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Abstract. Optical vortices, characterized by a helical phase structure and the presence of orbital angular
momentum, can be generated in optical fibers through the superposition of specific linearly polarized modes.
This work investigates the formation of such vortex modes in fibers with a parabolic refractive index profile.
By transforming the scalar wave equation into a form analogous to the Schrédinger equation, we apply
methods from supersymmetric quantum mechanics to design refractive index profiles that support degenerate
eigenmodes. These degenerate modes share identical propagation constants, enabling stable vortex
generation. The study demonstrates that supersymmetric transformations provide a systematic approach for
selecting and coupling modes capable of carrying orbital angular momentum, offering new possibilities for
advanced light control in fiber-based optical systems.
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1. Introduction
Optical vortices, characterized by phase singularities and carrying orbital angular

momentum (OAM), represent a unique class of light beams with promising applications in
optical communications, microscopy, and quantum information processing [1, 2]. In recent
years, significant efforts have been devoted to generating, controlling, and manipulating
vortex states in various media, including optical fibers, which offer a robust platform for
multiplexed data transmission [3, 4]. Optical vortices are characterized by a helical phase
front of the form exp(ilp), where [ is the topological charge and ¢ the azimuthal angle.

This unique structure enables them to carry OAM, distinguishing them from traditional
Gaussian beams. Their generation can be achieved in both free space and optical fibers, each
offering unique benefits and challenges. The generation of optical vortices differs
significantly between free space and optical fiber in terms of mechanisms, control, and
propagation environments. In free space, optical vortices are typically generated using
external beam-shaping devices. These include spatial light modulators (SLMs), spiral phase
plates, g-plates, and computer-generated holograms, all of which impose a desired azimuthal
phase on an input beam [1,2]. The versatility of SLMs allows real-time modulation and
switching between different OAM modes. Vortices in free space propagate unguided, and
their beam profile diverges with distance and topological charge. While this makes them
suitable for short-range applications, such as optical trapping, they are susceptible to
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environmental perturbations, including turbulence and scattering. In contrast, optical vortex
generation in fibers involves exciting guided modes that intrinsically carry OAM. Specially
designed fibers such as ring-core fibers or few-mode fibers support the propagation of such
modes [3]. Techniques such as mode multiplexing, long-period gratings, and photonic
lanterns are used to excite and maintain these vortex-carrying modes [4] selectively. In
fibers, optical vortices benefit from the confinement provided by the waveguide, enabling
long-distance transmission. However, challenges such as inter-modal coupling and mode
dispersion can degrade the purity of OAM modes, necessitating precision fiber design and
launch conditions.

One innovative approach to studying and optimizing such systems involves the
application of supersymmetry (SUSY) — a theoretical framework developed initially in high-
energy physics but increasingly adopted in optics [5, 6]. SUSY methods enable the design of
pairs of isospectral optical structures, providing new tools for controlling the propagation
and transformation of optical modes within fiber systems [7, 8].

This work investigates the application of supersymmetric techniques for analyzing and
engineering optical vortex modes in optical fibers, with the goal of improving transmission
performance and expanding the capabilities of fiber-based photonic devices.

2. Fiber modes and OAM states
To implement the SUSY approach to eigenmodes inside the optical fiber, an analogy with the

Schrodinger equation is used [9]. It is usual to ignore polarization effects and neglect vector

effects; then, the electric field in the fiber cross-section is given by the scalar wave equation
2 92

n22%E _ 1)

c2 ot?

where n is the refractive index. In a cylindrical geometry of an axially symmetric fiber with

