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Abstract. In the present paper, the regimes of propagation of laser pulses in isotropic dispersionless (β≈0) 
media, such as hollow microstructured optical fibers (photonic crystal fibers), are presented. The nonlinear 
amplitude equation (NAE) is used to describe the evolution of such pulses, which differs from the nonlinear 
Schrödinger equation by two additional nonparaxial terms. Linear and nonlinear regimes of propagation are 
considered. In the linear regime, when only diffraction effects dominate the evolution of the laser pulse, its 
shape is preserved, but the position of the pulse shifts with the distance. This is due to the influence of the 
nonparaxial term in NAE. In the nonlinear propagation regime, the obtained solution of the NAE describes a 
dark soliton. It is formed as a result of the balance between the effects of diffraction and the nonlinearity of the 
medium. 
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1. Introduction 
The study of the linear and nonlinear regime of propagation of ultra-short optical pulses in 
isotropic dispersionless media such as air [1-3] and some hollow microstructured optical 
fibers (photonic crystal fibers) [4-6] is a rapidly developing field in modern laser physics. It 
is known that for air, the dispersion of ultra-short optical pulses is negligibly small ( 0  ). 

Therefore, during the evolution of femtosecond laser pulses at distances of tens and 
hundreds of diffraction lengths, it does not have a significant effect, and in this case, it can be 
neglected. The propagation regimes of optical pulses in such media are usually described by 
the well-known nonlinear Schrödinger equation (NSE) [7,8]. It is derived for narrow-band 
pulses ( 0   , where   is the initial bandwidth of the pulse and 0  is the carrier 

wavelength) and characterizes very well their behavior in the nanosecond and picosecond 
regions. However, within the femtosecond and attosecond regions, where the pulses are 
broad-band ( 0   ), the more general nonlinear amplitude equation (NAE) must be used 

[9,10]. It correctly describes long as well as ultra-short optical pulses. The NAE differs from 
the NSE by two nonparaxial terms that characterize the longitudinal diffraction divergence. 
The nonparaxial diffraction of ultra-short optical pulses has been widely discussed in [11].  
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The linear propagation regime of laser pulses in isotropic media is well studied. Due to 
the absence of nonlinear and dispersive effects, the shape and spectrum of the pulse are 
preserved. In the case of a nonlinear regime, depending on the values of the light radiation 
intensity, different effects can be observed. One of the most interesting phenomena in 
waveguide optics is the formation of laser solitons. They belong to a special class of wave 
packages, where the balance between the effects of dispersion and nonlinearity forms a 
stable optical pulse [12-17]. Different types of solitons exist depending on the sign of the 
dispersion: the combination of anomalous dispersion and Kerr-type nonlinearity generates 
bright optical solitons [17,18], the balance between normal dispersion and nonlinearity 
leads to the formation of dark laser solitons, where a deep gap in pulse’s intensity is 
observed [17,19]. Usually, solitons can be obtained experimentally in media such as planar 
waveguides and optical fibers. In recent years, the possibility of a registered soliton regime 
of propagation of ultra-short high-intensity laser pulses in air [20-22] was studied. The 
atmospheric air in mid-infrared and long-wavelength infrared regions is transparent [23].  

The present paper investigates the evolution of ultra-short broad-band laser pulses 
governed by NAE in isotropic (linear and nonlinear) dispersionless ( 0  ) media. New 

analytical solutions are found. The solution presents a stable optical pulse with Gaussian 
form in the linear case. In the nonlinear regime of propagation, a dark soliton is observed. 
Despite the absence of dispersion, the soliton is formed due to the balance between the 
diffractive and nonlinear effects of the medium. 

2. Main equation 
The standard optical laser pulse is usually linearly polarized in a plane perpendicular to the 
direction of propagation. In the geometry of the hollow microstructured optical fibers, the 
3D+1 nonlinear amplitude equation is reduced to the 1D+1 equation. For this reason, in 
isotropic nonlinear dispersive media, the NAE in Cartesian coordinate system takes the form: 

2 2 2 22
0 0 2 02 2 2 2

' ' 1 ' ' 1 '2 " ' ' 0,A A A A Aik k k n k A A
z z v t t v t

                
 (1) 

where  ,A t z   is the amplitude function, describing the envelope of the laser pulse, 0 02k    

is its wavenumber, 0  is the carrier wavelength,   is the group velocity, "k  is a coefficient, 

characterizing the group velocity dispersion and 2n  is the nonlinear refractive index. 

