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Abstract. In the present paper, the regimes of propagation of laser pulses in isotropic dispersionless (8~0)
media, such as hollow microstructured optical fibers (photonic crystal fibers), are presented. The nonlinear
amplitude equation (NAE) is used to describe the evolution of such pulses, which differs from the nonlinear
Schrodinger equation by two additional nonparaxial terms. Linear and nonlinear regimes of propagation are
considered. In the linear regime, when only diffraction effects dominate the evolution of the laser pulse, its
shape is preserved, but the position of the pulse shifts with the distance. This is due to the influence of the
nonparaxial term in NAE. In the nonlinear propagation regime, the obtained solution of the NAE describes a
dark soliton. It is formed as a result of the balance between the effects of diffraction and the nonlinearity of the
medium.
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1. Introduction
The study of the linear and nonlinear regime of propagation of ultra-short optical pulses in

isotropic dispersionless media such as air [1-3] and some hollow microstructured optical
fibers (photonic crystal fibers) [4-6] is a rapidly developing field in modern laser physics. It
is known that for air, the dispersion of ultra-short optical pulses is negligibly small ( S ~0).

Therefore, during the evolution of femtosecond laser pulses at distances of tens and
hundreds of diffraction lengths, it does not have a significant effect, and in this case, it can be
neglected. The propagation regimes of optical pulses in such media are usually described by
the well-known nonlinear Schrodinger equation (NSE) [7,8]. It is derived for narrow-band
pulses (ALl < /,, where AA is the initial bandwidth of the pulse and 4, is the carrier

wavelength) and characterizes very well their behavior in the nanosecond and picosecond
regions. However, within the femtosecond and attosecond regions, where the pulses are
broad-band (AA = 4; ), the more general nonlinear amplitude equation (NAE) must be used
[9,10]. It correctly describes long as well as ultra-short optical pulses. The NAE differs from

the NSE by two nonparaxial terms that characterize the longitudinal diffraction divergence.
The nonparaxial diffraction of ultra-short optical pulses has been widely discussed in [11].
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The linear propagation regime of laser pulses in isotropic media is well studied. Due to
the absence of nonlinear and dispersive effects, the shape and spectrum of the pulse are
preserved. In the case of a nonlinear regime, depending on the values of the light radiation
intensity, different effects can be observed. One of the most interesting phenomena in
waveguide optics is the formation of laser solitons. They belong to a special class of wave
packages, where the balance between the effects of dispersion and nonlinearity forms a
stable optical pulse [12-17]. Different types of solitons exist depending on the sign of the
dispersion: the combination of anomalous dispersion and Kerr-type nonlinearity generates
bright optical solitons [17,18], the balance between normal dispersion and nonlinearity
leads to the formation of dark laser solitons, where a deep gap in pulse’s intensity is
observed [17,19]. Usually, solitons can be obtained experimentally in media such as planar
waveguides and optical fibers. In recent years, the possibility of a registered soliton regime
of propagation of ultra-short high-intensity laser pulses in air [20-22] was studied. The
atmospheric air in mid-infrared and long-wavelength infrared regions is transparent [23].

The present paper investigates the evolution of ultra-short broad-band laser pulses
governed by NAE in isotropic (linear and nonlinear) dispersionless ( f~0) media. New

analytical solutions are found. The solution presents a stable optical pulse with Gaussian
form in the linear case. In the nonlinear regime of propagation, a dark soliton is observed.
Despite the absence of dispersion, the soliton is formed due to the balance between the
diffractive and nonlinear effects of the medium.

2. Main equation
The standard optical laser pulse is usually linearly polarized in a plane perpendicular to the

direction of propagation. In the geometry of the hollow microstructured optical fibers, the
3D+1 nonlinear amplitude equation is reduced to the 1D+1 equation. For this reason, in
isotropic nonlinear dispersive media, the NAE in Cartesian coordinate system takes the form:

A ik, [a—“‘#la—/"]—kok"—am' _LEA L 2lafa=o, 1)
0z2 0z v ot ot2  v2 ot?

where A’(t,z) is the amplitude function, describing the envelope of the laser pulse, k, =27/,
is its wavenumber, A, is the carrier wavelength, v is the group velocity, k" is a coefficient,
characterizing the group velocity dispersion and n, is the nonlinear refractive index.

When studying the evolution of one-dimensional pulses in isotropic nonlinear
dispersive media, it is convenient to write the amplitude equation in a "local time"
coordinate system. Thus, the following substitutions are made:

1

\ VA A'
T= ,E=",2y=vTy, A="—, (2)
Ty 2 Ay

where T, z, and A, are the corresponding initial time duration, the initial length of the

pulse and its initial amplitude function.
By using the expression (2), NAE (1) can be presented in dimensionless form. This is quite
useful because when solving the equation, it is not needed to check the dimensions after each
mathematical operation of differentiation or integration.