V2E -

(r,p,z) coordinates, we seek propagating solutions of a separable form
EwR(r)eilpei(fz-ot), (2)
where [ is the propagation constant, o is the frequency, R(r) is the radial part, and [ is

the azimuthal mode number (integer). Substituting Eq.(2) into Eq.(1) and making a
substitution y =r1/2R(r) for the dimensionless variable y=r/ p, where p is the radius of

the fiber, we get

2 2
_d_'/’+ﬂv, — p2(n2k2 - B2}y =0, k=2, (3)
dy? y2 c

Thus, this equation has the form of the Schrodinger equation. In order to tie the equation to a
specific fiber geometry, it is advisable to introduce the following parameters [10]. First, we
represent the radial dependence of the square of the refractive index in the form

n2(y)=n3[1-2Af(y)], where A=(1-n? /n3)/2 contains n, that is the maximum refractive
index in the fiber, and n, is the cladding index. The function f(y) has the form of a potential
well and satisfies the conditions f(0)=0 and f(1)=1. Next, following [10], we will define
V= pknox/ﬂ (waveguide parameter), and U= pm (normalized propagation

constant). Using this notation, the equation can be rewritten as
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_1dy 1
2dy2 2

This equation is analogous to the one-dimensional Schrédinger equation, whose

fg 0w =T, fy0)=v2rns 8, (4)

potential includes a term (the second term in f, ) due to the circular nature of the fiber.

This term is analogous to the "centrifugal potential" used in similar quantum mechanical
considerations. The expression U2 /2 plays the role of energy, the value of which
determines the propagation constant f. As with quantum mechanics, solutions of the wave
Eq. (4) lead to a discrete set of bound modes and a continuum of radiation modes.

There exist three categories of allowed modes in optical fiber [10]. Core modes are
modes guided by the core-cladding interface. Cladding modes are modes guided by the
combination of core-cladding and cladding-buffer interfaces. These modes correspond to
discrete values of the propagation constant . Radiation modes form a continuum and are
infinite in number. Thus, the total electromagnetic field is the sum over discrete plus the
integral over continuous values of the propagation constant. In order to describe the mode
structure in an optical fiber more precisely, the Eq. (1) is not enough [10]. A term

proportional to [w(lnnz) yJ comes into play, where the index is the derivative with respect
y

to y. It was shown earlier [10] that using the weakly-guided assumption, it is possible to

construct a system of approximate solutions only for transverse modes. For these
approximate solutions, the transverse field is almost completely described by v . That s, the
solutions are almost linearly polarized, and these modes are thus referred to as LP modes.
In optical fibers, optical vortices cannot be directly supported by the scalar LP modes due to
their intrinsic symmetry. However, through specific superpositions of LP modes,
particularly higher-order degenerate pairs, it is possible to synthesize vector modes with
helical phase fronts that effectively carry OAM [4].

LP modes are approximate solutions to the wave equation in weakly guiding step-
index optical fibers, characterized by the notation LP,,, where [is the azimuthal index and

m the radial index. In general, modes with nearly identical U2 /2 also have identical group

velocities and constitute one mode group, so that they can generate optical vortices. Thus,
the first rule for selecting suitable candidates for this is related to degeneracy of the
eigenvalues of the Eq. (4). In this context, for example, the mode group LP,,, consists of 4

vector modes - TE,, HE$/", HES% and TM,,,, and all other mode groups LP,, (I/>0)

include combinations of true HE and EH modes [4].
For I>0each LP mode is actually a degenerate pair composed of two orthogonal
vector modes [4]. A typical combination is given by
[LPflJ =£HE29‘{‘?” +TM01J. (5)
LPY HES4 +TE,
To generate a vortex beam in a fiber, two degenerate LP modes with opposite angular

momentum components are combined with a 7 /2 phase shift:

OAM, = LPZ +iLPb . (6)
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This results in a mode with a well-defined helical phase front and an OAM of I per
photon. Conventional step-index fibers do not maintain OAM states effectively over long
distances. Therefore, ring-core fibers or specialty few-mode fibers with a larger index
contrast or mode spacing are often required to preserve the LP superpositions. The
generation of optical vortices in fibers via LP mode superpositions is a viable and scalable
approach to harnessing OAM in guided-wave optics. By exploiting the degeneracy of higher-
order LP modes and carefully engineering their phase relationships, it is possible to create
stable vortex beams within optical fibers. While mode coupling and fiber imperfections pose
challenges, advances in fiber design and mode control continue to improve the feasibility of
OAM-based systems in practical applications.

