
 

04058      Ukr. J. Phys. Opt. 2025, Volume 26, Issue 4 

SUPERSYMMETRY APPROACH FOR DESCRIBING OPTICAL VORTEX 
GENERATION IN FIBERS 

O. V. ANGELSKY, S. P. SHCHUKIN * 

Yuriy Fedkovych Chernivtsi National University, Department of Correlation Optics, 
Kotsiubynskoho Street, 2, Chernivtsi, 58012, Ukraine 
*Corresponding author: shchukin.serhii@chnu.edu.ua 

Received: 27.09.2025 

Abstract. Optical vortices, characterized by a helical phase structure and the presence of orbital angular 
momentum, can be generated in optical fibers through the superposition of specific linearly polarized modes. 
This work investigates the formation of such vortex modes in fibers with a parabolic refractive index profile. 
By transforming the scalar wave equation into a form analogous to the Schrödinger equation, we apply 
methods from supersymmetric quantum mechanics to design refractive index profiles that support degenerate 
eigenmodes. These degenerate modes share identical propagation constants, enabling stable vortex 
generation. The study demonstrates that supersymmetric transformations provide a systematic approach for 
selecting and coupling modes capable of carrying orbital angular momentum, offering new possibilities for 
advanced light control in fiber-based optical systems.  
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1. Introduction 
Optical vortices, characterized by phase singularities and carrying orbital angular 
momentum (OAM), represent a unique class of light beams with promising applications in 
optical communications, microscopy, and quantum information processing [1, 2]. In recent 
years, significant efforts have been devoted to generating, controlling, and manipulating 
vortex states in various media, including optical fibers, which offer a robust platform for 
multiplexed data transmission [3, 4]. Optical vortices are characterized by a helical phase 
front of the form  exp( )il , where l  is the topological charge and   the azimuthal angle. 
This unique structure enables them to carry OAM, distinguishing them from traditional 
Gaussian beams. Their generation can be achieved in both free space and optical fibers, each 
offering unique benefits and challenges. The generation of optical vortices differs 
significantly between free space and optical fiber in terms of mechanisms, control, and 
propagation environments. In free space, optical vortices are typically generated using 
external beam-shaping devices. These include spatial light modulators (SLMs), spiral phase 
plates, q-plates, and computer-generated holograms, all of which impose a desired azimuthal 
phase on an input beam [1,2]. The versatility of SLMs allows real-time modulation and 
switching between different OAM modes. Vortices in free space propagate unguided, and 
their beam profile diverges with distance and topological charge. While this makes them 
suitable for short-range applications, such as optical trapping, they are susceptible to 
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environmental perturbations, including turbulence and scattering. In contrast, optical vortex 
generation in fibers involves exciting guided modes that intrinsically carry OAM. Specially 
designed fibers such as ring-core fibers or few-mode fibers support the propagation of such 
modes [3]. Techniques such as mode multiplexing, long-period gratings, and photonic 
lanterns are used to excite and maintain these vortex-carrying modes [4] selectively. In 
fibers, optical vortices benefit from the confinement provided by the waveguide, enabling 
long-distance transmission. However, challenges such as inter-modal coupling and mode 
dispersion can degrade the purity of OAM modes, necessitating precision fiber design and 
launch conditions. 

One innovative approach to studying and optimizing such systems involves the 
application of supersymmetry (SUSY) — a theoretical framework developed initially in high-
energy physics but increasingly adopted in optics [5, 6]. SUSY methods enable the design of 
pairs of isospectral optical structures, providing new tools for controlling the propagation 
and transformation of optical modes within fiber systems [7, 8]. 

This work investigates the application of supersymmetric techniques for analyzing and 
engineering optical vortex modes in optical fibers, with the goal of improving transmission 
performance and expanding the capabilities of fiber-based photonic devices. 

2. Fiber modes and OAM states  
To implement the SUSY approach to eigenmodes inside the optical fiber, an analogy with the 
Schrödinger equation is used [9]. It is usual to ignore polarization effects and neglect vector 
effects; then, the electric field   in the fiber cross-section is given by the scalar wave equation 

2 22
2 2

0n EE
c t

  


,     (1) 

where n  is the refractive index. In a cylindrical geometry of an axially symmetric fiber with  
( , , )r z  coordinates, we seek propagating solutions of a separable form 

( )( ) il i z tE R r e e   ,     (2) 

where   is the propagation constant,   is the frequency, ( )R r  is the radial part, and l  is 
the azimuthal mode number (integer). Substituting Eq. (2) into Eq. (1) and making a 
substitution 1/2 ( )r R r   for the dimensionless variable /y r  , where   is the radius of 
the fiber, we get 
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dy y c
          ,   (3) 