Next, the following constants are introduced:
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" 2
o =kyzy, f=kev2k", y =an2|A0| . (3)
In the expressions above the constant a characterizes the number of oscillations under the

pulse envelope and usually o > 1. The coefficients § and y describe respectively the linear
dispersion and the nonlinearity of the medium. In this way, by using the substitutions (3)
and after a couple of transformations, the one-dimensional NAE, in a "local time" coordinate
system, can be presented in a scalar, dimensionless form as follows:

A, 1|02 5024 | B oA, 420, 4
0& 2a|0&Z oLt

2a 072
This is a nonlinear partial differential equation of second order and third degree. It differs

significantly from the well-known NSE by the presence of the second term in the brackets. It is
important to mention here that physically, this term describes the longitudinal diffraction
divergence, which is characteristic of broad-band laser pulses. It is connected with the
nonparaxiality in the evolution of such optical pulses. Whether this term is counted depends on
the coefficient before the brackets (1/2a ). Its value is very small for long laser pulses, and the
brackets' expression can be neglected. Then, NAE is reduced to NSE. In the case of ultra-short
optical pulses, however, this term has considerable value, and therefore, the expression in the
brackets must be taken into account. Table 1 presents some values of the coefficient 1/2a for

laser pulses with different initial time durations (7 ) and carrier wavelength 4 =800nm.

Table 1. Values of the coefficient 1/2a for laser pulses with different initial time durations

Ty 1/2a
1fs 3.1x101
5fs 6.2x102
8fs 3.8x10-2
10 fs 3.0x10-2
50 fs 6.2x10-3
300 fs 1.1x103
50 ps 6.2x10-6
50 ns 6.2x109

In the present paper, we will investigate the propagation of broad-band optical pulses in a
waveguide medium with negligible dispersion, such as hollow microstructured optical fibers
(photonic crystal fibers). In this case, =0 and Eq. (4) take the form:

o 0A, 24, 024

2ia +2ay |4 A=0. (5)
o0& aE2 " oéor

3. Linear regime of propagation of broad-band optical pulses in a
dispersionless medium
We will first study the linear propagation regime of laser pulses in a microstructured hollow

fiber. In this case, y 0. It is known that under these conditions, dispersive and nonlinear
effects do not affect the evolution of light pulses. Thus, the Eq. (5) takes the form:
2iq 0 OPA_5 02A
ot o0&z oéor

This is a partial differential equation of second order and third degree for the amplitude

(6)

function A(&,7). Its solution can easily be found by using the Fourier transform:
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A(E7) =i [A(z,0)eordo, )

where @ is the carrier frequency of the optical pulse. By substituting the expression above
in Eq. (6) and after a couple of transformations, we obtain:

LA gi(a+w)94 <o, @)
déz dé
The Eq. (8) is a linear homogeneous ordinary differential equation of the second order. We

search for a solution to this equation of the kind:
A(&,@)=epé, p=const. 9
We substitute expression (9) in Eq. (8) and after short calculations, we obtain the following
characteristic equation:
p2+2i(a+w)p=0. (10)
Considering the roots of the equation above: p; =0 and p, = —Zi(a +a)) , we find the
following partial solution of the Eq. (10):
A(¢,0)=A(0,0)e-2i(a+o)s, (11)

where A(O,a)) is the Fourier-form of the initial pulse for £ =0. We assume that the amplitude

function of the initial laser pulse is presented by a Gaussian function:

2 _w?

A(0,r)=e 2, A(0,0)=~2re 2. (12)
To obtain the solution of the main equation (6), we go back through all the substitutions and
assumptions made so far. We replace the partial solution (11) and the expressions (12) in
the integral (7), and after a couple of transformations, we find the following solution:

1 2

A(&,7)=e2iate ") (13)
The intensity of the optical pulse, with amplitude function described by expression (13), has
a Gaussian form:

A(&,7)] =e(ev22)’, (14)
In Fig. 1. graphs of the intensity profile of the obtained expression (14) are presented.