Thus, for efficient generation of optical vortices in a fiber, it is necessary to use a tool
that allows finding degenerate eigenmodes. In other words, it is necessary to determine a set
of equalization potentials that have the same eigenvalues. Supersymmetry will help us with
this.

3. Mode selection in graded-index optical fibers
The preservation and manipulation of vortex modes during propagation through optical

fibers present unique challenges, primarily due to modal dispersion, intermodal coupling,
and environmental perturbations. In this context, graded-index (GRIN) optical fibers emerge
as a promising platform for the robust transmission of optical vortex beams. As we
mentioned above, the optical vortex in the waveguide is constructed as a superposition of
eigenmodes that have propagation constants with close or equal values. Considering the
analogy of Eq.(4) with the Schrodinger equation, the most suitable tool for selecting
degenerate eigenmodes is the supersymmetry method.

Supersymmetry was originally proposed in the context of high-energy physics as a
symmetry between bosons and fermions. In Supersymmetric Quantum Mechanics (SUSY
QM) [11], these concepts are adapted to non-relativistic quantum systems, typically in 1D.
SUSY QM offers insights into quantum spectral problems, factorization methods, and
solvable potentials.

The Hamiltonian for SUSY QM can be written in the form of two components, which are

given by
1d?
Hup. =2V 0y, (y)y, =By, . (7)
2 dy?
Let us define two first-order differential operators:
a=w+ L, arow-4 (8)
dy dy
where W(y) is called the superpotential. Then the partner Hamiltonians take the form:
1 1 d2 1 1 d?
H, ==A+A=—=2"1V (y), H_==AA+=—=24V (), 9
= YRS : YAt 9)
with
1 —
Vi(y) =§(W2 W), (10)

where prime denotes the derivative with respectto y.

Ukr. ]. Phys. Opt. 2025, Volume 26, Issue 4 04061



0. V. Angelsky et al

These two potentials are isospectral (except possibly for the ground state). Indeed, let
the Hamiltonian H, have eigenfunctions y_, with corresponding eigenvalues E,,:

Hy ., =Ew,n. Thenfor Ay, ,wehave

1
H—(AW+mJ=EAA+ (Al//+m)=AH+W+m =En(Ay ) - (11)
Thus, E,, is the energy spectra of H_with eigenfunctions y_,, = Ay, . However, Ay_,
is trivially zero since y is the ground-state solution of H, . We conclude that the spectra of

H_ and H_are identical except for the ground state, m=0, which is nondegenerate.

Thus, the solution is reduced to finding the ground state. After that, the SUSY partner is
found and constructed from Eq.(11). As we saw earlier in Eq.(7), for any transverse
distribution of the refractive index, the equation for the optical modes in a wave has the form
of the Schrodinger equation, where f, plays the role of potential in Eg. (7). SUSY allows the

construction of superpartner waveguides [7], in which one fiber supports a given
fundamental mode, the second has a similar spectral behavior, but without a specific mode.
In SUSY optics, a given optical potential (i.e., refractive index profile) has a SUSY partner,
with a modified index profile but identical propagation constants (except for the
fundamental mode). This means that light modes of one structure can be related to modes of
its partner, excluding the lowest-order mode. This unique property can be used for mode
filtering, conversion, and lossless coupling. Thus, the modes in both fibers can be used to
construct an optical vortex, since they are degenerate. For example, consider a fiber with a
refractive index profile, that supports the usual LP modes ( LPy;, LP;{ etc.). Applying a first-

order SUSY transformation creates a new index profile, which lacks the LP,; mode but
retains all higher-order modes with identical propagation constants.
As an example, consider a fiber with a refractive index profile f(y)= y2. A parabolic

refractive index fiber is a special type of GRIN optical fiber where the refractive index of the

core decreases quadratically from the center toward the cladding. This design provides

excellent control over modal dispersion and is widely used in multimode fiber systems. The

parabolic refractive index profile leads to a wave equation that is mathematically analogous

to the two-dimensional isotropic quantum harmonic oscillator [12]. Indeed, after changing
the variable x =V1/2y, Eq. (4) can be rewritten as