When studying the evolution of one-dimensional pulses in isotropic nonlinear 
dispersive media, it is convenient to write the amplitude equation in a "local time" 
coordinate system. Thus, the following substitutions are made: 

0 0
0 0 0

',  ,  ,  ,
zt z Av z vT A

T z A
 


        (2) 

where 0T , 0z  and 0A  are the corresponding initial time duration, the initial length of the 

pulse and its initial amplitude function.  
By using the expression (2), NAE (1) can be presented in dimensionless form. This is quite 
useful because when solving the equation, it is not needed to check the dimensions after each 
mathematical operation of differentiation or integration. 

Next, the following constants are introduced: 
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220 0 0 2 0,  ",  .k z k v k n A          (3) 

In the expressions above the constant α characterizes the number of oscillations under the 
pulse envelope and usually 1  . The coefficients   and   describe respectively the linear 

dispersion and the nonlinearity of the medium. In this way, by using the substitutions (3) 
and after a couple of transformations, the one-dimensional NAE, in a "local time" coordinate 
system, can be presented in a scalar, dimensionless form as follows: 

2 2 2 2
2 2

1 2 0.
2 2

A A A Ai A A 
      

              
  (4) 

This is a nonlinear partial differential equation of second order and third degree. It differs 
significantly from the well-known NSE by the presence of the second term in the brackets. It is 
important to mention here that physically, this term describes the longitudinal diffraction 
divergence, which is characteristic of broad-band laser pulses. It is connected with the 
nonparaxiality in the evolution of such optical pulses. Whether this term is counted depends on 
the coefficient before the brackets (1 2 ). Its value is very small for long laser pulses, and the 

brackets' expression can be neglected. Then, NAE is reduced to NSE. In the case of ultra-short 
optical pulses, however, this term has considerable value, and therefore, the expression in the 
brackets must be taken into account. Table 1 presents some values of the coefficient 1 2  for 

laser pulses with different initial time durations ( 0T ) and carrier wavelength 800nm  . 

Table 1. Values of the coefficient 1 2  for laser pulses with different initial time durations 

0T  1 2  
1 fs 3.1×10-1 

5 fs 6.2×10-2 

8 fs 3.8×10-2 

10 fs 3.0×10-2 

50 fs 6.2×10-3 
300 fs 1.1×10-3 
50 ps 6.2×10-6 
50 ns 6.2×10-9 

In the present paper, we will investigate the propagation of broad-band optical pulses in a 
waveguide medium with negligible dispersion, such as hollow microstructured optical fibers 
(photonic crystal fibers). In this case, 0   and Eq. (4) take the form: 

2 2 2
2

2 2 2 0.A A Ai A A 
   
     
   

   (5) 

3. Linear regime of propagation of broad-band optical pulses in a 
dispersionless medium 

We will first study the linear propagation regime of laser pulses in a microstructured hollow 
fiber. In this case, 0  . It is known that under these conditions, dispersive and nonlinear 

effects do not affect the evolution of light pulses. Thus, the Eq. (5) takes the form: 
2 2

2
2 2 0.A A Ai

   
    
   

    (6) 

This is a partial differential equation of second order and third degree for the amplitude 
function  ,A   . Its solution can easily be found by using the Fourier transform: 
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   1, , ,
2

iA A e d    







       (7) 

where   is the carrier frequency of the optical pulse. By substituting the expression above 
in Eq. (6) and after a couple of transformations, we obtain:  

 2

2
2 0.d A dAi

d d
 

 
  
 

     (8) 

The Eq. (8) is a linear homogeneous ordinary differential equation of the second order. We 
search for a solution to this equation of the kind: 

 , ,  .pA e p const         (9) 

We substitute expression (9) in Eq. (8) and after short calculations, we obtain the following 
characteristic equation: 

 2 2 0.p i p        (10) 

Considering the roots of the equation above: 1 0p   and  2 2p i     , we find the 

following partial solution of the Eq. (10): 

     2, 0, ,iA A e             (11) 

where  0,A   is the Fourier-form of the initial pulse for  =0. We assume that the amplitude 

function of the initial laser pulse is presented by a Gaussian function: 

   
2 2

2 20, ,   0, 2 .A e A e
 

        (12) 

To obtain the solution of the main equation (6), we go back through all the substitutions and 
assumptions made so far. We replace the partial solution (11) and the expressions (12) in 
the integral (7), and after a couple of transformations, we find the following solution: 

   21 22 2, .iA e e          (13) 

The intensity of the optical pulse, with amplitude function described by expression (13), has 
a Gaussian form: 

   22 2, .A e           (14) 

