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Abstract. Since the appearance of deep learning algorithms, convolution neural networks (CNN) based 
algorithms have significantly progressed in weak light image enhancement. However, they still face a major 
problem: the CNN-based low illumination enhancement algorithm has excessive computational complexity and 
needs sufficient memory. Although the algorithm's accuracy is improved, the computational efficiency is 
reduced. This paper introduces the lightweight network for low illumination, and image enhancement is 
proposed. We first introduce the background of the technology used. Based on the principle of MobileNetV2, 
we use the generative adversarial networks with improved attention mechanisms as our base algorithm. Then, 
three comparative algorithms are built for experiments. Experiment results confirm that the proposed 
network needs fewer algorithm parameters while guaranteeing the low-light image enhancement effect. 

Keywords: machine learning, image enhancement, adversarial networks, depthwise 
separable convolution 
UDC: 004.89 
DOI: 10.3116/16091833/Ukr.J.Phys.Opt.2025.01040 

1. Introduction 
Researchers have paid more attention to image enhancement as a hot research direction in 
image processing. Many image processing techniques were proposed to improve the quality 
of low-light images effectively. Physics-based and deep learning-based algorithms can be 
categorized depending on the algorithm used. 

Of course, the physics-based algorithm came up first. Data processing is key in 
improving instruments [1, 2]. Statistical methods were first adapted to enhance the quality of 
images. The histogram equalization (HE) [6] is a widely used method for enhancing an 
image's contrast. This method is simple to implement and has high computational efficiency, 
so it has been widely used. However, due to the serious noise and low brightness of low-
illumination images, this method usually cannot take into account brightness, texture details, 
and color, so it still has some problems, such as local overexposure. Since low-lighting images 
are usually distorted by Poisson noise with signal-to-noise ratio of 10-20 dBs [7-9], 
demosaicing techniques applied in [7-9] in which the experiments showed that more white 
pixels are the better they work. The Retinex algorithm [10] effectively adjusts brightness and 
improves an image's colors. It stimulates the imaging principle of the human retinal cortex, 
decomposes the image into a light and reflection component, and builds the corresponding 
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algorithm. To effectively estimate these two components, eliminate the illumination 
component in the image, and propose the reflection component to enhance the function of 
low-light images, researchers proposed the single-scale Retinex theory [11], multi-scale 
Retinex theory (MSR) [12], and other methods. Fu et al. [13] obtained the illumination 
component using the adaptive Gaussian filter, eliminated the artifacts, and restored it using 
the brightness adaptive method. Experiments proved that this method effectively improved 
the visual appearance of low-light images. Image enhancement methods are also based on 
filtering [14], especially the wavelet transform, which has gained extensive acceptance in 
image processing. In 2009, He Kaiming et al. [15] proposed the definition of dark channel 
priors in mathematics, yielding a simple and efficient algorithm that has been widely used. Li 
et al. [16] reduced the estimation error and running time by improving the estimation and 
transmittance of atmospheric illumination and introduced a four-dimensional binary tree to 
avoid a halo in the enhanced image. 

Since deep learning was introduced into the field of image enhancement, the method 
based on deep learning has gradually replaced the physical algorithm-based low-light image 
enhancement method. The following are some representative literature in this field. Ref. [17] 
is an early paper that uses deep learning to complete low-light enhancement tasks. It 
supports the stacking sparse denoising autoencoder based on synthetic data training. It can 
enhance and de-noise low-illumination noisy images. In [18], CNN was introduced, and the 
conventional MSR method can be considered a feedforward convolutional neural network 
with different Gaussian convolution kernels. In fact, the paper [19] is centered on single-
image contrast enhancement, addressing the issue of low contrast in underexposed and 
overexposed situations. Ref. [20] utilized a two-stage step decomposition followed by 
enhancement, which the CNN entirely implemented. The key point of the paper [21] is the 
extraction and fusion of features at different levels in the network. Ref. [22] focuses on image 
enhancement under extremely low-light and short-time exposure conditions. Similarly, many 
applications in reality also use the abovementioned theory. In paper [23], intelligent systems 
execute various tasks such as object detection using enhanced images, classification, 
segmentation, recognition, scene understanding, and 3D reconstruction in the Smart City 
concept. Paper [24] introduces the method to solve the ambiguity of pictures taken by a 
camera. Image enhancement technology has wide applications in other areas, such as mobile 
phone shooting, criminal investigations, digital cameras, etc. [25, 26]. 

As deep learning algorithms evolve, this paper considers depthwise separable 
convolution and its adaptation to low-light image enhancement tasks in the spatial domain. 
Inspired by the lightweight network [27] series such as MobileNet and Shufflenet, we 
improved the lightweight and low-light image enhancement network. First of all, according 
to the conventional depth of the separable convolution module, we remove the first rectified 
linear unit (ReLU) activation function; the aim is to avoid the ReLU function loss caused 
characteristics half the probability of 0, at the same time removing all batch regularization, 
add an instance of regularization [28]. Instance regularization is the operation of removing 
instance-specific contrast information from content images, which prevents mean and 
covariance shifts and simplifies the learning process, yielding an improved depth separable 
convolution module (IN–DepthwiseConv). Second, to facilitate the componentization of the 
depth separable convolution module, we proposed an improved inverse residual depth 
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separable convolution module (IN-Bottleneck) based on the residual depth of the separable 
convolution module. Next, we build three algorithms based on IN-DepthwiseConv and In-
Block named DwDG, DwG, and DeeperDwG algorithms, respectively. The DwDG algorithm 
uses IN-DepthwiseConv and the IN-Bottleneck to replace the corresponding convolution 
layer in the generator and discriminator. The DwG algorithm only replaces the generator 
layer with the IN-DepthwiseConv module. The DeeperDwG algorithm replaced the generator 
with the deeper IN-Bottleneck module. Finally, the experimental comparison of the proposed 
algorithm with several known algorithms shows that the proposed one can decrease the 
number of algorithm parameters and speed up the process while keeping the enhancement 
loss effect small. The experimental comparison was carried out for the synthetic and the 
real-world data sets. 

