytanh(kx — vt )eil-xx+at+¢), (64)

qu) (x,t)= Bycoth(kx — vt )ei(-rx+at+g), (65)
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Result 6:
ao = 0, ﬂl = 0,
@ = k48, + k38, + k2aln(d ) —ak? + Syc,x4In(d )"
—3k28,keyIn(d) —6K255k2¢,In(d ),
_ 1 —2C3(18512+25514)k3—C2(2554+1857 +2558)k2
9cikaf | —148 4kezx2 —Tcy (84 +5g) k2 +9b
—6p[-5883k2c, —10k2c,55 — 96, key +3a]k2,

2 af (66)

2K2p1n(d)2 (12C2K2p1n(d)2 53 + 2C3ka12514 + C2a1254 + C2a1258)

5

)’

9,0t
240C2K2p1n(d)2 53 - 36C3ka12512
5 - —32c3ka?S, 4 — 160,078, — 9c,0048, —16¢,085g
6" 9c,a?
Combining the above result with Egs. (49) and (29) in Eq. (2), the concatenation model holds:
4a.kin(d)de
q(x.t)= - 2( )
4k2In(d)"d2 +p
where @ and x are defined in Eq. (21). By setting d =e and p =14k2 in Eq. (67), the bright

ei(—lcx+wt+§)’ (67)

and singular solitons become:

q(zl) (x,t)=aysech(kx —vt)ei(-rx+or+l), (68)

q(zz) (x,t)=aycsch(kx —vt)ei(-xxrat+g), (69)

Although both Egs. (65) and (69) represent singular soliton solutions; they exhibit
distinct physical characteristics due to the nature of the underlying hyperbolic functions.
Eq. (65) involves the coth function, which has a pole at the origin and approaches finite
values asymptotically. As a result, the amplitude profile corresponds to a non-vanishing
singular soliton that exhibits a sharp, localized divergence at a finite point, while maintaining
non-zero intensity in its tails. This structure may be interpreted as modeling intensity blow-
up on a non-zero background, which could be relevant in systems where modulation
instability or gain leads to localized energy concentration. In contrast, Eq. (69) involves the
csch function, which also has a singularity at the origin but decays to zero at spatial infinity.
Thus, the resulting soliton is localized in space and vanishes at infinity, representing a purely
singular bright-type soliton. From a physical point of view, this structure might model
collapsing pulses or sharp energy spikes in nonlinear media with localized blow-up and no
background field. Therefore, Eq. (65) corresponds to a singular soliton on a non-zero pedestal,
while Eq.(69) describes a strictly localized singular pulse. Their differences may have
implications in nonlinear optics or plasma physics, particularly in the interpretation of energy
localization, field singularities, and collapse dynamics.

Egs. (54) and (55) represent complexiton-type soliton solutions, which are characterized
by the presence of both real and imaginary hyperbolic components within their structure.
These solutions are distinct from traditional solitons (e.g, bright or dark) because their
amplitude profiles are inherently complex-valued, leading to nontrivial phase-amplitude

04080 Ukr. ]. Phys. Opt. 2025, Volume 26, Issue 4



Optical Solitons Optical Solitons

coupling in the field. Specifically, Eq. (54) is constructed from a linear combination of the real
tanh and imaginary sech functions, resulting in a solution of the form, which corresponds to a
localized wave packet exhibiting both dispersive and oscillatory behavior. The real part
governs the asymptotic background (via tanh), while the imaginary part localizes the energy
(via sech), leading to a hybrid structure that may be interpreted as a nonlinear interference
pattern. Similarly, Eq. (55) combines coth and icsch functions, which yields a singular
complexiton, diverging at the origin but with complex-valued spatial modulation. These
solutions do not decay uniformly or vanish at infinity; instead, they exhibit phase singularities
and may describe nonlinear wave structures in gain/loss media or non-Hermitian systems. In
physical terms, complexitons represent interacting modes where both amplitude and phase
undergo coherent evolution, often seen in optical systems, Bose-Einstein condensates, or
plasma waves with complex potentials or saturable nonlinearities. Unlike conventional
solitons, they exhibit non-constant amplitude envelopes and are typically associated with non-
integrable or non-conservative effects.

6.Conclusions

In this research paper, we explored a wide range of optical solitons derived from a power

law by a concatenation model through the integration of three standard equations: the SSE,

the LPD model, and the NLSE. We successfully derived bright, dark, periodic, bright-dark,

singular-singular, and singular soliton solutions accompanied by relevant constraint

conditions. The simplicity of our approach has allowed for the natural emergence of

parameter relations and constraints. In essence, while we have achieved fundamental results

in soliton solutions, a vast field remains for further exploration and refinement. The

proposed future studies, ranging from analytical approaches to numerical algorithms, aim to

enhance the versatility and applicability of the model, contributing to the ongoing

advancements in the understanding and utilization of optical solitons in various optical

systems [20].
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AHomayis. Lle docaidxiceHHs 3a2AUbA0EMbCS 8 cghepy HOBUX ONMUYHUX COAIMOHI8 Yy pamMKaxX
Modesi ducnepciliHoi koHkameHayii, 0c06.1U80 30cepedHcyoyucs Ha camogpaszosili Modyasayii
3a 3akoHoM Keppa. [locaidxceHHs1 aukopucmogye cumempu4Huli aHanisz Jli 01 nepemeopeHHs
CKAAOHUX Kepylouux pieHsHb y 3euualiHi dugepenyianvHi pieHsHus (ODE). Illomim yi ODE
po32/1510armubesl 3a donoMo2or 080X pizHUx memodosoeiil: memody F-po3wupeHHs ma H08020
y3azanbHeHo20 memody. 3a donomozor yux nidxodie ycniulHo ompumMaHo WupoKuli cnekmp
CO/IIMOHHUX piwleHb, Wjo deMoHcmpye HadiliHicmb | epekmusHicmb 3anpoOnOHO8AHUX Memodis.
Kpim moezo, ¢izuuHi inmepnpemayii yux piweHb npoiatocmposaHo 3a donomozow 3D-
npodgiis, ki nponoHyroms 2aub60ke po3yMiHHs CKAA0HOT nogediHKu conimoHie.

Kawuoei caoea: Hosull y3azaivHeHull memod, memod koHkameHayii, aHaaiz cumempii Ji,
Mmemod F-po3kaady,cmeneHesuli 3akoH, conimoHu
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