In Fig. 1. graphs of the intensity profile of the obtained expression (14) are presented. 
As can be seen, the shape of the pulse is preserved, but its position changes with increasing 
the variable  . This effect is due to the specific second term with coefficient 1 2 , in Eq. (4), 

which describes the nonparaxial evolution of the laser pulse. To understand the physics of 
the observed process, it is necessary to take into account the fact that the optical pulses 
always have 3D+1 dimensions. The one-dimensional task only gives a picture along the z-
axis (x=0 and y=0). The group velocity of the pulse is related to its center of gravity. During 
the hemispherical (nonparaxial) (3)  diffraction, the component along the z-axis (x=0 and 
y=0) is shifted forward in the Galilean coordinate system and in the opposite direction in the 
"local time" coordinate system, while the parts of the pulse remote from the z-axis lag 
behind. The center of gravity, as well as the group velocity of the pulse in (3)  diffraction, do 
not change. Still, in the case of the one-dimensional task (on the z-axis, x=0, and y=0), only a 
change in the position of the one-dimensional pulse is observed.     
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Fig. 1. Intensity profile of ultra-short optical pulse with Gaussian form at different distances: blue line 
 =0, red line  =1, and yellow line  =2. The result is obtained by using the solution (14). 

4. Nonlinear regime of propagation of broad-band optical pulses in a 
dispersionless medium 

In our next step, we will consider the evolution of ultra-short optical pulse in nonlinear Kerr-
type media with negligibly small dispersion ( 0  ), such as hollow microstructured fibers. 

Its behavior is described by the main Eq. (5), which is a partial differential equation of 
second order and third degree.  
We search for a solution to this equation of the kind:  

   , Φ ,    .ia ibA x e x u           (15) 

where a , b , and u  are constants, about to be defined, and Φ(x)  is a real amplitude function. 

We substitute the expression above in Eq. (5). Thus, we obtain the following complex 
ordinary differential equation of second order and third degree: 

2 2

3

2 Φ 2 Φ Φ"+2 Φ' Φ 2 Φ"
2 Φ 2 Φ 2 Φ 2 Φ 0. 
i u b u ibu b u

ib iau ab
 


   

    


 

  (16) 

In Eq. (16), ( ' ) and ( " ) represent the first and second derivatives with respect to x .  
The mathematical model requires to separate the real and imaginary parts on both sides of 
the Eq. (16). In this way, we obtain the following system of two ordinary differential 
equations: 

   2 2 3:   Φ" 2 Φ 2 2 2 Φ 0,Re u u b b ab         (17) 

 :   2Φ 0.    Im u bu b au        (18) 

For an arbitrary value of the argument x, the following condition must be satisfied  Φ' 0x  . 

Thus, from the Eq. (18), we can find the relation between the constants: 

.bu const
b a

 
 

    (19) 

Our next step is to consider Eq. (17), obtained by equalizing the real parts of Eq. (16). It is 
convenient to write it in the form: 

 2
3

2 2

2
 Φ" Φ 2 Φ 0.

2 2
b b a

u u u u
             

  (20) 
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Now, we will find an expression for the denominator in the Eq. (20): 
  

  
2

2
2

2
2 0.

b b a
u u

b a





 
   

 
    (21) 

Under this condition, the Eq. (20) can be presented as follows: 
3Φ" 2 Φ 2ΓΦ 0,B        (22) 

where 

  22 0,B b a          (23) 
2

2
( ( )) 0,when 2( ).
( 2 ( ))
b a b a
b b a


 


 

    
 

  (24) 

It is well-known that the solution of this equation is the function: 

   Φ Γ ,
Γ
Bx th x C       (25) 

where C is the integration constant.  
As a result of the substitutions and assumptions made so far, the analytical solution of Eq. (5) 
takes the form: 

   , Γ ,    ,
Γ

ia ibBA th x C e x u          (26) 

where 

2 1 ,
Γ

a B        (27) 

2 1 1 ,
Γ

b B  
   

 
    (28) 

1 1 .
Γ

u         (29) 

The obtained solution (26) presents a dark soliton, which is formed as a result of the balance 
between the effects of longitudinal diffraction and the Kerr-type nonlinearity. The coefficient 

/ Γ B  in (26) has the meaning of amplitude of the obtained dark soliton. This is an 

analytical solution of the main Eq. (5) when the dispersion is nearly zero ( 0  ). The found 

constants (27), (28) and (29) give the relation between the parameters of the optical pulse 
and the medium. Thus, to satisfy the second inequality in (24) it is necessary:  

1 1.
Γ
       (30) 

Therefore, the condition for the formation of a dark soliton is Γ  . When we substitute (3) 

in this expression, we obtain: 

Γdiff

NL

L
L

 ,    (31) 

where 2
0 0diffL k z   and  2

0 2 0

1
NLL

k n A
 . 