The following points are major contributions of this article: 
1. We use a lightweight network to improve the low-light image enhancement network, 
improving the operating efficiency of the network.  
2. We apply the depthwise separable convolution module to improve the ordinary convolution 
layer in the network, which improves the enhancement effect on low-light images.  
3. Experiments on real datasets confirm our proposed algorithm's performance and that the 
proposed one fully meets the application requirements of trusted multimedia computing in 
urban scenarios.  

The structure of this article is as follows:  
In Section 2, the related works are considered. In Section 3, the principle of the 

proposed algorithm will be explained. In Section 4, we conducted comparative experiments 
to demonstrate the superiority of the proposed algorithm. Finally, in Section 5, we conclude 
the article and announce future work. 

2. Related works 
This section introduces the techniques used to build the improved depthwise separable 
convolution generative adversarial networks algorithm, including deep separable 
convolution and the lightweight network. 
2.1. Depthwise separable convolution 
In the standard convolution process, all channels in the image region are considered 
simultaneously, and convolution is performed in the same way. Depthwise separable 
convolution presents a novel point: different input channels use different convolution 
kernels. It decomposes an ordinary convolution operation into two processes: deep 
convolution and point-by-point convolution. 

Fig. 1a represents the standard convolution. Assuming the size of the input feature 
graph is K KD D M  , the size of the convolution kernel is K KD D M  , and the size of the 
output feature graph is K KD D N  , then the number of parameters of the standard 
convolution layer is ( )K KD D M N   , where DK is the spatial dimension of the kernel 
assumed to be square, M is the number of input channels, and N is the number of outputs. 

Fig. 1b represents the depthwise convolution, which acts as a filter. The size of it is 
( , ,1)K KD D . It has M convolution layers acting on each channel of the input, and the number 
of parameters is ( 1)K KD D M   . Fig. 1c represents Pointwise convolution with the size of 
(1,1, )M , a total of N convolution points, acting on the output feature mapping of deep 
convolution, and the number of parameters is (1 1 )M N   . 
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Fig. 1. Schematic diagram of the standard convolution and depthwise separable convolution: (a) 
standard convolution; (b) depthwise convolution; (c) pointwise convolution. 

The combination of depthwise convolution and 1×1 convolution is depthwise separable 
convolution. Combined with the above formulae, it can be shown that the number of deep 
separable convolution parameters is:  

 2

1 1K K

K K K

D D M M N
D D M N N D
   

 
  

. (1) 

To sum up, if only extracting an attribute, the method of depthwise separable 
convolution is more inefficient than the standard convolution. Depthwise separable 
convolution can save more parameters by extracting increasing attributes. 
2.2. Lightweight network 

As computer vision research develops based on deep CNN, many applications of 
computer vision scenes in reality are driven, such as face recognition, ID card character 
recognition, etc. With the development of Internet technology, mobile devices have gradually 
replaced personal computers and become an important part of people's daily lives. In such 
an environment, the application and service of artificial intelligence began to turn their 
attention to cell phones. However, the lightweight deep CNN for mobile terminals was 
invented due to the limitation of storage space and computing capacity of mobile terminals. 
This is where the lightweight web comes from. 

Next, we consider two typical lightweight networks to explain how they work.  
The core of MobileNet is that it uses depthwise separable convolution. The core of 

depthwise separable convolution is the decomposition of standard convolution operations, 
depthwise convolution, and pointwise convolution. This method reduces the computational 
complexity and the number of parameters of the convolution operation so the deep 
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convolutional neural network can adapt to the limited computational and storage resources. 
MobileNet [29] is a lightweight network structure put forward by Google in 2017, 

aiming at mobile and embedded devices, making full use of limited computing resources and 
storage resources to achieve the best performance of the algorithm to meet the needs of 
various visual applications. Table 1 shows the network structure for MobileNet. 

Table 1. The network structure of MobileNet. 

