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Abstract. This paper aims to develop a high-efficiency, high-accuracy driver assistance system by integrating deep 
learning with an optimized Kalman filter approach. The system is designed to recognize traffic signs in complex 
road environments, enabling the rapid and accurate identification of critical signage to assist drivers in making 
correct decisions. This paper addresses key challenges in the field of intelligent transportation: in dynamic traffic 
environments, conventional object detection algorithms struggle to capture deformation features of traffic signs 
caused by viewpoint variations, resulting in high miss rates for small and deformed targets; existing tracking 
systems suffer frequent identity switches in densely populated vehicle scenes due to occlusion, compromising 
tracking continuity; and complex road conditions significantly degrade recognition robustness. To overcome these 
limitations, the proposed system integrates an enhanced YOLOv11 object detection framework with a Kalman 
filter-based multi-object tracking algorithm, forming a real-time, end-to-end processing pipeline. Compared to 
existing technologies, the proposed approach incorporates a deformable convolutional network to enhance spatial 
feature deformation modeling. The optimized algorithm combines motion trajectory prediction with appearance 
feature fusion to reduce the frequency of identity switches and mitigate target loss. The mean average precision 
value has increased; specifically, with 42 categories, the mean average precision of 50 has improved to 0.9222, 
and with a mean average precision of 50-95, it can also reach 0.7649. 
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1. Introduction 
Amid rapid technological progress, cars, as the most common form of transportation, have 
seen a significant rise in individual ownership. This change has fundamentally altered urban 
mobility patterns. The rapid increase in vehicle ownership and the resulting road congestion 
have put substantial strain on traffic safety. In recent years, the number of traffic accidents, 
along with casualties and property damage, has risen sharply, making traffic safety a major 
public concern. 

The restructuring plan for the road transportation industry has shifted the focus of the 
current transportation system toward the next generation of intelligent vehicles. The biggest 
difference between smart vehicles and traditional cars is the integration of advanced driver-
assistance systems, which allow multi-dimensional interpretation of road conditions to help 



Ling Xu et al 

Ukr. J. Phys. Opt. 2025, Volume 26, Issue 4 04014 

drivers make accurate decisions. Survey data show that most drivers believe autonomous 
vehicles can effectively reduce traffic accidents, and the general public has a positive view of 
their adoption. In the context of next-generation transportation systems, the performance of 
driving assistance features has become a key indicator of vehicle safety. As intelligent driving 
systems are increasingly used in real-world applications, public expectations for their safety 
and intelligence have risen significantly. As shown in Fig. 1. 

Recognition and response 
capabilities of smart cars 69.8%

Transportation system 
safety 67.6%

51.6%Identification of legal 
liability

Form data privacy security 47.7%

Extreme case robustness 43.4%

23.4%Road condition judgment

 

Fig. 1. The level of public expectations for the issues that urgently need to be addressed by intelligent 
transportation.  

The core technology for solving today's critical issues lies in the fast and accurate 
detection of specific road condition information. The data from upstream detection modules 
are sent to the central control unit, which then makes precise decisions across multiple 
aspects. Among these, traffic sign recognition is a vital function of intelligent transportation 
systems, serving as a foundation for the stable and safe operation of other modules. By 
capturing images of the road ahead with onboard cameras while driving, traffic signs are 
detected and accurately identified. The recognition results are then sent to the vehicle's 
onboard computer or cloud server, helping drivers make informed decisions and ensuring 
safe, compliant, and stable vehicle operation. Therefore, developing a traffic sign detection 
system with high speed and accuracy is crucial for the future of the automotive industry. 
Compared to manual recognition, intelligent onboard cameras are compact and offer several 
benefits, including lower cost, higher efficiency, and better resilience to environmental 
conditions, which greatly improves traffic sign detection efficiency. 

