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Abstract. The vibrational spectra of phosphorus pentachloride (PCl₅) and antimony pentachloride (SbCl₅), 
both with D3h point group symmetry, are accurately calculated using a symmetry-adapted Lie algebraic 
framework. This study focuses on computing the fundamental frequencies, overtones up to the second order, 
and combination bands using a vibrational Hamiltonian constructed from Casimir and Majorana operators, 
which include both harmonic and anharmonic terms. The predicted frequencies, which are in excellent 
quantitative agreement with experimental data, not only validate the predictions but also demonstrate the 
method's high accuracy in replicating the complex spectroscopic phenomena of high-symmetry molecules. 
These results also provide a deeper understanding of the molecular structure and atmospheric behavior of 
PCl₅ and SbCl₅, emphasizing their roles in optical absorption and scattering processes. The findings presented 
here also underscore the potential of the Lie algebraic method in advancing molecular spectroscopy and 
solving problems in atmospheric chemistry and environmental science, inspiring hope for future research in 
the field. 
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1. Introduction 
Understanding the vibrational frequencies of molecules helps to understand their structure, 
spectroscopy, and dynamic properties. Their computations should also be precise, for ranges 
of Raman and infrared spectra are crucial to different scientific domains such as atmospheric 
chemistry, environmental science, materials science, and molecular physics. Of special 
interest in the execution of secondary processes, where they serve as catalysts, phosphorus 
pentachloride (PCl5) and antimony pentachloride (SbCl5), both of which belong to the D3h 
symmetry point group, are also used for optical monitoring of atmospheric phenomena. 
Modelling the vibrational spectra of these compounds is particularly difficult since both 
anharmonic and harmonic contributions to vibrational modes, overtone, like many other 
combinations, need to be defined. Hence, more elaborate, theoretical, and computational 
methods are required to predict these complex parameters successfully. 

Various methods have been developed to estimate vibrational frequencies, each with its 
own strengths and weaknesses. The harmonic oscillator approximation remains a useful starting 
point in vibrational spectroscopy. It assumes that a molecule's vibrations can be modeled with a 
purely harmonic potential, which works reasonably well. However, these methods do not account 
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for anharmonic effects, which are essential for accurately determining higher-order modes 
(overtones and combination bands). As a result, in many cases – especially for overtones – the 
frequencies predicted by the harmonic oscillator approximation tend to be higher than the 
observed values [1-3]. Ab initio methods and Density Functional Theory (DFT) approaches are 
more advanced because they systematically incorporate molecular vibrations. These methods 
solve the Schrödinger equation for the molecule, either exactly or approximately, leading to more 
accurate predictions of vibrational frequencies. Realistic results can be achieved by including 
anharmonic effects. Unfortunately, as the size and complexity of the molecule increase, the 
computational cost of these calculations also grows, making them impractical for larger systems. 

Furthermore, the accuracy of molecular and parametric analyses varies because of 
different basis sets and functionals that are preset, leading to systematic errors and affecting 
other molecular systems [4-8]. Often, empirical force field models are used as alternatives by 
parameterizing potential energy functions to predict molecular vibrations. They are useful 
for large-scale studies since they are computationally inexpensive. However, the 
parameterized system must have comprehensive information features for the data to be 
dependable, making the model ineffective for that system. A common issue with force field 
models is their failure to reproduce certain anharmonic effects, which hampers the 
prediction of higher-order vibrational spectra [9-11]. Especially for more atoms in highly 
symmetric molecules, matrix and normal mode methods are frequently used to analyze 
vibrational frequency patterns. These methods involve eigenvalue and eigenvector analysis 
of the molecules' force constant matrices to determine vibration frequencies and normal 
modes. However, these approaches also face limitations common to all methods, such as the 
increased computational resources needed for larger molecular systems and the neglect of 
anisotropy effects despite their high accuracy [12-14]. 