Style/Tag 
Convolution kernel 

dimension 
Input size 

Conv/s2 
Conv dw/s1 
Conv/s1 
Conv dw/s1 
Conv/s1 
Conv dw/s1 
Conv/s1 
Conv dw/s2 
Conv/s1 
Conv dw/s1 
Conv/s1 
Conv dw/s2 
Conv/s1 

Convdw / s15
Conv / s1

 Conv 

dw/s2 
Conv/s1 
Conv dw/s2 
Conv/s1 
AvgPool/s1 
Fc/s1 
Softmax/s2 

3×3×3×32 
3×3×32dw 
1×1×32×64 
3×3×32dw 
1×1×64×128 
3×3×128dw 
1×1×128×128 
3×3×128dw 
1×1×128×256 
3×3×256dw 
1×1×256×256 
3×3×256dw 
1×1×256×512 

3 3 612dw
1 1 512 512
 
  

 

3×3×512dw 
1×1×512×1024 
3×3×1024dw 
1×1×1024×1024 
Pool×7 
1024×1000 
Classifier 

224×224×3 
112×112×32 
112×112×32 
112×112×64 
56×5×64 
56×56×128 
56×56×128 
56×56×128 
28×28×128 
28×28×128 
28×28×128 
28×28×128 
14×14×128 
14 14 512
14 14 512
 
 

 

14×14×512 
7×7×512 
7×7×1024 
7×7×1024 
7×7×1024 
1×1×1024 
1×1×1024 

Based on MobileNet, MobileNetV2 [30] improves the depthwise separable convolution 
module to a certain extent and proposes the reverse residual module of linear bottleneck, 
which makes MobileNetV2 better in both accuracy and efficiency compared with MobileNet. 
Table 2 shows the network structure of MobileNetV2. 

The improvement points are as follows: 1) A linear activation function replaces the 
ReLU activation function in the output part of the depthwise separable convolution module 
to reduce information loss caused by ReLU calculation of a low-dimension tensor; 2). Adding 
the 1×1 point-by-point convolution operation before the deep separable convolution module 
to increase the number of channels of the input tensor, specifically, increase the dimension of 
the input tensor; 3). Using the jump connection to transfer the module's input to its output to 
combine with the output data (this step is not required for the module with a step size of 2). 
Fig. 2 shows the reverse residual module structure of a linear bottleneck. 
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Table 2. The network structure for MobileNetV2 algorithm. 

Input Operation type Extension 
Channel 
number 

Operation 
number 

Step Size 

2243×3 
1122×3 
1122×16 
562×24 
282×32 
142×64 
142×96 
72×160 
72×320 
72×1280 
1×1×1280 

Conv2d 
Bottleneck 
Bottleneck 
Bottleneck 
Bottleneck 
Bottleneck 
Bottleneck 
Bottleneck 
Conv2d 1×1 
Avgpool 7×7 
Conv2d 1×1 

- 
1 
6 
6 
6 
6 
6 
6 
- 
- 
- 

32 
16 
24 
32 
64 
96 

160 
320 

1280 
- 
K 

1 
1 
2 
3 
4 
3 
3 
1 
1 
1 
- 

2 
1 
2 
2 
2 
1 
2 
1 
1 
- 

 

 
Fig. 2. The reverse residual module structure of a linear bottleneck [30].  

The ShuffleNet [31] is a lightweight network algorithm of efficient computing proposed 
by Zhang, which has wide applications in mobile devices with limited computing power. 

The ShuffleNet's network structure has two key innovations. One is pointwise grouping 
convolution, and the other is channel random shuffling. The operation of grouping 
convolution mainly divides and groups the image features equally along the channel 
dimension, and the corresponding convolution kernel carries out the calculation of feature 
extraction for each group of feature images. In this way, the parallel computation of multiple 
convolutions can be realized, and the efficiency of calculations can be improved. The 
operation of channel random shuffling is mainly to randomly mix the feature graphs 
calculated by each group and then distribute them to the network layer of the next group 
convolution. In the structure of ShuffleNet, the combination of block convolution and channel 
random shuffling facilitates the formation of the basic module of ShuffleNet. Fig. 3 shows the 
structure of this network [31]. 



Y. Qiu et al 

Ukr. J. Phys. Opt. 2025, Volume 26, Issue 1 01046 

 
Fig. 3. The schematic diagram of the Shuffle Block structure. 

 
Fig. 4. Schematic diagram of the ShuffleNet v2 block. 

ShuffleNet v2 was put forward in 2018 [32]. The algorithm is refined based on 
ShuffleNet. The proposed system for efficient guidance of the CNN should meet several 
requirements. First, the number of channels of the input and output characteristics influence 
the Memory Access Cost (MAC), hereinafter referred to as influence; only the same number 
of channels of the input and output characteristics ensures minimal MAC. Second, the 
grouping operations of the convolution layer greatly impact storage consumption. Excessive 
grouping operations will increase the storage consumption and slow the algorithm's running 
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speed. Therefore, grouping operations should be controlled. Third, the number of branches 
in the algorithm structure affects the algorithm's running speed. The fewer branches in the 
algorithm, the faster the algorithm speed. Fourth, the algorithm's speed is influenced by the 
element-by-element operation in the network, so this mode of operation will take a long 
time. Thus, the element-by-element operations should be reduced as much as possible. 
According to the proposed four requirements, ShuffleNet v2 is improved based on 
ShuffleNet, and the improvement is mainly for ShuffleBlock. Fig. 4 shows the block structure 
of ShuffleNet v2 [32]. 
2.3. Image Enhancement 
As images become important data in daily life, image enhancement has become the focus of 
researchers. As early as the 1990s, many common contrast enhancement methods appeared, 
like improving image contrast by histogram equalization [33-35]. Subsequently, researchers 
improved the basic histogram method to enhance the image. In [36], the Contrast-Limited 
Adaptive Histogram Equalization was proposed. This method is the class of histogram 
stretching methods and is used to limit the contrast enhancement results of histogram 
equalization. The optimization technique, optimal contrast-tone mapping, for mapping the 
contrast tones of an image using a mathematical transfer function was proposed later [37]. 