Thus, this equation has the form of the Schrödinger equation. In order to tie the equation to a 
specific fiber geometry, it is advisable to introduce the following parameters [10]. First, we 
represent the radial dependence of the square of the refractive index in the form 

22
0( ) [1 2 ( )]n y n f y   , where 2 2

0(1 / )/ 2cln n    contains 0n  that is the maximum refractive 

index in the fiber, and cln  is the cladding index. The function ( )f y  has the form of a potential 

well and satisfies the conditions  (0) 0f   and (1) 1f  . Next, following [10], we will define 

0 2V kn   (waveguide parameter), and 22 2
0U k n    (normalized propagation 

constant). Using this notation, the equation can be rewritten as  
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This equation is analogous to the one-dimensional Schrödinger equation, whose 
potential includes a term (the second term in efff ) due to the circular nature of the fiber. 

This term is analogous to the "centrifugal potential" used in similar quantum mechanical 
considerations. The expression 2 /2U  plays the role of energy, the value of which 
determines the propagation constant  . As with quantum mechanics, solutions of the wave 
Eq. (4) lead to a discrete set of bound modes and a continuum of radiation modes. 

There exist three categories of allowed modes in optical fiber [10]. Core modes are 
modes guided by the core-cladding interface. Cladding modes are modes guided by the 
combination of core-cladding and cladding-buffer interfaces. These modes correspond to 
discrete values of the propagation constant  . Radiation modes form a continuum and are 
infinite in number. Thus, the total electromagnetic field is the sum over discrete plus the 
integral over continuous values of the propagation constant. In order to describe the mode 
structure in an optical fiber more precisely, the Eq. (1) is not enough [10]. A term 
proportional to 2(ln )y y

n    comes into play, where the index is the derivative with respect 

to y . It was shown earlier [10] that using the weakly-guided assumption, it is possible to 
construct a system of approximate solutions only for transverse modes. For these 
approximate solutions, the transverse field is almost completely described by   . That is, the 
solutions are almost linearly polarized, and these modes are thus referred to as LP  modes. 
In optical fibers, optical vortices cannot be directly supported by the scalar LP  modes due to 
their intrinsic symmetry. However, through specific superpositions of  LP  modes, 
particularly higher-order degenerate pairs, it is possible to synthesize vector modes with 
helical phase fronts that effectively carry OAM [4].   

LP  modes are approximate solutions to the wave equation in weakly guiding step-
index optical fibers, characterized by the notation  lmLP , where l is the azimuthal index and 

m  the radial index. In general, modes with nearly identical 2 /2U  also have identical group 
velocities and constitute one mode group, so that they can generate optical vortices. Thus, 
the first rule for selecting suitable candidates for this is related to degeneracy of the 
eigenvalues of the Eq. (4). In this context, for example, the mode group 1mLP consists of 4 

vector modes - 0mTE , 2
even
mHE , 2

odd
mHE and 0mTM , and all other mode groups lmLP  ( 0l  ) 

include combinations of true HE  and EH  modes [4].  
For 0l  each LP  mode is actually a degenerate pair composed of two orthogonal 

vector modes [4]. A typical combination is given by 

0111 21

0111 21

a even

b odd

LP HE TM

LP HE TE

   
         

.       (5) 

To generate a vortex beam in a fiber, two degenerate LP  modes with opposite angular 
momentum components are combined with a /2  phase shift: 

a b
l lm lmOAM LP iLP  .      (6) 
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This results in a mode with a well-defined helical phase front and an OAM of l  per 
photon. Conventional step-index fibers do not maintain OAM states effectively over long 
distances. Therefore, ring-core fibers or specialty few-mode fibers with a larger index 
contrast or mode spacing are often required to preserve the LP  superpositions. The 
generation of optical vortices in fibers via LP  mode superpositions is a viable and scalable 
approach to harnessing OAM in guided-wave optics. By exploiting the degeneracy of higher-
order LP  modes and carefully engineering their phase relationships, it is possible to create 
stable vortex beams within optical fibers. While mode coupling and fiber imperfections pose 
challenges, advances in fiber design and mode control continue to improve the feasibility of 
OAM-based systems in practical applications. 

Thus, for efficient generation of optical vortices in a fiber, it is necessary to use a tool 
that allows finding degenerate eigenmodes. In other words, it is necessary to determine a set 
of equalization potentials that have the same eigenvalues. Supersymmetry will help us with 
this. 

3. Mode selection in graded-index optical fibers 
The preservation and manipulation of vortex modes during propagation through optical 
fibers present unique challenges, primarily due to modal dispersion, intermodal coupling, 
and environmental perturbations. In this context, graded-index (GRIN) optical fibers emerge 
as a promising platform for the robust transmission of optical vortex beams. As we 
mentioned above, the optical vortex in the waveguide is constructed as a superposition of 
eigenmodes that have propagation constants with close or equal values. Considering the 
analogy of Eq. (4) with the Schrödinger equation, the most suitable tool for selecting 
degenerate eigenmodes is the supersymmetry method. 