Currently, the field of object detection includes a wide variety of algorithms, and 
detecting road traffic information is one of its most important application areas, playing a 
vital role in developing modern intelligent transportation systems. Current research on 
object detection in road traffic mainly falls into the following categories. 
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(1) Manually engineered features. 
This category of detection algorithms relies on manually engineered features to enhance the 
detection capability of classifiers, thereby reducing computational resource consumption to 
some extent. The detection process based on handcrafted features typically involves three 
stages: object selection, feature analysis, and classification. Representative methods include 
edge detection algorithms, the Histogram of Oriented Gradients (HOG), and the line segment 
detector. The typical pipeline involves applying a sliding window across the target image to 
select candidate regions, followed by feature extraction using the Viola-Jones detector, and 
final classification and regression using a support vector machine (SVM) to produce 
detection outputs.  

A major breakthrough in this field was the Viola-Jones detector, introduced by Viola and 
Jones in their seminal works, "Rapid Object Detection using a Boosted Cascade of Simple 
Features" and "Robust Real-Time Face Detection" [1]. This approach combines grayscale 
imaging techniques, uses functions automatically mapped over grayscale images, and 
improves recognition performance through the integration of the AdaBoost algorithm and 
feature selection. However, its robustness is limited when dealing with non-precise or noisy 
images. Later, N. Dalal [2] proposed using HOG as a supporting method for object recognition 
in the paper HOG for Human Detection. The gradient-based vector features were input into 
an SVM to guide the learning process, forming the traditional HOG+SVM framework. 

However, in practical applications, the computational process of HOG is relatively 
complex, leading to longer data processing times. The target selection strategy and the 
generalization ability of handcrafted features do not meet practical expectations. As a result, 
the overall performance of the detection algorithm stalls, and detection accuracy is limited 
by factors such as the number of detection windows and time efficiency. The underlying 
principle is illustrated in Fig. 2 below. 
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Fig. 2. The process of traditional object detection algorithms. 

These algorithms have notable limitations in both recognition accuracy and robustness 
in complex environments, and they lack the flexibility to develop target-specific optimization 
strategies. In practice, detection performance depends on factors such as the number, 
orientation, size, and type of objects, as well as real-time environmental conditions. 
Achieving accurate recognition amidst these varying conditions remains a primary focus and 
challenge in the theoretical study of object detection. 
(2) Deep learning-based object detection algorithms. 
Traditional object detection algorithms, limited by narrow target selection strategies and 
handcrafted feature processing, failed to achieve breakthroughs after the widespread 
adoption of HOG+deformable part models. To some extent, the performance of these 
algorithms stagnated: the former was constrained by the number of detection windows and 
speed, while the latter was hindered by insufficient accuracy, limiting its practical use. 
Influenced by machine learning and deep learning approaches, deep learning-based object 
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detection algorithms have gradually overcome these limitations. By focusing on 
convolutional neural networks (CNNs) and leveraging their high efficiency and accuracy, 
real-time object detection has become an increasingly common industry goal. 

There are two main approaches to real-time object detection using deep learning. The 
first approach, known as two-stage detection, creates region proposals with convolutional 
neural networks and refines target localization using a regression classifier, specifically the 
region-CNN (R-CNN) [3]. This method, which replaced traditional sliding window 
techniques, marked a significant advancement in detection and recognition. Additional 
improvements included spatial pyramid pooling to speed up convolutional sharing, and Ren 
S. introduced the concept of anchors in Faster R-CNN [4], greatly boosting prediction 
accuracy. Although two-stage algorithms improve detection accuracy, their complex 
computations can decrease efficiency. 

The second approach, known as one-stage detection, skips the region proposal step and 
directly predicts bounding box coordinates and class probabilities through regression. The 
YOLO algorithm demonstrates this method by performing regression across all grid cells to 
generate detections in a single pass. This approach makes prediction simpler and increases 
testing speed but usually reduces accuracy compared to the two-stage method. 

Different algorithm types optimize various components based on their functional 
implementations, but each inevitably has certain drawbacks. With ongoing algorithmic 
improvements and advances in hardware capabilities, object detection has shown strong 
performance across various complex domains. 