To overcome these challenges, the Lie algebraic approach emerges as a flexible method for 
studying molecular vibrational modes. From this technique, a vibrational Hamiltonian, which 
encompasses all relevant vibrations, and the U(2) Lie algebraic operator can be constructed. The 
Lie algebraic method is self-consistent and accurate for many molecular systems, especially 
highly symmetric ones, because it does not limit the basis set or require extensive experimental 
data. Using this approach improves the accuracy of higher-order anharmonic descriptions, which 
is essential for precise modeling of vibrational spectra. Unlike other methods that focus on 
simplifications and corrections based on experimental data, the Lie algebraic method applies 
these adjustments independently. This feature increases the method's reliability in estimating 
vibrational spectra, filling gaps that other methods leave [15-21]. 

The Lie algebraic technique is useful because it allows the direct inclusion of molecular 
symmetry into the vibrational Hamiltonian. This is especially helpful for high-symmetry 
molecules like PCl5 and SbCl5, which are part of the D3h point group. Using this approach, 
operators can be built to greatly decrease the time and effort needed to calculate vibrational 
frequencies, overtone spectra, combination bands, and more. Additionally, applying the Lie 
algebraic method expands the understanding of molecular dynamics since local and normal 
vibrational modes can be examined within the same algebra framework. Researchers in the 
field will likely value the efficiency of the Lie algebraic method in these areas. 

The algebraic method captures the full range of complex symmetric features of PCl5 and 
SbCl5, such as fundamental frequencies, overtones, and combination bands. This approach 
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demonstrates that the Lie algebraic method can resolve intricate problems in environmental 
science and atmospheric chemistry. It confirms the effectiveness of the Lie algebraic approach 
using PCl5 and SbCl5, which employs Casimir and Majorana operators. Additionally, the high 
accuracy of this method in reconciling experimental data enhances understanding of areas where 
advanced molecular spectroscopy can be useful and provides new insights into the vibrational 
dynamics of PCl5 and SbCl5. This example clearly shows that the broad scope of the Lie algebraic 
method allows significant progress in solving complex problems in the field. 

2. D3h-symmetry-adapted Lie algebraic framework for PCl₅ and SbCl5 
Interactions of vibrational modes of molecules PCl5 and SbCl5 with D3h symmetry can be most 
easily understood through stretching and bending motions, where the mixing of harmonic 
and anharmonic couplings – especially within stretching interactions – is dominant. These 
can be further divided into axial, equatorial, and axial-equatorial couplings. Axial couplings 
involve first-neighbor interactions between adjacent axial bonds, such as bond pairs (1,2), 
(2,3), and (3,1), as well as second-neighbor interactions between non-adjacent axial bonds, 
like (1,3). Equatorial couplings occur among the three equatorial bonds, with stronger 
couplings observed among bonds that are closer together (4,5). Axial-equatorial couplings 
are cross-couplings with adjustable switches between axial and equatorial bonds, such as the 
interactions of axial bond 1 with equatorial bonds 4 and 5, and similar couplings of axial 
bond 2 with equatorial bonds 4 and 5. These couplings are essential for energy 
redistribution during vibrational motion and, therefore, are crucial. Harmonic couplings 
described here allow linear energy exchange without re-tuning the energy levels beyond 
basic vibrational modes. Anharmonic couplings are key to energy transfer between 
stretching and bending modes, often leading to the formation of overtones or combination 
bands [22, 23]. This process greatly affects the vibrational dynamics and spectroscopic 
properties of PCl5 and SbCl5, deepening our understanding of these compounds at the 
molecular level. This analysis employs a symmetry-adapted Lie algebra approach, using U(2) 
algebraic operators to represent the vibrational modes. This methodology results in a 
Hamiltonian that is both harmonic and anharmonic concerning the modes and their 
couplings [15, 17, 19]. 

