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Abstract. This new work studies a nonlinear Schrodinger equation (NLSE) formatted without chromatic
dispersion. New integration algorithms collectively reveal a variety of optical solitons and other exact solutions
of distinct physical structures. This study delves into a toolbox of powerful techniques, including various forms
of a refined exponential rational function method, to unlock a rich tapestry of solutions for the examined
nonlinear Schrodinger equation. Each method's distinct form unveils unique traveling wave solutions
alongside the essential parameter constraints governing their existence. Furthermore, under specific
parameter conditions, this toolbox yields a treasure trove of novel optical solutions: modulated waves, bright
and dark envelope solitons, and periodic and traveling waveforms. These findings illuminate the diverse
landscape of solutions for this equation, paving the way for deeper understanding in fields like optical fibers
and plasma physics.
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1. Introduction
Many different types of physics and optics phenomena depend on nonlinear evolution

equations. These include the Fokas-Lenells (FL) equation, the nonlinear Schrodinger
equation (NLSE), the Maxwell equation for electromagnetic radiation, the Helmholtz
equation for thermodynamics, the Korteweg-de Vries equation (KdV) for describing solitary
waves (SWs), shocks, and cnoidal waves in plasma, and many more. A crucial part of many
nonlinear evolution equations is the balance between dispersion and nonlinearity. This is
what makes solitary waves appear in a wide range of systems. Soliton interactions in optical
fiber communication have driven much research in recent decades, with researchers trying
to harness their unique properties for various purposes [1-6]. Soliton solutions are crucial in
nonlinear optics, hydrodynamics, telecommunications, and other domains. The standard
form of the NLSE is given by [1-15]. The KdV and Schrédinger families of equations differ in
their structure and focus: the KdV-type equations describe solitons (compressive or

Ukr. . Phys. Opt. 2024, Volume 25, Issue 5 S$1049



Abdul-Majid Wazwaz et al

rarefactive type) propagating at the phase velocity, while Schrddinger-type equations
capture modulated envelope solitons (bright-, dark-, gray-type ) moving at the group
velocity. Our research delves into a novel form of a NLSE, where we utilize powerful
techniques to extract various solutions. First, we must point out the standard case of the
NLSE, from which the rest of its family members emerge [1-15]

iut+%uxx+|u|2u=0, (1

where u=u(x,t) represents the complex wave function and i=+/-1. Eq. (1) dissects the

intricate dance between light and a unique optical fiber. The second term, often called "group
velocity dispersion (GVD)" or "chromatic dispersion (CD)," dictates how different light colors
(frequencies) travel at slightly different speeds within the fiber. The final term, "Kerr law
nonlinearity," throws a fascinating twist into the mix. It acts like a light-sensitive dimmer
switch, adjusting the phase of the light depending on its intensity. This nonlinearity is the
secret sauce behind various fascinating effects, as documented in numerous studies [15-20].
Optical solitons, such as bright and dark solitons, demonstrate a captivating duality by
exhibiting characteristics of both waves and particles. During the interaction, they show a
distinct particle-like behavior resembling billiard balls' collision. However, they have the
unique characteristic of maintaining their shape, velocity, and sharing energy without
dissipation. These waves' notable characteristics and potential applications have stimulated
substantial investigation, as evidenced in Refs. [12-26]. Different optical models can also
have other solitons, such as dark solitons, bimodal dark solitons, Gaussian solitons,
spatiotemporal solitons, and other unique solitons.

The family of NLSE is a key to unlocking the secrets of light's journey through optical
fibers. Its power lies in its uncanny ability to accurately predict the behavior of light pulses,
including how they spread, interact with each other in nonlinear ways, and even form rogue
waves - phenomena that have sparked intense research in photonics and beyond [21-38]. By
precisely modeling these intricate dynamics, the NLSE paves the way for breakthroughs in
optical communication, sensing, and manipulation. It's well understood that the interplay
between the fiber's dispersion and its non-linear refractive index dictates how light pulses,
called solitons, propagate. Remarkably, specific optical systems can amplify these solitons,
while others, like birefringent fibers, can give rise to chirped solitons [1-10, 16].