Traffic sign detection is essential for traffic sign classification. It also narrows down the 
search area, lowers the computational demands of subsequent feature extraction algorithms, 
and can improve recognition accuracy. Traditional traffic sign detection methods rely on 
differences in shapes, colors, and content features of the signs. In color feature detection 
research, scholars worldwide have proposed effective solutions such as threshold 
segmentation and RGB color enhancement to reduce detection errors caused by 
environmental color variations. Benallal M. et al. [5] studied RGB data variations under 
different environments and applied threshold segmentation to color models, using difference 
values as the basis for target recognition. However, this method performs poorly in complex 
real-world traffic environments with diverse color patterns. A. de la Escalera [6] proposed 
shape detection techniques based on the Huffman transform and color segmentation; Piccioli 
G. [7] matched shape detection tasks with predictive models, developing detection and 
recognition systems with strong performance. 

To further enhance detection performance in complex real-world environments, 
researchers worldwide have proposed fusion detection methods that combine color and 
shape features of various targets. This efficient, deep learning-based detection approach has 
gained widespread favor. Natarajan S. et al. [8] applied weighted optimization to the output 
layer of the convolutional neural network training method. 

Object detection systems based on various methods still have limitations in both accuracy 
and speed [9-10]. Researchers have explored both one-stage and two-stage algorithms to 
enhance detection accuracy [11-17]; however, these approaches are prone to missed and false 
detections in complex scenarios involving small or occluded objects. To support intelligent 
transportation systems, some studies have adopted the YOLOv5 algorithm integrated with 
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convolutional attention modules [18], which reduces model parameters compared to earlier 
methods. However, there is still room for improvement in detection accuracy. The fusion of 
transformer mechanisms with convolutional neural networks enriches feature representation 
and suppresses redundant feature interference. However, this also increases parameter count 
and memory consumption [19]. Subsequent studies modified the number of convolutional layers 
and kernels in the model to improve detection speed, though the overall accuracy remained 
limited [20]. Some researchers have employed coordinate attention mechanisms [21] to enhance 
sensitivity to small objects and optimized loss functions using EIoU (EIoU is an optimized loss 
function that improves upon IoU and CIoU, addressing the issue of class imbalance) [22]. 
Although these approaches offer certain improvements, they still suffer from limited detection 
accuracy, high computational complexity, and poor adaptability to highly complex or unusual 
environments. In response to the current research status and practical needs, YOLOv11 is chosen 
as the base detection framework, optimized using DCNv2, and corrected with Kalman filtering 
(KF), resulting in a high-accuracy algorithm for traffic sign detection. 

2. Method 
This study focuses on traffic sign detection, an important task in driver assistance systems, 
and suggests improvements to existing object recognition and tracking frameworks. To 
overcome limitations such as occlusion caused by redundant information, poor feature 
capture of sign deformation from different viewpoints in traditional detection algorithms, 
frequent ID switching due to occlusions in busy traffic scenes, and low detection accuracy for 
small objects and Chinese traffic signs, we propose an optimized hybrid algorithm that 
combines YOLOv11 and KF. The overall algorithm workflow is shown in Fig. 3. 
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Fig. 3. Algorithm principle and video sequence stream. 

The upstream detection module is based on the YOLOv11 framework, which introduces 
architectural innovations and parameter optimizations to improve practicality in object 
detection tasks. Compared to other models, YOLOv11 includes advanced feature extraction 
techniques that enable better detail capture, while also increasing processing speed for real-
time performance. The original cloud service provider bottleneck with 2 convolutions block 
is replaced by the cross-stage partial kernel×2 (C3k2) module, which balances accuracy and 
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efficiency. Additionally, a new cross-stage partial with pyramid squeeze attention (C2PSA) 
module is added to enhance detection accuracy for objects of different sizes and positions. 
Two depthwise convolution modules are incorporated into the decoupled output head to 
further reduce the parameter count and computational complexity. The architecture has 
three parts: Backbone, Neck, and Head. The Backbone, strengthened with the C3k2 module, 
handles feature extraction. The Neck fuses and enhances the extracted features, and the 
Head produces the final detection outputs. 