A mathematical framework that defines the symmetries of a system, the Lie algebraic 
approach is applied in modelling molecular vibrations. Employing molecular structure and 
symmetry, U(2) Lie algebras are allocated to specific vibrational modes, and the adaptation 
of symmetry preserved D3h symmetry through the analysis of the system. Three U(2) Lie 
algebras,   2 : 1,2,3iU i  , are assigned to represent the three equivalent axial P-Cl or Sb-Cl 

bond stretching vibrations, and two U(2) Lie algebras,   * 2 : 4,5iU i  , are introduced for the 

two equivalent equatorial P-Cl or Sb-Cl bond stretching vibrations. The interactions in axial 
bond vibrations involve first-neighbor couplings, represented as 

            2 2 ; , 1,2 , 2,3 , 3,1i jU U i j  , and second-neighbor couplings, represented as 

        2 2 ; , 1,3i jU U i j  . For equatorial bond vibrations, first-neighbor couplings are 

represented as         * *2 2 ; , 4,5i jU U i j  . Axial-equatorial couplings involve cross-

interactions, represented as                   * *2 2 ; , 1,  4 ,  1,5 ,  2,  4 ,  2,5 ,  3,  4 ,  3,5 i jU U i j  . 
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Here, the unitary Lie algebra  2iU  is employed to represent the dynamical symmetry 

associated with the i-th vibrational degree of freedom.  
The effective vibrational Hamiltonian, considering axial and equatorial bond stretching 

and bending vibrations, can be written as: 
Axial bond vibrations: 

       3 3 3

0
1

 axial axial axialaxial
i ij ij iji ij ij

i i j i j
H E A C A C k M

  

      .  (1) 

Equatorial bond vibrations: 

     5

0 45 45 45 45
4

 equatorial equatorialequatorial
ii ij

i
H E A C A C k M



    . (2) 

Axial-equatorial couplings: 

   
3 5

1 4
  axial equatorial

ij ij ij ij
i j

H A C M

 

  .    (3) 

In Eqs. (1) to (3), the zero-point energy, 0E , represents the vibrational energy of the 

molecule in its ground state, where all vibrational quantum numbers ( 0iv  ) are zero. This 
term reflects the quantum mechanical principle that even at absolute zero temperature, 
bonds retain vibrational energy due to zero-point motion [19]. 

The term i iA C  describes the energy contribution of the fundamental vibrational mode 

of bond i. The Casimir operator, iC , models anharmonicity and is defined as [15, 17]: 

 2 4i i i iC N v v  .     (4) 

Where 1e
i

e e
N 

 
   is the vibron number, representing the maximum number of bound 

states for the Morse potential of bond i, and iv  is the vibrational quantum number. 

Here, , e e e    are the harmonic and anharmonic spectroscopic constants, respectively, of 
the axial and equatorial bonds in the diatomic molecule. These constants are determined 
using the procedure provided in reference [24].  

The parameter iA  quantifies the fundamental vibrational energy of bond i and is 
estimated as [15, 17]: 

 4 1
fundamnetal

i
i

EA
N

 


,      (5) 

where fundamnetalE  is the energy of the first vibrational state. 
The term ij ijA C  represents harmonic interactions between vibrational modes i and j. The two-

mode Casimir operator, ijC , accounts for energy redistribution and is expressed as [15, 17]: 

  , ; , , ; , 4i i j j ij i i j j i j i j i jN v N v C N v N v v v v v N N     .  (6) 

The parameter ijA  quantifies the coupling strength, where positive values indicate 

constructive coupling and negative values indicate destructive coupling. 
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The term ij ij ijk M  captures anharmonic interactions between modes i and j. The Majorana 

operator, ijM , mediates quantum transitions between states, defined as [15-17]: 

   
   

1/2

1/2

, ; , , ; , 2

, 1; , 1 , ; , 1 1

, 1; , 1 , ; , 1 1

i i j j ij i i j j i j j i i j

i i j j ij i i j j j i i i j j

i i j j ij i i j j i j j j i i

N v N v M N v N v v N v N v v

N v N v M N v N v v v N v N v

N v N v M N v N v v v N v N v

  

         

    






    





 . (7) 