Supersymmetry was originally proposed in the context of high-energy physics as a 
symmetry between bosons and fermions. In Supersymmetric Quantum Mechanics (SUSY 
QM) [11], these concepts are adapted to non-relativistic quantum systems, typically in 1D. 
SUSY QM offers insights into quantum spectral problems, factorization methods, and 
solvable potentials. 

The Hamiltonian for SUSY QM can be written in the form of two components, which are 
given by 

2

2
1 ( )
2

dH V y E
dy


  
        .    (7) 

Let us define two first-order differential operators: 

,d dA W A W
dy dy

    ,    (8) 

where ( )W y  is called the superpotential. Then the partner Hamiltonians take the form: 
2 2

2 2
1 1 1 1( ), ( )
2 2 2 2

d dH A A V y H AA V y
dy dy

 
           ,  (9) 

with 

 21( )
2

V y W W   ,    (10) 

where prime denotes the derivative with respect to y . 
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These two potentials are isospectral (except possibly for the ground state). Indeed, let 
the Hamiltonian H  have eigenfunctions m   with corresponding eigenvalues mE : 

m m mH E    .  Then for mA  , we have 

 1( ) ( )
2m m m m mH A AA A AH E A   

        .   (11) 

Thus, mE  is the energy spectra of H with eigenfunctions m mA   . However, 0A   

is trivially zero since 0   is the ground-state solution of H . We conclude that the spectra of 

H  and H are identical except for the ground state, 0m  , which is nondegenerate. 
Thus, the solution is reduced to finding the ground state. After that, the SUSY partner is 

found and constructed from Eq. (11). As we saw earlier in Eq. (7), for any transverse 
distribution of the refractive index, the equation for the optical modes in a wave has the form 
of the Schrödinger equation, where efff  plays the role of potential in Eq. (7). SUSY allows the 

construction of superpartner waveguides [7], in which one fiber supports a given 
fundamental mode, the second has a similar spectral behavior, but without a specific mode. 
In SUSY optics, a given optical potential (i.e., refractive index profile) has a SUSY partner, 
with a modified index profile but identical propagation constants (except for the 
fundamental mode). This means that light modes of one structure can be related to modes of 
its partner, excluding the lowest-order mode. This unique property can be used for mode 
filtering, conversion, and lossless coupling. Thus, the modes in both fibers can be used to 
construct an optical vortex, since they are degenerate. For example, consider a fiber with a 
refractive index profile, that supports the usual  LP  modes ( 01LP , 11LP ,etc.). Applying a first-

order SUSY transformation creates a new index profile, which lacks the 01LP  mode but 
retains all higher-order modes with identical propagation constants.  

As an example, consider a fiber with a refractive index profile 2( )f y y . A parabolic 
refractive index fiber is a special type of GRIN optical fiber where the refractive index of the 
core decreases quadratically from the center toward the cladding. This design provides 
excellent control over modal dispersion and is widely used in multimode fiber systems. The 
parabolic refractive index profile leads to a wave equation that is mathematically analogous 
to the two-dimensional isotropic quantum harmonic oscillator [12]. Indeed, after changing 
the variable 1/2x V y , Eq. (4) can be rewritten as 

22 2
2

2 2
( 1 / 4)1 1

2 2 2
ld Ux

dx x V
          

,   (12) 

This equation has a set of eigenfunctions and eigenvalues, lm lm lmH E   , that define 
the mode spectrum of the GRIN optical fiber [10] as  

21| | | | 22 2 ( )
xl l

lm mNx e L x   ,    (13a) 
and 

2 | | 1lmE m l   ,     (13b) 

where | | 2( )l
mL x  is the associated Laguerre polynomial, m is the radial mode number (non-

negative integer). In weakly guiding step-index optical fibers, the propagation constant, as 
follows from the definition of U , V  and Eq. (13b), is given by 
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V

      
 

,   (14) 

Thus, the propagation constants in a parabolic refractive index fiber form an equidistant 
sequence of eigenstates, Eq. (12). Each state is characterized by two numbers m  and l . 
However, the propagation constants lm depend only on the combination 2 | |N m l  . Each 

value 2N  can be realized by several combinations of values m and l , therefore, the 
corresponding modes with values 2N   are degenerate. Thus, the superposition of these 
modes can form stable structures, since they have equal propagation constants. However, we 
can only speak of their existence if the phase of the superposition is proportional to l . 