This study uses a multi-stage processing architecture. First, traffic signs are roughly 
localized using the YOLOv11 network with an embedded deformable convolutional network 
v2 (DCNv2) module. Next, an optimized KF algorithm is employed for cross-frame object 
tracking, and the final output—a warning signal with motion trajectory—is displayed on the 
in-vehicle head-up display (HUD) system. During detection, the YOLOv11 backbone is 
extensively modified with deformable convolutional modules to enhance computation. 
Traditional convolution operations rely on fixed geometric sampling grids (e.g., 3×3 or 5×5), 
which are ineffective for capturing features of deformed objects like tilted or curved traffic 
signs. The rigid sampling structure cannot align with actual feature positions, leading to 
inaccurate feature extraction. The DCNv2 module solves this issue through its dual dynamic 
mechanism. The principle is shown in Fig. 4. 

 
Fig. 4. Principles of DCNv2. 
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convolutional layer to output spatial dimension information. Δ km  denotes the modulation 
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In this context, q iterates over all interpolation points to ensure the offset remains 
learnable. The dynamic deformable convolution addresses challenges such as image 
deformation and small-scale target detection in real-world driving scenarios. Its working 
mechanism is illustrated in Fig. 5. 

 
Fig. 5. The application principle of deformation adaptation in traffic sign detection. 

The YOLOv11 backbone network has three output layers, corresponding to resolutions 
of 1/8, 1/16, and 1/32 of the original input image. For an input size of 640 × 640 pixels, the 
feature map sizes are 80 × 80, 40 × 40, and 20 × 20, respectively. During downsampling, 
deeper feature maps gain a larger receptive field and capture more global semantic 
information, while shallower layers focus on local details. Compared to the original YOLOv11 
model, the improved network boosts detection accuracy for small objects and deformed 
targets. Its optimization mechanism within the overall network is shown in Fig. 6. 

 
Fig. 6. The optimal placement for the optimization module in YOLO. 
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Optimization is performed on the middle-to-high-level feature layers to handle regions 
with significant deformation effectively. In contrast, shallow layers are preserved to avoid 
excessive displacement that could compromise fundamental features. The optimization 
results are illustrated in Fig. 7. 

 
Fig. 7. Comparison of DCNv2 with traditional methods in real-world road conditions. 

Leveraging the dual-dynamic mechanism of DCNv2 enables significant improvements in 
traffic sign detection, especially in deformation adaptation, small object recognition, and 
occlusion robustness. Its adaptive sampling offset mechanism is well-suited to handle 
variations in the viewing angles of traffic signs, providing crucial support for autonomous 
driving perception systems. Additionally, to address the issue of object loss caused by the 
high speed of vehicles – more pronounced than in other detection scenarios – this work 
incorporates an optimized tracking framework by introducing the KF for optimal state 
estimation of the system. The Kalman algorithm estimates the state of a dynamic system 
from a series of noisy measurements and is computationally efficient to implement. It 
predicts object bounding boxes based on previous frames and links them with detections in 
subsequent frames using the Hungarian algorithm. 

The linear KF assumes that both the state transition and observation models are linear 
functions, with all variables following a normal distribution and the noise being Gaussian 
and uncorrelated. Based on these assumptions, it performs recursive state estimation of 
stochastic processes. By combining prior state estimates with their associated uncertainties, 
the algorithm computes an optimal solution that balances multiple error sources and 
reference quantities, producing results that closely approximate the true state. The KF 
assumes that variables follow a Gaussian distribution, and it calculates a realistic Gaussian 
curve using the following four parameters and the Kalman gain. 