The symmetry coefficient ijk  specifies the type of interaction (e.g., first-neighbor, second-

neighbor coupling), while ij  is the anharmonic coupling strength, derived as [15]: 

, s as
ij

E E
mN




      (8) 

where sE  and  asE  are symmetric and antisymmetric combination band energies, and m is 

the interaction order. 
The bending Hamiltonian,  bendH , captures the energy associated with angular 

distortions between bonds. It is expressed as: 
       bend

k k kl kl
k k l

H b b g


   .    (9) 

The term k kb   accounts for the vibrational energy associated with bending mode k. The 

operator k  represents angular deformations, and kb  quantifies the fundamental bending 

frequency of mode k and the term   kl klb g captures the interactions between bending modes k 

and l, where  klg  describes energy redistribution between these modes. The parameter klb  
quantifies the coupling strength. 

The vibrational Hamiltonian parameters,  iA  (single-mode contributions), kb , ij  

(anharmonic coupling strengths), and klb  are derived and optimized using least-squares 

regression fitting based on the observed data [25]. This approach ensures the calculated 
vibrational frequencies align closely with experimental spectroscopic data. The initial 
guesses for ijA  are taken as zero because the two-mode interactions are generally weaker 

compared to single-mode contributions and anharmonic couplings. Their values are refined 
during the optimization process. 

3. Results and discussion 
PCl5 and SbCl5 exhibit trigonal bipyramidal geometries, characterized by the D3h point group 
symmetry. The molecular structure consists of two axial bonds perpendicular to a trigonal plane 
formed by three equatorial bonds. Due to increased electron repulsion, the axial bonds are longer 
and weaker than the equatorial bonds, resulting in distinct vibrational features. The vibrational 
modes are classified under the D3h irreducible representations as: 2A₁' + 2A₂'' + 3E' + E''. A₁' 
modes correspond to symmetric stretching of axial and equatorial bonds, A₂'' modes describe 
out-of-plane distortions, E' modes represent degenerate in-plane stretching and bending of 
equatorial bonds, and E'' modes correspond to degenerate out-of-plane bending vibrations 
involving axial-equatorial interactions [22, 23]. In the gaseous phase, axial stretching frequencies 
typically occur in the lower range due to the weaker nature of the axial bonds, while the stronger 
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equatorial bonds exhibit higher stretching frequencies. In the solid phase, these vibrational 
frequencies may shift or split, influenced by crystal packing and intermolecular interactions, 
further affecting their spectroscopic signatures. 

In Table 1, the optimized algebraic parameters, as well as the vibron numbers, are 
provided. This permits accurate calculations of the moleculae vibration, thus avoiding the 
drawbacks caused by the traditional harmonic oscillator and the empirical force field 
methods. The Hamiltonian parameters were fitted with the experimental data [25] to match 
the known frequencies. These include single-mode vibrational energies, anharmonic 
coupling strengths, and symmetry coefficients for the axial and equatorial bonds. Such 
parameters highlight the intricate distributions of the energies in the fundamental and 
higher vibrational modes. 

Table 1. Optimized parameters (in cm-1, except N): U(2) Lie algebraic vibrational 
Hamiltonian for D3h symmetry PCl5 and SbCl5. 

Parameters PCl5 SbCl5 

, e e e    (axial) 593, 99 516, 79.5 
, e e e    (equatorial) 580.38, 5.69 405.96, 3.98 

 axialN  5 6 
 equatorialN  100 102 

 axial
iA  23.029 -15.424 

 equatorial
iA  -1.192 -0.968 

 axial
ijA  -0.295 -1.033 

 equatorial
ijA  1.443 0.883 

 axial
ij  8.291 6.227 

 equatorial
ij  0.323 1.885 

 bendN  52 54 

kb  -0.965 -0.599 

klb  1.285 0.911 
 

The fundamental frequencies for PCl₅ and SbCl₅, alongside their experimental PCl₅ and 
SbCl₅ data, are shown in Table 2. These outcomes not only confirm but also underscore the 
precision of the Lie algebraic method in estimating symmetric and asymmetric stretch and 
bend vibrations. For PCl₅, the root-mean-square (RMS) deviation between experimental and 
calculated frequencies is 9.35 cm⁻¹. For SbCl₅, the estimated RMS deviation is 9.29 cm⁻¹, 
leading to an impressive level of accuracy. 