After that, the field of image enhancement began to apply relatively complex techniques 
to improve the enhancement quality. The non-linear gamma function in enhancing the image 
contrast [37], stretching the histogram [38], or processing methods such as Brightness 
Preserving Bi-Histogram Equalization and Quantized Bi-Histogram Equalization [39] were 
proposed. These methods made a huge impact on improving the artifacts of histogram 
equalization. Afterward, for the problem of enhanced image denoising, the researchers also 
tried the methods of block matching and 3D filtering [40, 41], Singular Value Decomposition 
[42] as well as non-linear filters [43, 44], and achieved good results. 

With the evolution of deep learning, it has gained world-renowned results in image 
recognition and other fields. Attempting to use deep learning methods to improve image 
enhancement techniques has become the focus of research in image enhancement in the last 
decade. First, the authors of [45] tried to use deep learning techniques to propose the 
concept of denoising autoencoders, which learn image features from noise to enhance image 
quality. In [46], CNN was applied to denoise images for the first time [47], and subsequently, 
methods of image inpainting [48] and deblurring [49] using CNN were also proposed. 

Since then, image enhancement has introduced more sophisticated, advanced deep 
learning methods. The emergence of these advanced methods provides us with more ideas for 
solving image enhancement problems and inspires this paper's birth. For example, Lore 
proposed a method for enhancing low-light images using stacked sparse denoising 
autoencoders low-light net [50]. The low-light image enhancement method utilizing the Fully 
Connected Networks [51] opens the prelude to using deep learning networks with special 
advantages to improve low-light images. The state-of-the-art generative adversarial network 
mode averaging generative adversarial network approach [52], used for enhancing low-light 
images in a completely unsupervised manner, also shows the great potential of generative 
adversarial networks in the sphere of low-light image enhancement. The technique proposed 
in [53] showed good results with the enhancement of low-light images by using a very effective 
unsupervised generative adversarial network, dubbed EnlightenGAN, that can be trained 
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without low/normal-light image pairs yet proved to generalize very well on various real-world 
tests images. Another image enhancement algorithm without paired supervision is based on 
the Dark to Bright Generative Adversarial Network (D2BGAN) [54]. Using geometric and 
lighting consistency, along with a contextual loss criterion combined with multiscale color, 
texture, and edge discriminators, showed competitive results [55]. Enhanced traditional GANs 
with spectral normalization and advanced loss functions made the training stable and led to 
accurate results [55]. Experiments showed that the method proposed in [55] works very well 
qualitatively and quantitatively and alleviates saturation problems in bright areas, a typical 
problem of traditional low-light enhancement techniques. In paper [56], the proposed image 
enhancement method based on the enhanced network optimized generative adversarial 
network is put forward for solving the low-light image problem. 

3. Proposed image enhancement algorithm 
In this section, we introduce the composition principle of the Improved depthwise separable 
convolution generative adversarial networks, including how to refine the depthwise 
separable convolution module and the whole improved depthwise separable convolution 
generative adversarial network structure. 
3.1. Improved depthwise separable convolution module 
Fig. 5 shows the traditional convolution (a), the depthwise separable convolution in 
MobileNetV1 (b), and the contrast of the improved depthwise separable convolution structure 
in this paper (c). Compared with traditional convolution, depthwise convolution, and 1x1 
convolution add the BN and ReLU activation layers. However, depthwise separable convolution 
in MobileNet is designed to deal with advanced vision problems, such as image classification; 
therefore, applying it to low-level vision tasks, such as image noise reduction and image 
enhancement, is impossible. Unlike high-level vision tasks, the input and output domains of 
low-light image enhancement tasks are both images; changes in network activation 
distribution, the so-called internal covariance shift, will not occur seriously during training. At 
the same time, batch standardization loses network flexibility, and image scale information 
also increases the loss of graphics processing units (GPU) in the training process. In this sense, 
batch normalization is no longer effective for low-light enhancement problems. 

Therefore, this paper proposes an improved depthwise separable convolution module 
(IN-DepthwiseConv), as presented in Fig. 5c. First, instance normalization replaces batch 
normalization to preserve image scale information and deletes specific comparison 
information. This is performed to simplify the training procedure. Then, we delete the ReLU 
activation layer after the deep convolutional layer and keep the last ReLU activation layer to 
avoid losing information. 

At the same time, inspired by MobileNetV2, to facilitate the componentization of the 
depthwise separable convolution module (Fig. 6a), this paper proposes an improved 
inverted residual depthwise separable convolution module (IN-Bottleneck) for the image 
enhancement problem, as shown in Fig. 6b.  

By introducing instance normalization, the residual separable convolution module 
originally used to solve high-level vision problems can also be adapted to low-level vision 
problems, such as our target low-light image enhancement. Meanwhile, because the instance 
normalization does not contain trainable parameters, IN-Bottleneck does not increase the 
overall number of parameters or reduce the algorithm's efficiency. 
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Fig. 5. Comparison of improved depthwise separable convolution structures: (a) traditional 
convolution layer, (b) depthwise separable convolution module, (c) improved depthwise separable 
convolution module.  