This paper analyzes third-order dispersion in the perturbed NLSE (pNLSE), specifically
in the absence of chromatic dispersion

i(uy + QU )+ b u2u=i(cy |ul uy+cu(lu)y), (2)
where u=u(x,t) is a complex wave function that denotes the modulated envelope soliton
profile, iu, indicates the temporal evolution term, iau,,, represents the term of third-order
dispersion, b|u|2u denotes the term of cubic nonlinearity, whereas the two terms
i(cqlul?u,) and (icyu(|ul?),) refer to the terms of nonlinear dispersion which arise from
perturbation [1-6]. The coefficients (a,b,cl,cz) are real values that depend on the physical

model under consideration and do not equal zero. Remember that for ¢; =c, =0, Eq. (2)

reduces to the complex modified KdV or Hirota equation [2-9]. Note that the two terms on
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the right side of Eq. (2) constitute a couple of Hamiltonian perturbation terms. Schrodinger
equations are partial differential equations employed to represent a range of nonlinear
phenomena in fields such as quantum physics, nonlinear optics, ocean modulated waves,
modulated waves in physics of plasmas, especially rogue waves, and modulated envelope
solitons, including bright, dark, gray envelope solitons, and many others.

We aim to uncover traveling wave solutions and optical solitons for the perturbed
Schrodinger Eq. (2). To achieve this, we'll leverage the versatility of the modified exponential
rational function approach [1-8]. With its diverse and reliable methods, this approach
promises a rich harvest of traveling wave solutions. We'll further bolster our search by
employing additional proven techniques [9-16] specifically designed to unearth soliton
solutions. Through this comprehensive approach, we aim to rigorously derive a variety of
modulated envelope solitons for this model, including bright, dark, single, and even exotic
combinations. A vital advantage of this multi-pronged attack is the ability to express our
solutions in various function forms, including exponential, trigonometric, and hyperbolic,
offering valuable insights into the model's behavior.

2. Modified exponential rational (MER) function method: An overview
The recently proposed generalized exponential function method has been demonstrated to

be reliable and efficient in analyzing scientific models [1-10]. Nevertheless, in this study, we
propose a MER function approach, in which we assume that the solution can be represented
Rg(x,t)

ei®, where (R,ry,r,k,A) are undetermined
ro+1r f(x,t)

in the following manner:u=

parameters and ® =(Ax —kt).
The functions g=g(x,t) and f = f(x,t) are not confined to simple expressions, but they

can indicate both trigonometric functions and hyperbolic functions. This vast tapestry of
possibilities lies at the heart of our exploration, allowing us to weave many traveling wave
(TW) solutions with distinct optical soliton structures.

2.1. Using the factor-(I)

Using the powerful MER method, we embark on a journey to unravel the secrets of Eq. (2).

Our first step is to postulate a form for the formal solution, expressed in the following form:
Rsin(X)

=) e, (3)
Iy +ry cos(X)

where all parameters are as previously described. Here, X =(Ax—Ct) where C indicates

the group velocity. Putting Eq. (3) into Eq. (2), and subsequently gathering the terms using
trigonometric functions, one can solve the resulting equations to obtain the formal outcomes

_2A

=4L,

2AR2c, —3krf
AR?

a b=2Acy, ry=ry,
(4)
Clz ) C:_Sk,

where (A,c;r,k)=(Acyn,k), ie., free parameters and the other parameters are

unconstrained. Substituting the obtained results into Eq.(3) gives the following
trigonometric solution
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U= Rsin(Ax + 5kt) i®
~ 1rp(1+cos(Ax +5kt))

(5)

R Ax + 5kt~ ,i®
= {apn(La T80 ,
0 an( > Je

Note that solution (5) is only valid under conditions (4).
2.2. Using the factor-(II)
It is noteworthy that we can hypothesize, the solution of Eq. (2) adopts the following form:
U= Rcos(X) ¢i®, 6)
Iy + 1y sin(X)
and, by proceeding as before, we obtain

a==, rozrl,
7
 R?b-3kr} b (7)
AT ARz

where (A,b,r;,k)=(Ab,r;,k), ie., free parameters.
Inserting Eq. (7) into solution (6), we get
_ Rcos.[Ax + 5kt) ¢i® )
ri(1+sin(Ax + 5kt))
valid under the results obtained in (7).

2.3. Using the factor-(111)
To further analyze the situation for Eq. (2) based on the MER method, the following ansatz is

introduced
U= Rsinh(X) ei®, )
Iy +r, cosh(X)
where all parameters are as previously described. Using Eq. (9) in Eq. (2) and subsequently
solving the resulting equations, we obtain

a:_%, r0=f'1,

1
c __5R2b+3kr12 eob o 7 (10)
1™ 54Rz 224" 7 57
where (A,b,r;,k)=(A,b,r;,k), ie, free parameters.
Inserting Eq. (10) into solution (9), yields
Rsinh(Ax-Zkt)
u= eio, (1D
ro(1+cosh(Ax - Zkt))
valid under the results obtained in Eq. (10).
2.4. Using the factor-(IV)
In the same way, we can impose the solution of Eq. (2) in the following ansatz
__ Rsech(X) ¢i® (12)
Iy + 1 tanh(X)