Tables 3 and 4 illustrate the first and second overtones of the two compounds and their 
combination bands. The results show that the overtones exhibit nonlinear shifts in energy 
due to the significant influence of anharmonicity, thereby reinforcing the crucial need to 
include anharmonicity in the vibrational Hamiltonian. These are termed combination bands, 
resulting from the interaction of the fundamental and overtone modes, and provide vital 
information on cross-mode interactions. 
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D3h symmetry allows for the straightforward and clear representation of vibrational 
modes using symmetry-adapted operators. Axial-equatorial couplings, represented by 
Casimir and Majorana operators, depict the change in energy of vibration modes. The 
coupling strength is indicated by the amount of energy exchanged during bending and 
stretching vibrations. The accurate prediction of vibrational frequencies, overtones, and 
combination bands obtained demonstrates the application of the Lie algebraic framework to 
problems in spectroscopy. 
 

Table 2. Predicted fundamental vibrational frequencies (in cm-1) for PCl5 and SbCl5 using the 
U(2) Lie algebraic vibrational Hamiltonian: comparison with experimental observations, 
mode assignments, and symmetry species (irreducible representations).  

Vibrational mode Symmetry species Experimental [25] Calculated 
PCl5 

v1 (PCl3 s-str) A1' 395 389.2 
v2 (PCl2 s-str) A1' 370 365.2 

v3 (PCl2 as-str) A2'' 465 456.4 

v4 (PCl3 op-deform) A2'' 299 287.04 

v5 (PCl3 deg-str) E' 592 578.32 

v6 (PCl3 deg-deform) E' 273 262.08 
v7 (PCl bend) E' 100 96.81 

v8 (PCl bend) E'' 261 250.56 

SbCl5 
v1 (SbCl3 s-str) A1' 357 342.72 
v2 (SbCl2 s-str) A1' 307 294.72 

v3 (SbCl2 as-str) A2'' 384 378.64 

v4 (PCl3 op-deform) A2'' 154 147.84 

v5 (SbCl3 deg-str) E' 398 385.08 

v6 (SbCl3 deg-deform) E' 177 169.92 
v7 (SbCl bend) E' 72 69.12 

v8 (SbCl bend) E'' 165 158.4 
Notation: s-str = symmetric stretch, as-str = asymmetric stretch, deg-str = degenerate stretch, deg-
deform = degenerate deformation, bend = bending vibration. 
 
Table 3. First and second overtone vibrational frequencies (in cm-1) of PCl5 and SbCl5 predicted by 
the U(2) Lie algebraic vibrational Hamiltonian: vibrational modes and symmetry species details. 

Vibrational mode Calculated Vibrational mode Calculated 
 

1 2 3 4 
PCl5 

2v1 (PCl3 s-str) 750.816 3v1 (PCl3 s-str) 1167.225 
2v2 (PCl2 s-str) 703.296 3v2 (PCl2 s-str) 1093.35 

2v3 (PCl2 as-str) 883.872 3v3 (PCl2 as-str) 1374.075 
2v4 (PCl3 op-deform) 568.3392 3v4 (PCl3 op-deform) 883.545 
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1 2 3 4 
2v5 (PCl3 deg-str) 1125.2736 3v5 (PCl3 deg-str) 1749.36 

2v6 (PCl3 deg-deform) 518.9184 3v6 (PCl3 deg-deform) 806.715 
2v7 (PCl bend) 190.08 3v7 (PCl bend) 295.5 
2v8 (PCl bend) 496.1088 3v8 (PCl bend) 771.255 

SbCl5 
2v1 (SbCl3 s-str) 678.5856 3v1 (SbCl3 s-str) 1007.5968 
2v2 (SbCl2 s-str) 583.5456 3v2 (SbCl2 s-str) 866.4768 