As can be seen, the shape of the pulse is preserved, but its position changes with increasing
the variable &. This effect is due to the specific second term with coefficient 1/2« , in Eq. (4),

which describes the nonparaxial evolution of the laser pulse. To understand the physics of
the observed process, it is necessary to take into account the fact that the optical pulses
always have 3D+1 dimensions. The one-dimensional task only gives a picture along the z-
axis (x=0 and y=0). The group velocity of the pulse is related to its center of gravity. During
the hemispherical (nonparaxial) A(3) diffraction, the component along the z-axis (x=0 and
y=0) is shifted forward in the Galilean coordinate system and in the opposite direction in the
"local time" coordinate system, while the parts of the pulse remote from the z-axis lag
behind. The center of gravity, as well as the group velocity of the pulse in A3) diffraction, do
not change. Still, in the case of the one-dimensional task (on the z-axis, x=0, and y=0), only a
change in the position of the one-dimensional pulse is observed.
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Intensity
1.0

Fig. 1. Intensity profile of ultra-short optical pulse with Gaussian form at different distances: blue line
£ =0, red line £ =1, and yellow line & =2. The result is obtained by using the solution (14).
4. Nonlinear regime of propagation of broad-band optical pulses in a

dispersionless medium
In our next step, we will consider the evolution of ultra-short optical pulse in nonlinear Kerr-

type media with negligibly small dispersion ( 5 =0), such as hollow microstructured fibers.
Its behavior is described by the main Eq. (5), which is a partial differential equation of
second order and third degree.

We search for a solution to this equation of the kind:
A(&,7)=D(x)elar+ibs, x =1 +ué. (15)

where a, b, and u are constants, about to be defined, and ®(x) is a real amplitude function.
We substitute the expression above in Eq.(5). Thus, we obtain the following complex

ordinary differential equation of second order and third degree:
2iqu®d' —2ab® + u2d" +2ibud' — b2d — 2ud" (16)

—2ib®' - 2iaud' + 2ab® + 2ayd3 = 0.
In Eq. (16), (') and (") represent the first and second derivatives with respectto x.
The mathematical model requires to separate the real and imaginary parts on both sides of
the Eq.(16). In this way, we obtain the following system of two ordinary differential
(17)

equations:
Re: ®"(u2—2u)—®(2ab+b2—2ab)+ 2cy®3 =0,
(18)

Im: 2®'(qu+bu—b—au)=0.
For an arbitrary value of the argument x, the following condition must be satisfied <I>'(x) #0.

Thus, from the Eq. (18), we can find the relation between the constants:

__ b _
u=————=const.
a+b—-a

Our next step is to consider Eq. (17), obtained by equalizing the real parts of Eq. (16). It is

(19)

convenient to write it in the form:

v-a|

2 _
b2 +2b(a —a) +2[ ay }¢3=0. 20)
u2—2u u2—2u
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Now, we will find an expression for the denominator in the Eq. (20):
b2 —2b(a-
(2-2b(a-a))

uz—-2u= (b—(a—a))2 (21)
Under this condition, the Eq. (20) can be presented as follows:

®"+2BD - 2I'd3 =0, (22)
where

2B=(b-(a-a))’ >0, (23)

I'=a M>O,when b>2(a-a). (24)

(b =2b(a—a))

It is well-known that the solution of this equation is the function:
(D(x):\/?th(xﬁ+C), (25)

where C is the integration constant.
As a result of the substitutions and assumptions made so far, the analytical solution of Eq. (5)
takes the form:

A(ﬁ,r):\/gth(xﬁ+C)ef“T”b§, x=7+u, (26)
where
a=a+2B 1—%, (27)

b=2B|1+ ]1-%L |, (28)
r
u=1+ /1—0‘—F7. (29)

The obtained solution (26) presents a dark soliton, which is formed as a result of the balance
between the effects of longitudinal diffraction and the Kerr-type nonlinearity. The coefficient

B /T in (26) has the meaning of amplitude of the obtained dark soliton. This is an
analytical solution of the main Eq. (5) when the dispersion is nearly zero ( 5 =0). The found

constants (27), (28) and (29) give the relation between the parameters of the optical pulse
and the medium. Thus, to satisfy the second inequality in (24) it is necessary:

1—%<1. (30)

Therefore, the condition for the formation of a dark soliton is ay <T'. When we substitute (3)
in this expression, we obtain:

L.
U/ (31)
LNL

1

where Lyz =koz} and Ly, =————.
kony| Ao

With Ly and Ly, are presented respectively the longitudinal diffractive length and

nonlinear length. These are the distances in the waveguide medium at which the
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corresponding effects become significant. As we already mentioned before, the obtained
dark soliton depends on the balance between these two phenomena. It is known that, under
certain conditions, the nonlinearity of the medium leads to pulse compression, while
diffraction expands spatially the pulse.