(1) Prediction: Computed from the observed value at the previous time step.  
(2) Observation: In this system, the observed values are provided by the detection 

framework.  
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(3) Observation noise: Consists of various factors such as environmental noise, channel 
interference, and detection inaccuracies.  

(4) Prediction error: Comes from the deviation of the predicted value from the previous 
timestep. 

Taking a two-dimensional Gaussian distribution as an example, the state prediction 
formula is as follows: 

1 11
tP

k kk kX Ax Bu w   .     (2) 

Here, A represents the state transition matrix, B is the control matrix, and wk1 denotes 
the process noise 1 1, , t P

k k ku x X  . Here, 1  ku  represents the control input at time k-1, 

1
t
kx  represents the true value at time k-1, and P

kX  represents the true value at time k, which 
is the value to be estimated. At time step k, the measurement Zk corresponding to the true 
state xk satisfies the following equation: 

k kZ Hx v  ,     (3) 
where H represents the observation matrix, and v denotes the observation noise. It is assumed 
that the random variables wk and V follow multivariate normal distributions with zero mean and 
covariance matrices Q and R, respectively; that is, wk1～N(0，Q),V～N(0，R)，where N 
represents that it follows a normal distribution. The overall process of the KF algorithm consists 
of two main stages: the prediction stage and the state update stage. During the state update stage, 
the Kalman gain is used to weigh the relative importance of the observation and the prediction. 
Essentially, it is computed through operations on covariance matrices to derive an appropriate 
weighting that leads to an optimal solution. The Kalman gain determines the specific update 
strategy, yielding a new Gaussian noise distribution. Here, tP - is the predicted estimate 

covariance matrix, tP  is the updated estimate covariance matrix, and tK  is the optimal Kalman 

gain. The best estimate of the state ˆ
tX   is computed prior to the observation tZ , and the updated 

best estimate ˆ
tX  is calculated during the update stage based on the observed tZ . The principle of 

the linear KF is illustrated in Fig. 8. 
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Fig. 8. KF principal scheme. Or uk-1 and k represent a certain moment in time and the previous moment.  
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The core of the overall process involves calculating the Kalman gain and updating the 
prior state. The computational flow of the algorithm is illustrated in Fig. 9. 

 

Fig. 9. The scheme of the Kalman calculation process. 

KF plays a crucial role in temporal association and state stabilization within traffic sign 
recognition systems. Its core value lies in addressing the inherent spatiotemporal 
discontinuities present in single-frame detection models. By utilizing the traffic sign's central 
position, size, and velocity, combined with real-time vehicle speed, the process noise 
covariance matrix is dynamically adjusted to ensure accurate motion prediction in high-
speed scenarios. At the temporal processing level, the algorithm first predicts the target 
position using the state transition equation. Subsequently, it associates the predicted 
bounding boxes with the detections from the current frame via the Hungarian algorithm, 
integrating a cost matrix that combines both geometric and appearance features. In complex 
traffic environments, the algorithm continuously predicts the positions of occluded signs 

using a kinematic model. When the 
vehicle approaches the sign, the 
recognition region is dynamically 
corrected based on a size variation 
model. Serving as the core of temporal 
perception, the KF optimizes the 
YOLOv11 detection model. The filter 
compensates for the limitations of 
static detection in dynamic object 
tracking, while the detection model 
provides high-precision observation 
data for the filtering process. 
Together, they provide the vehicle 
control module with a continuous and 
stable foundation for environmental 
perception. The operational principle 
is illustrated in Fig. 10. 