2v3 (SbCl2 as-str) 729.9072 3v3 (SbCl2 as-str) 1083.8016 
2v4 (PCl3 op-deform) 292.7232 3v4 (PCl3 op-deform) 434.6496 

2v5 (SbCl3 deg-str) 756.5184 3v5 (SbCl3 deg-str) 1123.3152 
2v6 (SbCl3 deg-deform) 336.4416 3v6 (SbCl3 deg-deform) 499.5648 

2v7 (SbCl bend) 136.8576 3v7 (SbCl bend) 203.2128 
2v8 (SbCl bend) 313.632 3v8 (SbCl bend) 465.696 

Table 4. Vibrational Frequencies (in cm-1) of the combination bands of PCl5 and SbCl5 
predicted by the U(2) Lie algebraic vibrational Hamiltonian: combination vibrational modes 
from fundamental, first, and second overtones in stretching modes  

Combination bands PCl5 SbCl5 

v1 + 2v1 1137.6 1028.16 
v2 + 2v2 1065.6 884.16 
v1 + 3v1 1516.8 1370.88 
v2 + 3v2 1420.8 1178.88 

2v1 + 3v1 1896 1713.6 
2v2 + 3v2 1776 1473.6 

v1 + v2 760.813 639.64 
2v1 + v2 1150.013 982.36 
v1 + 2v2 1126.013 934.36 
v1 + 3v2 1491.213 1229.08 
3v1 + v2 1539.213 1325.08 

4. Conclusions 
This study successfully applied a symmetry-adapted Lie algebraic framework to analyze the 
vibrational spectra of PCl₅ and SbCl₅, both exhibiting D₃h symmetry. By constructing a 
vibrational Hamiltonian with Casimir and Majorana operators, the approach captured 
harmonic and anharmonic interactions with high accuracy. The computed vibrational 
frequencies, including fundamentals, overtones, and combination bands, showed excellent 
agreement with experimental data, with RMS deviations of 9.35 cm⁻¹ for PCl₅ and 9.29 cm⁻¹ 
for SbCl₅. 

The results demonstrate the effectiveness and accuracy of modeling vibrational 
dynamics in high-symmetry molecules and overcoming the limitations of traditional 
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methods without incurring high computational costs. Additionally, the research emphasizes 
the potential of the Lie algebraic approach in molecular spectroscopy and, by extension, in 
atmospheric chemistry or environmental science. Future work could expand the application 
of this method to more complex molecular systems and spectroscopic challenges while 
deepening our understanding of molecular vibrational phenomena. 
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Анотація. Коливальні спектри пентахлориду фосфору (PCl₅) та пентахлориду сурми 
(SbCl₅) з симетрією точкової групи D3h, розраховані з високою точністю за допомогою 
адаптованої до симетрії алгебри Лі. Це дослідження зосереджено на обчисленні 
основних частот, обертонів до другого порядку та комбінаційних смуг за допомогою 
коливального гамільтоніана, побудованого операторами Казимира та Майорани, з 
включенням гармонічних та ангармонічних членів. Передбачені частоти, які добре 
узгоджуються з експериментальними даними, не тільки підтверджують 
передбачення, але й демонструють високу точність методу у відтворенні складних 
спектроскопічних молекулярних явищ з високою симетрією. Ці результати також 
забезпечують глибше розуміння молекулярної структури та поведінки PCl₅ та SbCl₅ в 
атмосфері, підкреслюючи їхню роль в процесах оптичного поглинання та розсіювання. 
Представлені результати також підкреслюють потенціал алгебричного методу Лі в 
розвитку молекулярної спектроскопії та вирішенні проблем в атмосферній хімії та 
науці про навколишнє середовище, вселяючи надію на майбутні дослідження в цій 
галузі. 

Ключові слова: алгебраїчна система Лі, коливальний гамільтоніан, D₃h-симетрія, 
оператори Казимира та Майорани 