With diffL  and NLL  are presented respectively the longitudinal diffractive length and 

nonlinear length. These are the distances in the waveguide medium at which the 
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corresponding effects become significant. As we already mentioned before, the obtained 
dark soliton depends on the balance between these two phenomena. It is known that, under 
certain conditions, the nonlinearity of the medium leads to pulse compression, while 
diffraction expands spatially the pulse. 
As a next step, we will determine the conditions necessary for the observation of a 
fundamental dark soliton. Let's assume that Γ 1    and 1B  . By using the expressions 

for the constants (27), (28), and (29), we obtain that ,  2  and 1a b u   . In this case, the 
soliton solution of NAE (5) takes the form: 

    2, .i iA th e            (32) 

In Fig. 2. it is shown a graph of the intensity profile of the obtained soliton solution (32) 
for different values of the variable  . It is observed the typical intensity gap characteristic of 

the fundamental dark laser solitons. It is clearly seen that the pulse retains its shape, but it 
shifts in position with the distance traveled. This effect is due to the two nonparaxial terms 
in NAE (4). 

 
Fig. 2. Intensity profile of ultra-short dark optical soliton at different distances: blue line  =0, red line 
 =1, and yellow line  =2. The result is obtained by using the solution (32). 

This type of solitons can be observed in hollow microstructured fibers, in which the 
dispersion has a negligibly small value.  

5. Conclusion 
The present paper investigates the evolution of ultra-short broad-band light pulses in linear 
and nonlinear regimes. It is considered isotropic dispersionless ( 0  ) media, such as 

hollow microstructured optical fibers (photonic crystal fibers). The nonlinear amplitude 
equation describes the behavior of laser pulses in such waveguides. It differs from the 
nonlinear Schrödinger equation by two additional nonparaxial terms. They have an 
important role in the evolution of ultra-short optical pulses and describe their longitudinal 
diffraction divergence. The main Eq. (5) is presented in the scalar, dimensionless form in the 
"local time" coordinate system. 

First, NAE (6) is solved for the linear case. The found solution (13) presents a stable 
optical pulse with Gaussian form. Fig. 1. shows the intensity profile of ultra-short optical 
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pulse at different distances:  =0,  =1, and  =2. It is clearly seen that its shape is preserved, 

but the position of the pulse shifts with the distance. This effect is due to the additional 
nonparaxial terms in Eq. (4) that describe the nonparaxial evolution of the laser pulse. 

In the second case, the nonlinear propagation regime of optical pulses in the frame of 
NAE (5) is considered. An analytical solution (26), which describes a dark soliton, is 
obtained. Despite the absence of dispersion ( 0  ), the soliton could be formed due to the 

balance between the effects of diffraction and the nonlinearity of the medium. In Fig. 2, the 
intensity profile of a fundamental dark soliton is presented by the solution (32). The typical 
intensity gap, characteristic of the dark laser solitons, is seen. The optical pulse keeps its 
shape and parameters, but its position changes with the distance. 

The presented results are important for a better understanding the processes observed 
during the evolution of ultra-short broad-band laser pulses in different dispersionless 
( 0  ) media, such as air or hollow photonic crystal fibers. They can find applications in 

atmospheric observation systems, telecommunication systems, optical sensors, and many 
others. 
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Анотація. У цій роботі представлені режими поширення лазерних імпульсів в 
ізотропних бездисперсійних (β≈0) середовищах, таких як порожнисті 
мікроструктуровані оптичні волокна (фотонно-кристалічні волокна). Для опису 
еволюції таких імпульсів використовується нелінійне амплітудне рівняння (НАР), яке 
відрізняється від нелінійного рівняння Шредінгера двома додатковими членами, що 
відповідають непараксіальності. Розглянуто лінійний і нелінійний режими поширення. 
У лінійному режимі, коли в еволюції лазерного імпульсу домінують тільки дифракційні 
ефекти, його форма зберігається, але положення імпульсу зміщується з відстанню. Це 
пов'язано з впливом непараксіального члена в НАР. У режимі нелінійного 
розповсюдження отриманий розв’язок НАР описує темний солітон. Він утворюється в 
результаті балансу між ефектами дифракції та нелінійністю середовища. 
 
Ключові слова: фотонні кристалічні волокна, нелінійне амплітудне рівняння, оптичні 
солітони, ізотропне бездисперсійне середовище 