The system adopts an improved 
YOLOv11 as the foundational 
detection framework, reconstructing 
the feature extraction mechanism by 
integrating a deformable convolution 
module. Utilizing its dual adaptive 
mechanism – dynamic offsets and 

 
Fig. 10. The principle of the KF algorithm used in traffic sign 

recognition. 
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modulation factors – it precisely addresses perspective deformation and scale variations of 
traffic signs, enabling the network to dynamically adjust sampling locations based on the 
actual deformation state of the signs. The modulation factors, output via a Sigmoid-activated 
independent convolutional layer, generate spatial weight distributions that automatically 
reduce noise interference in occluded areas while enhancing key information in effective 
feature regions. To meet temporal continuity requirements, the system integrates a KF-
based algorithm that constructs a seven-dimensional state vector describing the spatial 
position, size ratio, and motion characteristics of the traffic signs. For industrial-grade 
deployment, a multidimensional lightweight design is employed by embedding the DCNv2 
module in the middle layers of the backbone network to replace standard convolutions, and 
using grouped convolutions to reduce computational load. A "detection-tracking-decision" 
framework is constructed, where the spatial adaptability of DCNv2 provides high-precision 
observational input for tracking, and the temporal prediction capability of the KF inversely 
guides the attention allocation of the detection module. The optimized network architecture 
is illustrated in Fig. 11. 
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Fig. 11. An optimized traffic sign detection network framework based on YOLOv11. 

3. Experimental results 
To verify the feasibility of this invention, computer simulations were carried out to validate the 
authenticity and effectiveness of the aforementioned theory, with training data generated in a 
virtual environment set up using Miniconda. Chinese road traffic signs typically feature a white 
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background with black text and black borders, usually in rectangular shapes. Warning signs are 
yellow and black, shaped as upward-pointing triangles. Regulatory signs have a white 
background with red borders and black patterns, commonly circular or triangular. Guide 
signs have a blue background with white patterns, shaped as circles or rectangles. Direction 
signs feature blue backgrounds with white text (green backgrounds with white text on 
highways), generally rectangular. Tourist area signs have a brown background with white 
characters and are rectangular in shape. In practical applications, the influencing factors can 
be broadly categorized into five types. 
(1) Natural environment: Variations in seasons and weather conditions, as well as 

differences in lighting levels at dawn and dusk—especially under extreme conditions 
such as heavy rain, snow, and strong winds—result in different recognition 
performances for the same signs under similar settings. 

(2) Redundant interference: In actual road traffic environments, objects with shapes and 
colors similar to traffic signs exist, and differences among sign categories can also affect 
detection performance. 

(3) Pixel blur: During high-speed vehicle motion, road surface conditions and imaging 
issues cause distortions due to rapid movement, negatively impacting the images fed 
into the detection module. 

(4) Similar shapes: High vehicle speed causes the captured image regions to be small and 
difficult to recognize. 

(5) Target loss: In real traffic environments, sign locations are often hard to detect, and 
targets tend to be small in scale. Some signs may be partially damaged or occluded by 
greenery when fed into the detection module. 
To improve detection accuracy for specific application scenarios, the dataset was 

selected from street scenes captured by onboard cameras under actual Chinese road 
conditions. By combining the application context and network operational principles, the 
algorithm ensures its effectiveness across various traffic scenarios. Based on the TT100k 
dataset, manual annotation and data optimization enhancements were applied to better align 
with real Chinese road traffic conditions. The dataset consists of training, validation, and test 
sets containing 6,598, 1,889, and 970 images, respectively. The main traffic signs in China 
were categorized and clearly labeled, covering 42 types of signs. Most images in the dataset 
are small in size, reflecting the data stream actually received by the detection module in real 
driving environments. Based on this data, data augmentation was performed on selected 
traffic sign images to further improve training efficiency and enhance model robustness. 
During the accuracy evaluation of the detection algorithm, the following metrics were used: 
precision, recall, F1 score, precision-recall curve (P-R curve), average precision (AP), and 
mean average precision (mAP). Finally, a confusion matrix was employed to assess detection 
accuracy, as shown in Fig. 12. 
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Fig. 12. Confusion matrix results. 
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Recall and precision are defined by the formulas: TPP
TP FP




, TPR
TP FN




, Based on 

these, accuracy and the F1 score are further introduced to evaluate the classification 
performance of the network model. The F1 score is the harmonic mean of precision and 
recall, calculated as: 