 
Fig. 6. Comparison of structures of the improved inverse residual depthwise separable convolution 
modules:  (a) residual depwise separable convolution, (b) improved depthwise separable convolution 
module.  
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We implement the IN-DepthwiseConv module in the form of an algorithm 1:  
ALGORITHM 1: IN-DepthwiseConv 
Require: The low-light image 
Ensure: Generate image features 
Convolution module 
            3×3 Depthwise convolution 
            Instance normalization module 
                    Instance normalization 
                    PointWise module  
                          1×1 pointwise сonvolution 
Instance normalization module 
        Instance normalization 
ReLu6 module 
        ReLU6 Activation 
Add up 
Get the output (feature of image) 
End 

During the construction of our algorithm, IN-Bottleneck will also be implemented in the 
form of an algorithm. The specific process is as follows (algorithm 2): 

ALGORITHM 2: IN-Bottleneck 
Require: The low-light image 
Ensure: Generate image features 
Pointwise module 
        1×1 pointwise convolution 
        Instance normalization 
        ReLU6 activation 
DepthWise module 
        3×3 Depthwise convolution 
        Instance normalization 
        ReLU6 activation 
Linear module 
        1×1 pointwise convolution 
Instance normalization 
Linear normalization 
Add up 
Get the output (feature of image) 

3.2. Improved depthwise separable convolution generative adversarial networks 
In paper [56], the method based on the enhanced network optimized generative adversarial 
network is put forward for solving the low-light image problem, and its advantages are 
proved; we name it LightAtten-GAN here. Based on its network structure, the improved 
depthwise separable convolution module is used to refine it further and get our image 
enhancement algorithm. 

The LightAtten-GAN applies an improved attention mechanism, combined with the 
generative adversarial network algorithm, to comprehensively advance the enhancement 
effect on low-light images. However, the disadvantage is that the overall running speed is 
slow. So, we introduce its algorithm as our baseline algorithm and improve it by applying the 
two depthwise separable convolution mechanisms such as IN-DepthwiseConv and IN-
Bottleneck. 
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The specific operation process of LightAtten-GAN is as follows (algorithm 3): 
ALGORITHM 3: LightAtten-GAN 

Require: The low-light image, the real image 
Ensure: The enhanced image 
Repeat 
      Training generator network 
             M low-light image pairs were randomly selected 
             Generate the input of the fixed discriminant network with a length of M 
             Calculate the total loss of the generator network 
      Train the discriminator network 
             Randomly input the initialized discriminant network with M stands for length 
             M low-light image pairs were randomly selected 
             Maximizes the overall loss of the discriminator network 
Until 
       Maximum number of iterations done 
End 

Then, we try to find the best way to combine them with the LightAtten-GAN. The 
generator and the discriminator need to be replaced. The pros and cons of the two depthwise 
separable convolution mechanisms must also be estimated. Therefore, we still need to build 
a comparison algorithm further to obtain the optimal combination. We constructed three 
different combinations of algorithms for comparative experiments, which we call DwDG, 
DwG, and DeeperDwG algorithms, respectively. The DwDG algorithm uses IN-
DepthwiseConv and the IN-Bottleneck to replace the corresponding convolution layer in the 
generator and discriminator. The DwG algorithm only replaces the generator layer with the 
IN-DepthwiseConv module. The DeeperDwG algorithm replaced the generator with the 
deeper IN-Bottleneck module. We have compared the three algorithms in the experimental 
part to find the best algorithm. 

Fig. 7 shows the lightweight residual unit in the generator, using an improved inverse 
residual depth separable convolution unit to replace the residual unit in a traditional 
generator (such as a traditional convolution network) to achieve the effect of a lightweight 
generator.  

Input

Improved inverse residual depthwise separable 
convolution module

Improved inverse residual depthwise separable 
convolution module

Add up
 

Fig. 7. The structure diagram of the Lightweight residual module. 
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Concerning parameters, the parameter amount of a residual unit of a traditional 
generator is: 

 ( ) 2Res K KPara D D M N     . (2) 
Among them, , ,KD M N  represent the size of the convolution kernel, the number of channels 

of the input feature map, and the number of channels of the output feature map, respectively. 
The parameters of the lightweight residual unit in this chapter are as follows: 

 0 [ ( ) ] 2Depthwise K KPara M N D D M M N       . (3) 
It can be seen that the ratio of the parameters of the lightweight residual unit to the 

original unit is: 

 0
2

1 2Depthwise

Res K

Para
Para N D

  . (4) 

Fig. 8 shows the network structure of the lightweight discriminator. In comparison with 
the traditional discriminator, the overall network is much lighter. Since the input size of the 
initial discriminator is (100, 100, 3) and the number of channels is small, we use the IN-
Bottleneck with the same size of the deep convolution kernel and the original convolution 
kernel to replace the first convolution layer of the original discriminator. The purpose is to 
increase the number of channels before deep convolution and avoid data collapse problems. 
As the number of channels increases, we use an improved depthwise separable 
convolutional layer to replace the remaining convolutional layers. Thus, despite the 
lightweight network, the amount of (1 1 )M N    parameters per layer can be further 

reduced. 

 
Fig. 8. The schematic diagram of the lightweight discriminator. 
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4. Performance evaluation  
4.1. Experimental settings  
A high-quality image data set with the resolution of DIVerse 2K (DIV2K) was chosen for the 
experiment images, including the training set of 800 pictures and the verification set of 100 
pictures. To test the clear results of the algorithm for low-light image recognition accuracy, 
this experiment preprocessed DIV2K with low illumination and, specifically, utilized it to 
synthesize the low-light image data set.  