1d2 1 (12—1/4)ﬂ U2

=t x24—= ==y, 12

[ 2 dx? 2( x2 v ZVW (12)

This equation has a set of eigenfunctions and eigenvalues, Hy,, =E, v, , that define

the mode spectrum of the GRIN optical fiber [10] as
1 x?
Wy =N 2e 2 I (x2), (13a)

and
E;, =2m+|1|+1, (13b)

where Ll,lrll(xz) is the associated Laguerre polynomial, mis the radial mode number (non-

negative integer). In weakly guiding step-index optical fibers, the propagation constant, as
follows from the definition of U, V and Eq. (13b), is given by

04062 Ukr. ]. Phys. Opt. 2025, Volume 26, Issue 4



Supersymmetry Approach

(14)

Bim = kng (1 _ ZAM) )

|4

Thus, the propagation constants in a parabolic refractive index fiber form an equidistant
sequence of eigenstates, Eq. (12). Each state is characterized by two numbers m and I.
However, the propagation constants f[,,, depend only on the combination N =2m+|I|. Each

value N>2can be realized by several combinations of values mand [, therefore, the
corresponding modes with values N>2 are degenerate. Thus, the superposition of these
modes can form stable structures, since they have equal propagation constants. However, we
can only speak of their existence if the phase of the superposition is proportional to Il .
Thus, if we take a pair (m,l), then in weakly guiding step-index optical fibers, Eq. (4)
combinations (m,l) and (m,l+2)come into the LP mode. In contrast, in parabolic refractive
index fiber it is necessary to choose (m,l) and (m—-1,1+1).

In order to consider the SUSY generalization of Eq. (12), we define the superpotential as

W) =x—1=1/2 (15)
X

From Eq. (10), the potentials of the superpartners are given by
1 1(2-1/4)
V.(x)==x2+=+—L—-2—(1+1),
(0= 32+ (14])

1(0+1/2)(1+3/2)

(16)
V_(x)= %xz + 5

L

x2

It follows that states with I and [+1 are superpartners. However, the states described
by Eq. (12) do not have such degeneracies. Instead, there are degeneracies corresponding to
values (m—1,/+1) differing by two units, B,1,,_1 =B, This relationship becomes more

natural if we consider that Eq. (12) is defined on a half-axis.

Let's consider the relationship between the superpartners in Eq. (9). It is easy to check
that, using the superpotential (15) and the expression for the eigenvalue (13b), Eq. (12) can
be rewritten as follows:

1 d2
[—Eﬁ“ﬁ}mm =2myy,, (17)

where v, is defined by Eq. (13a). Thus y_ one corresponds to . Let us note that the

operator on the left side of Eq. (17) does not depend on m. Based on Egs. (9) and (16), for
the second superpartner, we obtain

2
[___+v_}//_ =(2m+2y_, (18)
In order for the eigenvalues of Egs. (17) and (18) to coincide (be equal 2m), it is
necessary to determine y_=w, 4,_;. Since Eq.(11) implies that the supersymmetric

partners have the same eigenvalues, it is easy to obtain a relation, up to a normalization
constant, between the supersymmetric modes

[+141

_X2
}//lmz—ZNx 2¢ 2 ML (x2) 2y 1y - (19)