TP TNAccuracy
TP TN FP FN


  

, 21 P RF score
R P
 


.    (4) 

The AP value measures the performance of the trained model on each category, while 
mAP evaluates overall performance across multiple categories. Geometrically, mAP 
approximates the area under the precision-recall (P-R) curve, effectively summarizing it into 
a single AP value. The experimental results for the P-R curve and F1 score are shown in 
Fig. 13 below. The PR curve (precision-recall curve) illustrates the trade-off between the 
model's accuracy and recall. The horizontal axis represents the recall rate, indicating whether 
the  model  can identify the target. The vertical axis shows accuracy, indicating  the  proportion 

 

(a) 

(b) 

Fig. 13. Experimental performance indicators: (a) dependence of the precision on the recall rate, (b) 
dependence of the F1 score on the confidence threshold.   
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of correct identifications. The closer the curve is to the upper right corner, the higher the 
precision and recall, suggesting that the model is both accurate and comprehensive in identifying 
traffic signs. The F1 value's variation at different confidence thresholds is dynamically displayed. 
The horizontal axis indicates the confidence threshold, the minimum confidence required for the 
model to classify a case as positive. The vertical axis shows the F1 score, the harmonic mean of 
precision and recall at that threshold. This score balances accuracy and recall, representing the 
overall performance of both. Only when both are high can the F1 score be high. This figure shows 
that the model performs stably in most cases and demonstrates strong robustness. 

The normalized confusion matrix results are shown in Fig. 14 below. The vertical axis 
represents the true label, which is the actual category of the data sample. The horizontal axis 
represents the predicted label, which is the model's predicted classification result for the sample. 
This figure primarily highlights the model's recognition ability across different categories. The 
dark cells on the diagonal indicate that the model correctly recognized the vast majority of 
samples in that category, and the overall classification performance of the model is excellent. 

 

Fig. 14. The normalized confusion matrix results. The vertical axis represents the true label, while the 
horizontal axis represents the predicted label. (The darker the color of the block, the higher the proportion of 
correct classifications).  

The performance metrics are presented in Table 1 below. 



Deep Learning-Based 

Ukr. J. Phys. Opt. 2025, Volume 26, Issue 4 04027 

Table 1. Accuracy metrics of the optimized network in traffic sign recognition. 
Name F1 P R mAP50 mAP75 mAP50-95 
DCNv2 0.8866 0.9477 0.8355 0.9222 0.8745 0.7649 

The mAP50 and mAP50-95 values are 92.2% and 76.4%, respectively. By optimizing defor-
mable convolution, the model achieves higher accuracy compared to the baseline and other 
modules, such as lightweight adaptive weight modules, for this type of task. Additionally, the 
backbone optimization balances computational performance and parameter stability, making it 
more suitable for in-vehicle systems. This paper addresses accuracy loss due to viewpoint defor-
mation, partial occlusion, and environmental interference in dynamic traffic scenarios. The technical 
solutions include dual-core innovations that lead to breakthroughs. Experimental data demonstrate 
that improvements in detection models and tracking algorithms effectively handle deformation, 
occlusion, real-time performance, and environmental adaptability. The approach also considers 
lightweight deployment by incorporating dynamic sampling mechanisms, multi-modal matching 
strategies, and adaptive noise control mechanisms. The actual detection results are shown in Fig. 15. 

 
Fig. 15 (Part I) .This image displays the recognition results for real road condition images or video data, with 
'pl19' being one of the labels and 0.9 representing the probability of it being that label. 
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Fig. 15 (Part II). 