As a next step, we will determine the conditions necessary for the observation of a
fundamental dark soliton. Let's assume that ay =I'=1 and B=1. By using the expressions

for the constants (27), (28), and (29), we obtain that a=«, b= V2 and u=1. In this case, the
soliton solution of NAE (5) takes the form:

A(&E,7)=th(z +&)eiar+iv2s, (32)

In Fig. 2. it is shown a graph of the intensity profile of the obtained soliton solution (32)

for different values of the variable ¢ . It is observed the typical intensity gap characteristic of

the fundamental dark laser solitons. It is clearly seen that the pulse retains its shape, but it
shifts in position with the distance traveled. This effect is due to the two nonparaxial terms
in NAE (4).

Intensity

Lo

Fig. 2. Intensity profile of ultra-short dark optical soliton at different distances: blue line & =0, red line

£ =1, and yellow line & =2. The result is obtained by using the solution (32).

This type of solitons can be observed in hollow microstructured fibers, in which the
dispersion has a negligibly small value.

5. Conclusion
The present paper investigates the evolution of ultra-short broad-band light pulses in linear

and nonlinear regimes. It is considered isotropic dispersionless (8 ~0) media, such as

hollow microstructured optical fibers (photonic crystal fibers). The nonlinear amplitude
equation describes the behavior of laser pulses in such waveguides. It differs from the
nonlinear Schrdodinger equation by two additional nonparaxial terms. They have an
important role in the evolution of ultra-short optical pulses and describe their longitudinal
diffraction divergence. The main Eq. (5) is presented in the scalar, dimensionless form in the
"local time" coordinate system.

First, NAE (6) is solved for the linear case. The found solution (13) presents a stable
optical pulse with Gaussian form. Fig. 1. shows the intensity profile of ultra-short optical
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pulse at different distances: £ =0, £=1,and & =2. It is clearly seen that its shape is preserved,

but the position of the pulse shifts with the distance. This effect is due to the additional
nonparaxial terms in Eq. (4) that describe the nonparaxial evolution of the laser pulse.

In the second case, the nonlinear propagation regime of optical pulses in the frame of
NAE (5) is considered. An analytical solution (26), which describes a dark soliton, is
obtained. Despite the absence of dispersion ( 8 ~0), the soliton could be formed due to the

balance between the effects of diffraction and the nonlinearity of the medium. In Fig. 2, the
intensity profile of a fundamental dark soliton is presented by the solution (32). The typical
intensity gap, characteristic of the dark laser solitons, is seen. The optical pulse keeps its
shape and parameters, but its position changes with the distance.

The presented results are important for a better understanding the processes observed
during the evolution of ultra-short broad-band laser pulses in different dispersionless
(B =0) media, such as air or hollow photonic crystal fibers. They can find applications in

atmospheric observation systems, telecommunication systems, optical sensors, and many

others.
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Anomayis. Y yiti po6omi npedcmaeseHi pexcumMu NOWUPEHHS AA3epHUX IMNYy/abCie 8
i3omponHux  6e3ducnepcilinux  (B~0)  cepedosuwjax, n makux sSK  NOPOMCHUCMI
MIKpocmpykmypoeaHi onmu4Hi 80/10KHA (POomoOHHO-KpucmasniuHi 80.0KkHa). [as onucy
eso0Yii makux iMny/avcie BUKOPUCMOBYEMbCS HeAiHiliHe amnaimydHe pieHsiHs (HAP), sike
gidpizHsembcs 810 HesiHiliHO20 pieHsHHSA Illpedineepa deoma dodamkosumMu 4YjeHAMU, WO
gidnogidarombs HenapakciaibHocmi. Po32AssHymo AiHITHUU | HeAIHITHUT pexcuMu NOWUpeHHs.
Y niniliHomy pedxcumi, koau e egontoyii 1a3epHo20 imnyabey domiHyomb miabku dudpakyitini
egpekmu, tiozo ghopma 36epizacmucsi, ane NOAOHCEHHS IMNYAbCy 3Miuyemubcs 3 8gidcmanHw. Lle
noe'si3aHo 3 8n/AUBOM HenapakciaabHozo uaeHa 6 HAP. Y pexcumi HeniHilIHO20
p0o3n08crdrceHHs: ompuMaHuli po3e’s3ok HAP onucye memHuli conimoH. BiH ymeoproemubcs 8
pe3yabmami 6aaaHcy mixc epekmamu dugpakyii ma HeaiHiliHicmIo cepedosuwya.

Katwouoei cioea: pomoHHi KpucmasivuHi 80/10KHA, HEATHITIHe aMnaimydHe PIBHSHHS, OnMU4Hi
conimoHu, isomponHe 6e3ducnepciiite cepedosuuje
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