The low-light images possess two important features: low-light and noise. In the pre-
processing procedure, the adjustment of the image's low brightness relies on gamma 
correction and random parameters. The following is the formula: 

 rand ( )L HI I   , (5) 
where LI   - is the low-light image, rand - is the random number between (0,1), HI   - is the 
high-resolution image,    - is the gamma coefficient, uniformly distributed between [1.1, 2]. 

Regarding the noise brought about by low-light, we also put the Gaussian noise with a 
uniform distribution of variance [0.01, 0.05] into the images treated with low-light. When the 
pre-processing ended, we prepared the training set of 30,744 images and the test set of 1080 
images on the DIV2K data set. The image’s size is 100×100, as presented in Figs. 9, 10. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. The original DIV2K image set. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. The Div2k image set after low-light 
preprocessing. 
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The low-light paired data set (LOL) contains 500 pairs of low-light/normal-light images 
chosen by us, which is a dataset of images serving as low-light enhanced shots in real-life 
scenes. As a real image set, this data set can more truly reflect the effect of low-light image 
enhancement by the network after lightweight transformation. 

We also used the digital photo enhancement dataset (DPED), which contains 22 K 
photos, including 4549 photos taken by Sony smartphone, 5727 photos taken by iPhone, and 
6015 photos taken by Canon camera and BlackBerry. These photos were taken in automatic 
mode under various lighting conditions and weather in the daytime. All photos were 
collected using the camera's default settings. 

We have carried out the experiment in this article through Tensorflow. The network 
proposed in this article can converge quickly and has been trained on NVIDIA GeForce 
GTX1080 for 20000 generations using a synthetic dataset. To prevent overfitting, we use 
flipping and rotation for data augmentation. We set the batch size to 32 and scaled the input 
image values to [0,1]. We use the 4th layer of the 5th convolution module in the VGG-19 
network as the perceptual loss extraction layer. In the experiment, we used the Adam 
optimizer for training and employed a learning rate decay strategy, reducing the learning 
rate by 50% when the loss metric stopped improving. At the same time, to stabilize Gan 
training, we use spectral normalization and gradient penalty to constrain the discriminator. 

Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) for quantitative 
analysis are used to assess the quality of the enhanced images. They are defined as follows: 
PSNR is an objective criterion used to evaluate images whose unit is dB. The calculation 
formula is as follows: 

 
2

10
(2 1)10 log

n

PSNR
MSE


 . (6) 

where n refers to the amount of bits of each pixel value, MSE represents the mean square 
error, whose calculation formula is as follows: 

 
1 1

2

0 0

1 || ( , ) ( , ) ||
w h

i j
MSE X i j Y i j

w h

 

 

  . (7) 

Among them, ( , )X i j  and ( , )Y i j  represent the source image and the target image, 

respectively, and w and h are the width and height of the image, respectively. If the PSNR 
value is larger, it represents less distortion and higher quality of the restored target image. 

SSIM is a comprehensive image brightness, contrast, and structural difference in 
evaluating the similarity of two images’ structures. The mathematical expression is as 
follows: 

 ( , ) 1( , ) ( , ) ( , )SSIM X Y X Y c X Y s X Y   . (8) 

In Eq. (8), X and Y refer to the source image and the target image, respectively, 1(X, Y), c(X, Y), 
s(X, Y) demonstrate the image brightness, contrast and structure difference, respectively. 
Their calculation formulae are as follows: 

 1
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where ,x y   - show the average brightness of the source image x and the target image y, 

,x y  - show the brightness standard deviation of the image x, y, and x y  - refers to the 

covariance between the images x and y. 1 2 3, ,C C C  - are constants set to avoid the 

denominator of being 0, generally set 1     .  

The SSIM value lies within the range of [0,1]. The larger the value, the better the 
restored image effect. 

To evaluate the performance of lightweight, frames per second (FPS) and model 
calculation performance in giga floating point operations per second (GFLOPS) are 
calculated. For FPS, a larger value indicates faster inference speed. The calculation formula is 
as follows: 

1FPS
Latency

 ,                (12) 

where, Latency is the calculation time of the model, which is the average time required for an 
image to pass through the model calculation. 

For computing model calculation performance in GFLOPS, we input the same batch of 
images into the model. We use the model weight calculation package profile in the Python 
framework to calculate the model's performance. 
4.2. Experiments on synthetic datasets 
First, we compare the baseline algorithm (LightAtten-GAN) with the three training 
algorithms we proposed, namely DWDG, DWG, and DeeperDWG, in the synthetic data set. We 
can see the quantitative results from Table 3 and the qualitative results from Figs. 11 and 12. 

Table 3. Comparison of the experimental results obtained with LightAtten-GAN algorithm 
and proposed by us algorithms. 

 LightAtten-GAN(BaseLine) DwDG DwG DeeperDwG 
PSNR 
SSIM 

Model Size (MB) 
 

22.16 
0.999 
1.53 

 

20.33 
0.979 
0.34 

 

21.75 
0.993 
0.34 

 

22.17 
0.999 
0.91 

 

Because the DwG method only lightens the generator, the LightAtten GAN has 
decreased by 1.88% and 0.6% in PNSR and SSIM metrics, respectively, compared to before 
lightweight. However, the model size was reduced by 77.8%, indicating the effectiveness of 
our proposed lightweight method. The main reason is to ensure the discriminator's ability to 
distinguish between real and fake images, thereby enhancing the generator's low light 
enhancement capability. 