4. Conclusion 
This paper proposes an intelligent traffic assistance system based on deep learning to 
address key challenges in traffic sign detection in dynamic traffic environments. Traditional 
algorithms often experience high miss rates for small targets due to perspective distortion, 
frequent ID switches during tracking caused by dense occlusions, and limited robustness 
under complex road conditions. By integrating an improved object detection framework with 
an optimized tracking algorithm, an end-to-end real-time processing solution is developed. 
On the detection side, the YOLOv11 backbone network is innovatively redesigned by 
incorporating deformable convolution modules into selected mid-to-high-level feature 
layers. These modules use dynamic offsets to allow sampling points to adapt to the geometric 
structure of deformed objects. 

Additionally, modulation scalars dynamically reweight feature contributions, improving 
the network’s ability to extract traffic sign features affected by perspective distortions such 
as tilting and bending. The network architecture is further optimized by integrating the C3k2 
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module to balance detection performance and speed, and by adding the C2PSA module to 
improve multi-scale detection accuracy while reducing computational load, ensuring 
efficient deployment on in-vehicle hardware systems. On the tracking side, an optimized 
multi-object tracking framework based on KF is used. A seven-dimensional state vector 
models the spatial location, size, and velocity of traffic signs. The process noise covariance is 
dynamically adjusted based on the vehicle's real-time speed to enhance prediction accuracy 
in high-speed scenarios. A multidimensional matching strategy combining motion trajectory 
prediction and appearance feature similarity is employed, utilizing the Hungarian algorithm 
for inter-frame association to ensure tracking continuity. The detection and tracking 
modules form a closed-loop system. DCNv2 supplies high-precision observation inputs, while 
the temporal prediction capability of KF feeds back to guide attention allocation in the 
detection module. To adapt to real-world Chinese traffic conditions, the dataset and training 
strategies are refined. Based on the TT100k dataset, 42 types of typical Chinese traffic signs 
are manually annotated, covering challenging scenarios such as changes in illumination, rain 
and snow interference, motion blur, small targets, and occlusions. Targeted data 
augmentation techniques are used to boost model robustness. Experimental results show 
that the proposed improvements significantly enhance adaptability to deformations and 
robustness against occlusions, outperforming the baseline model. The mean AP value has 
increased. With 42 categories, the mAP50 has improved to 0.9222, and mAP50-95 can also 
reach 0.7649. The final system can output real-time warning signals with motion trajectories, 
providing drivers with continuous and stable decision-making support for critical traffic 
information. 
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Анотація. У статті представлено розробку високоефективної та високоточної системи 
допомоги водієві шляхом інтеграції глибокого навчання з оптимізованим підходом фільтра 
Калмана. Система призначена для розпізнавання дорожніх знаків у складних дорожніх 
умовах, забезпечуючи швидке та точне виявлення критично важливих знаків для допомоги 
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водієві у прийнятті правильних рішень. У роботі розглядаються ключові проблеми в галузі 
інтелектуального транспорту, зокрема: у динамічних дорожніх середовищах традиційні 
алгоритми виявлення об’єктів не здатні ефективно фіксувати особливості деформації 
дорожніх знаків, спричинені змінами кута огляду, що призводить до високого рівня 
пропущених об'єктів, особливо малих і деформованих; наявні системи відстеження часто 
мають збої ідентифікації в щільних транспортних потоках через перекриття об’єктів, що 
погіршує безперервність відстеження; складні дорожні умови значно знижують 
надійність розпізнавання. Для подолання цих обмежень, запропонована система поєднує 
вдосконалену структуру виявлення об’єктів YOLOv11 з алгоритмом мультиоб’єктного 
відстеження на основі фільтра Калмана, формуючи конвеєр обробки в режимі реального 
часу. На відміну від наявних технологій, запропонований підхід використовує змінювану 
згорткову мережу для покращення моделювання деформації просторових ознак. 
Оптимізований алгоритм поєднує прогнозування траєкторії руху з об’єднанням ознак 
зовнішнього вигляду, що дозволяє зменшити частоту зміни ідентифікаторів та знизити 
ймовірність втрати цілі. 

Ключові слова: оптичне розпізнавання, дорожні знаки, глибоке навчання, модель YOLOv11, 
фільтр Калмана 