Thus, if we take a pair ( , )m l , then in weakly guiding step-index optical fibers, Eq. (4) 

combinations ( , )m l and ( , 2)m l  come into the LP mode. In contrast, in parabolic refractive 

index fiber it is necessary to choose ( , )m l and ( 1, 1)m l  . 
In order to consider the SUSY generalization of Eq. (12), we define the superpotential as 

1 / 2( ) lW x x
x

  ,    (15) 

From Eq. (10), the potentials of the superpartners are given by 
2

2
2

2
2

( 1 / 4)1 1( ) ( 1),
2 2

( 1 / 2)( 3 /2)1 1( ) .
2 2

lV x x l
x

l lV x x l
x





   

   
    (16) 

It follows that states with l and 1l  are superpartners. However, the states described 
by Eq. (12) do not have such degeneracies. Instead, there are degeneracies corresponding to 
values ( 1, 1)m l   differing by two units, 1 1l m lm    . This relationship becomes more 
natural if we consider that Eq. (12) is defined on a half-axis. 

Let's consider the relationship between the superpartners in Eq. (9). It is easy to check 
that, using the superpotential (15) and the expression for the eigenvalue (13b), Eq. (12) can 
be rewritten as follows: 

2

2
1 2
2 lm lm

d V m
dx

 
     

,     (17) 

where lm is defined by Eq. (13a). Thus   one corresponds to lm . Let us note that the 
operator on the left side of Eq. (17) does not depend on m . Based on Eqs. (9) and (16), for 
the second superpartner, we obtain 

2

2
1 (2 2)
2

d V m
dx

   
      

,    (18) 

In order for the eigenvalues of Eqs. (17) and (18) to coincide (be equal 2m ), it is 
necessary to determine 1 1l m    . Since Eq. (11) implies that the supersymmetric 
partners have the same eigenvalues, it is easy to obtain a relation, up to a normalization 
constant, between the supersymmetric modes 

21| | 1 | | 1 22 2 1 11
1 /2 2 ( )

xl l
lm lm l mm

ldA x Nx e L x
dx x

     
 

        
. (19) 

In obtaining relation (19), the recurrence relation   1
1

llm mL L


    for generalized Laguerre 

polynomials was used along with Eq. (13a). 
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Thus, by using the SUSY transformation, it is possible to enable coupling between 
different modes in a fiber with a parabolic refractive index. SUSY modes are not obvious 
candidates for building vortex solutions in optical fibers, since they develop in different 
potentials, resulting in different propagation constants. However, if we analytically find a 
solution for one of the modes, then by successively applying the SUSY coupling, we can find 
the remaining solutions. This becomes especially important when the refractive index profile 
is not necessarily parabolic, but, for example, has a small perturbation. Then, we can use the 
exact solution and force the perturbation into the A  operator, as done in Eq. (19). In other 
words, it is possible to excite two supersymmetric modes in a fiber with a parabolic 
refractive index profile. If the mode spectra coincide after the appropriate shift, then they 
have the same propagation constants. This circumstance can be used to select modes 
intended for constructing optical vortices. 

4. Conclusions 
This work shows that generating optical vortices in fibers can be effectively achieved 
through the controlled superposition of degenerate LP modes, especially in graded-index 
fibers with a parabolic refractive index profile. By using the mathematical analogy between 
the wave equation in optical fibers and the Schrödinger equation, we applied SUSY 
techniques to identify and engineer isospectral refractive index profiles that support such 
degenerate modes. Specifically, SUSY transformations enable the creation of partner mode 
sets with identical propagation constants (excluding the fundamental mode), allowing for the 
stable formation of vortex beams within the fiber. This method provides a systematic way to 
select and couple modes that preserve orbital angular momentum during propagation, even 
with structural or environmental disturbances. Our analysis confirms that SUSY-based mode 
selection is both theoretically sound and practically useful for enhancing OAM propagation in 
optical fibers. Future work will focus on experimental validation, integration into complex 
fiber systems, and exploring nonlinear and active media in SUSY-designed structures. 
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Анотація. Оптичні вихори, що характеризуються спіральною фазовою структурою 
та наявністю орбітального кутового моменту, можуть бути згенеровані в оптичних 
волокнах шляхом суперпозиції специфічних лінійно поляризованих мод. У цій роботі 
досліджується формування таких вихрових мод у волокнах з параболічним профілем 
показника заломлення. Перетворюючи скалярне хвильове рівняння у форму, аналогічну 
рівнянню Шредінгера, ми застосовуємо методи суперсиметричної квантової механіки 
для розробки профілів показника заломлення, які підтримують вироджені власні моди. 
Ці вироджені моди мають однакові константи поширення, що забезпечує стабільну 
генерацію вихорів. Дослідження демонструє, що суперсиметричні перетворення 
забезпечують системний підхід до вибору та зв'язку мод, здатних переносити 
орбітальний кутовий момент, пропонуючи нові можливості для вдосконаленого 
керування світлом у волоконно-оптичних системах. 

Ключові слова: оптичне волокно, оптичні вихори, лінійно-поляризовані моди, 
суперсиметрія 