We introduced multiple lightweight residual units in the generator to reduce the 
accuracy loss caused by lightweight and further improve image quality. The results showed 
that the DeeperDwG method remained the same as the LightAtten-GAN before lightweight in 
terms of PNSR and SSIM metrics but reduced the model size by 40.5%. This indicates that 
stacking multiple lightweight residual units increases the model complexity and brings 
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additional computational and memory overhead but also strengthens the model's ability to 
model low-light enhancement and improves the quality of generated images.  

In Fig. 11, the red and blue boxes represent two partially enlarged images. It can be 
found that the three methods in this chapter can all improve the brightness of low-
illumination images and denoise to a certain extent. But the DeeperDwG has the best effect, 
and the enhanced picture has proper brightness, balanced color, and clear details. For 
example, in the second row of pictures, compared with the real picture, the overall color 
difference between DwDG and DwG pictures is relatively large, and the blue box partially 
zoomed-in picture is blurry, losing detailed information. At the same time, the DeeperDwG 
has clear partial details and better overall visual effects. In the third row of pictures, 
compared to the real picture, the partially enlarged image after the DwDG and the DwG 
enhancement still has more noise, while the partially enlarged image of the DeeperDwG is 
more realistic. The petal patterns in the red box are more prominent, while the black gaps in 
the blue box are clearer and smoother. The overall effect even surpasses LightAtten GAN, 
approaching the real image. 

 
Low-light 

image 
LightAtten-

GAN 
DwDG DwG DeeperDwG Real Image 

Fig. 11. Visual comparison over the synthetic dataset. 

Fig. 12 is the brightness attention map of the experiment. The whiter area corresponds to 
the low-illuminance area of the original image, and the darker area corresponds to the high-
brightness part of the original image. It is found that the brightness distribution of the brightness 
attention map predicted by the LightAtten-GAN and DeeperDwG is the same as the low-
illuminance map. For example, in the low-illuminance original image in the first row, the 
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brightness of the oxygen mask is darker, and the brightness of the metal around the eye frame is 
obvious. Therefore, the oxygen mask part in the brightness attention map predicted by the 
DeeperDwG is brighter, and a black outline appears in the eye frame area. On the other hand, the 
oxygen mask part predicted by the DwDG method is darker overall, and the oxygen mask eye 
frame part predicted by the DwG method is not noticeably black. It shows that DeeperDwG is 
more effective than DwDG in predicting the brightness of the attention map. 

Low-light image LightAtten-GAN DwDG DwG DeeperDwG 

Fig. 12. Brightness attention contrast map on the synthetic data set. 

4.3. Experiments on real datasets. 
From the LOL dataset, the LightAtten-GAN algorithm is compared with the three proposed 
training algorithms, DwDG, DwG, and DeeperDwG algorithms. Table 5 presents the 
quantitative results, and Fig. 13 presents the qualitative results. 

Table 4. Comparison of the experimental results obtained with LightAtten-GAN algorithm, 
and DwDG, DwG and DeeperDwG experimental results in LOL dataset.  

 LightAtten-GAN(BaseLine) DwDG DwG DeeperDwG 
PSNR 
SSIM 

Model Size(MB) 

20.99 
0.9986 

2.2 

19.85 
0.9881 

0.41 

20.12 
0.9901 

1.2 

20.91 
0.9989 

1.6 

Table 4 lists the PSNR, SSIM, algorithm sizes of the three methods, and the LightAtten-
GAN on the LOL dataset.  It should be noted that due to the relatively small LOL dataset, the 
algorithm size is much reduced compared to the Div2k dataset. At the same time, since this 
section only replaces the Div2k dataset with the LOL dataset, the DwDG, DwG, DeeperDwG 
network structure has not changed, so the algorithm size is the same as the performance on 
the Div2k dataset, so it is not listed. 
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Low-light image LightAtten-GAN DwDG 

   
DwG DeeperDwG Real Image 

   
Low-light image LightAtten-GAN DwDG 

   
DwG DeeperDwG Real Image 

   
Low-light Image LightAtten-GAN DwDG 

   
DwG DeeperDwG Real Image 

Fig. 13. Visual comparison of the DwDG, DwG, and DeeperDwG on the LOL dataset. 
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It can be found from Table 4 that the DeeperDwG method shows a slight decrease in 
PNSR metrics compared to LightAtten-GAN but a slight improvement in SSIM metrics. 
Additionally, it reduces model size by 40.5%, indicating the effectiveness of this method in 
accelerating computation and reducing the number of model parameters. Compared to DwG, 
the DwDG method has improved in both PNSR and SSIM metrics, indicating that the 
DeeperDwG method has a stronger ability to model low-light enhancement. 

We compared our proposed method with the LightAtten-GAN on DPED. Table 5 
presents the quantitative results, and Fig. 14 presents the qualitative results.  