In obtaining relation (19), the recurrence relation (I, )' =-[-1

.1, for generalized Laguerre

polynomials was used along with Eq. (13a).
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Thus, by using the SUSY transformation, it is possible to enable coupling between
different modes in a fiber with a parabolic refractive index. SUSY modes are not obvious
candidates for building vortex solutions in optical fibers, since they develop in different
potentials, resulting in different propagation constants. However, if we analytically find a
solution for one of the modes, then by successively applying the SUSY coupling, we can find
the remaining solutions. This becomes especially important when the refractive index profile
is not necessarily parabolic, but, for example, has a small perturbation. Then, we can use the
exact solution and force the perturbation into the A operator, as done in Eq. (19). In other
words, it is possible to excite two supersymmetric modes in a fiber with a parabolic
refractive index profile. If the mode spectra coincide after the appropriate shift, then they
have the same propagation constants. This circumstance can be used to select modes
intended for constructing optical vortices.

4. Conclusions
This work shows that generating optical vortices in fibers can be effectively achieved

through the controlled superposition of degenerate LP modes, especially in graded-index
fibers with a parabolic refractive index profile. By using the mathematical analogy between
the wave equation in optical fibers and the Schrdodinger equation, we applied SUSY
techniques to identify and engineer isospectral refractive index profiles that support such
degenerate modes. Specifically, SUSY transformations enable the creation of partner mode
sets with identical propagation constants (excluding the fundamental mode), allowing for the
stable formation of vortex beams within the fiber. This method provides a systematic way to
select and couple modes that preserve orbital angular momentum during propagation, even
with structural or environmental disturbances. Our analysis confirms that SUSY-based mode
selection is both theoretically sound and practically useful for enhancing OAM propagation in
optical fibers. Future work will focus on experimental validation, integration into complex
fiber systems, and exploring nonlinear and active media in SUSY-designed structures.
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AHomayia. OnmuyHi 8uxopu, Wo Xapakmepuyrwmuscs cnipajabHow ($azoeorw CmpyKkmypow
ma HasieHicmo op6imaabHO20 KymMo80o20 MOMEHMY, MOXCYMb GyMu 32eHepO8aHi 8 ONMUYHUX
B0/I0KHAX W/SAXOM cynepho3uyii cneyu@iyHux JAiHIiliHO nossipusosaHux Mod. Y yiii pobomi
docaidxcyemuesi hOpMyB8aHHS MAKUX BUXPOBUX MOO Y 80/10KHAX 3 hapaboivHUM npodhisem
NOKA3HUKA 3a/10M/1eHHS. [lepemeopioroyu cKaAspHe X8U/Ib08e PIBHSHHS Y hOpMY, AHAI0214HY
pieHsinHI0 LlIpediHzepa, Mu 3acmoco8yemMo mMemodu cynepcuMempu4yHoi K8AHMOoB80oI MeXaHiku
04151 po3po6KU npoinie NOKA3HUKA 3A/10MAEHHS, SAKI hidmpumMyombs 8upodxceHi 8/1acHi Modu.
Li supoodiceHi Modu maromes 00HAKOBI KOHCMAHMU NOWUPEHHS, Wo 3abe3neyye cmabiabHy
eeHepayito euxopie. JlocaidxiceHHs O0eMOHCMpYe, WO cynepcumempuy4Hi nepemeopeHHs
3ab6esneuyromsb cucmemHull nidxio do eubopy ma 38'a3Ky Mo00, 30aMHUX nepeHocumu
op6imaibHUll Kymosull MOMEeHM, NPONOHYy4U HO8I MOMcAUBOCMI 0151 800CKOHA/NIEHO20
Kepy8aHHsl C8IM/I0M Y 80/10KOHHO-ONMUYHUX CUCMeMaX.

Kawuoei cnoea: onmuyHe 60/40KHO, ONMUYHI BUXOpU, JIHITUHO-NO/SPU308aHI MOJU,
cynepcumempis
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