Table 5. Comparison results on DPED. 
 LightAtten-GAN  DwDG DwG DeeperDwG 

PSNR 
SSIM 

Model Size(MB) 

20.46 
0.9156 

5.52 

19.58 
0.8572 

0.86 

20.1` 
0.9045 

2.57 

20.35 
0.9116 

3.34 
 

Low-light Image LightAtten-GAN DwDG DwG DeeperDwG 

     

     

     
Fig. 14. Visual comparison on the DPED. 

DwDG, DwG, and DeeperDwG are all effective in reducing model size, with DwDG 
showing the largest reduction of nearly 84.4%. However, their PSNR and SSIM also showed 
significant decreases, with reductions of 4.3% and 6.37%, respectively, consistent with the 
no-free lunch theorem. Furthermore, although the DeeperDwG method showed a slight 
decrease in PSNR and SSIM compared to LightAtten GAN, it was generally consistent overall. 

Fig. 14 shows the visual effect of the LightAtten-GAN and our three methods on the 
DPED. From the figure, we can see that the use of the DwDG has a large color difference, and 
the picture is generally green, especially when there are more green plants and trees in the 
picture; the reason may be that the DPED is collected outdoors, containing more natural and 
living scenes, while the DwDG method has weakened the ability of the discriminator to 
distinguish true and false images to some extent. As a result, the generated image is greenish 
as a whole. In addition, we found that the image generated by the DeeperDwG method has a 
better visual effect and color saturation than that generated by the DwG method. For 
example, in the first row of the image, the street vegetation in the image generated by 
DeeperDwG is more saturated and natural than that generated by the DwG method, and the 
overall contrast of the street is obvious. 
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Finally, we compared our methods with the LightAtten-GAN on DPED. Our methods 
have a slight decrease in PSNR and SSIM when compared with the LightAtten-GAN, but it is 
basically the same in general. At the same time, the algorithm size has been considerably 
reduced, which shows that it has significantly reduced the number of parameters. It can also 
be seen from the visual effects in Fig. 12 that there is almost no difference between the actual 
DeeperDwG and other images, which shows that DeeperDwG compensates for the accuracy 
loss caused by a lightweight network and ensures the quality of the enhanced images. 

Table 6. Comparison results on DPED. 
 LightAtten-GAN DwDG DwG DeeperDwG 

PSNR 
SSIM 

Model Size(MB) 
FPS 

GLOP 

20.46 
0.9156 

5.52 
29 

23.4 

19.58 
0.8572 

0.86 
62 

27.6 

20.10 
0.9045 

2.57 
53 

27.1 

20.35 
0.9116 

0.91 
51 

26.8 

5. Conclusions and future research 
This article proposes an improved depthwise separable convolutional generation network 
designed to fix the problem of excessive calculation at low illumination image enhancement and 
excessive algorithm. In many real-world applications, such as execution on computing-
constrained platforms, the low-light enhancement algorithm based on CNN has computational 
complexity and memory problems. Therefore, the network introduces depthwise separable 
convolution and improves it to reduce algorithm parameters. It is also suitable for low-light 
image enhancement tasks. Inspired by the MobileNet series of networks, we proposed the IN-
DepthwiseConv module and IN-Bottleneck. Based on these designed modules, three algorithms 
were proposed: the DwDG, DwG, and DeeperDwG. The DwDG algorithm uses the improved depth 
separable convolution and improved inverse residual depth separable convolution modules to 
substitute the corresponding convolution layers in the generator and discriminator. The DwG 
algorithm only replaces the generator’s convolutional layer. The DeeperDwG algorithm uses the 
generator's deeper inverted residual depth separable convolution module. Finally, the method 
proposed in this paper confirms the algorithm's performance in the synthetic and real data sets 
(LOL) and is compared with the other methods. In the final part, it is shown the network we 
proposed can guarantee the low-light image enhancement effect and reduce the number of 
algorithm parameters. This reduces the computational complexity. In the experimental part, we 
propose a practical case of applying the DeepDwG to engineering. This proves that our proposed 
algorithm fully satisfies the application of multimedia computing in urban scenarios.  
Although our method enhances low-light images effectively, it has the limitation that it is 
difficult to deal with various lighting modes and styles. In the future, we will further explore 
new methods to improve low-light image enhancement for trustworthy multimedia 
computing urban scene applications. 
Funding. Not applicable. 
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Анотація. З моменту появи алгоритмів глибокого навчання, алгоритми на основі 
згорткових нейронних мереж (CNN) суттєво просунулися в покращенні зображення при 
слабкому освітленні. Однак вони все ще стикаються з серйозною проблемою: алгоритм 
покращення зображення при низькій освітленості на основі CNN має надмірну 
обчислювальну складність і потребує достатньої пам’яті. Хоча точність алгоритму 
покращується, ефективність обчислень знижується. У цій статті представлено легку 
мережу для низького освітлення та запропоновано покращення зображення. Для 
ознайомлення подані основи використовуваної технології. Базуючись на принципі 
MobileNetV2, ми використали генеративні змагальні мережі з покращеними 
механізмами уваги, як базовий алгоритм. Потім були побудовані три порівняльні 
алгоритми для експериментів. Результати експерименту підтверджують, що 
запропонована мережа потребує менше параметрів алгоритму, гарантуючи ефект 
покращення зображення в умовах слабкого освітлення. 

Ключові слова: машинне навчання, покращення зображення, змагальні мережі, 
роздільна глибинна згортка  