where all parameters are as previously described. The following findings are obtained by
substituting solution (12) into Eq. (2) and solving the obtained equations,
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b=2c,A, C=-2aA3, k =2aA3,
_ 2(3A%arg —3A%arf + R2c,) (13)
1= )
R2

where (4,a,¢,,19,r1)=(4, a,c;,15,11) , i.e., free parameters. The combination between Eg. (13)

and solution (12) yields the following exponential rational solution
Rsech(Ax +2aA3t)

— ei(Ax—2aA3t), (14)
Iy + 1 tanh(Ax + 2aA3t)

2.5. Using the factor-(V)
In the same way, we can impose the solution of Eq. (2) in the following ansatz
_ Rtan(X) ¢i®, (15)
1y + 1y sec(X)
where all parameters are as previously described. The following findings are obtained by
substituting solution (15) into Eq. (2) and solving the resulting equations

=2k
A3’

_ 2c,AR? =3ki¢
AR? ’

where (4,c,1)=(4,¢51), ie, free parameters and other parameters are left

a b=2c,A, ry=-1y,
(16)

unconstrained. By inserting Eq. (16) into solution (15), we get the exponential rational
solution which is valid under conditions (16).
2.6. Using the factor-(VI)
In the same way, the solution of Eq. (2) can be imposed in the following form
_ Rcsch(Ax —Ct)
- 1y + 1 coth(Ax —Ct)

ei@)’ (17)

where all parameters are as previously described. The following findings are obtained by
substituting solution (17) into Eq. (2) and solving the resulting equations

b = ZCZA,

f'l = _ro,

- 2(3A2arg —3A2arf — R2c,) (18)
1 - )

R2
C=-2a43, k=2a43,

where (A,a,cz,ro)z(A,a,cz,rO) and other parameters are left unconstrained. By inserting
Eg. (18) into solution (17), we get the exponential rational solution, which is valid under

conditions (18).

3. Bright envelope soliton (BES) solutions
The following ansatz is proposed to obtain a collection of BES solutions to Eq. (2)

u=Rsech(X)ei®, (19)
where the constants (R,A,C,k) are non-zero, ® =(Ax—kt),and X =(Ax—Ct) .

By inserting Eq. (19) into Eqg. (2), analyzing the coefficients of the hyperbolic functions
produced, and solving the resulting system, we have
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b=2c,A, C=-2a43, r,=-1,,
2(3A2a + R%c,) (20)
C= TZ, k= 20A3,

where (4,a,c,,1y)=(A,a,c,,1) and other parameters are left unconstrained. These results

demonstrate that the BS solution (19) is applicable within the specified parameters outlined
in Eq. (20).
It should be emphasized that the solution of Eq. (2) can be assumed in the following

form

u=Rsec(X)ei®, (21
by proceeding as implemented earlier, the following solution is obtained

u = Rsec(Ax + 4aA3 t)ei(Ax+4aA3t), (22)

4. Dark envelope soliton (DES) solutions
To offer a collection of DES solutions for Eq. (2), we consequently establish

u = Rtanh(X)ei®, (23)

where the constants (R,A,C,k) have non-zero values.

By inserting Eq. (23) into Eq. (2), analyzing the coefficients of the hyperbolic functions
produced, and solving the resulting system, we have
_ A(6A2%a - R2cy)

b C=-5a43, r; =1
R2 » 11 0’
cy= 6% — R2c, k=-7A3a .
2 2R2 ) - ]

where (4,a,¢,1)=(A,a,c;,1y) and other parameters are left unconstrained. These findings
indicate that the dark soliton solution (23) is applicable within the specified parameters
outlined in Eq. (24).

Moreover, following the analysis presented earlier, demonstrating the periodic solution

u=Rtan(Ax + aA3 t)ei(Ax—5a43t), (25)

is possible.

Similarly and based on conditions (24), we may readily obtain the subsequent TW
solutions as

u=Rcosh(Ax +2aA3 t)e"(AX—ZaA3t),
u=Rcos(Ax +4aA3t)ei(Ax+4ar’t), (26)

. R2(cq+c
R?(cy ;ZCZ)A t]e{Ax—(;ﬂ}_

u= Rcsch(Ax +

5. Exponential solutions
To provide a collection of exponential solutions to Eg. (2), we establish

u=R+ei®, (27)

where (R,4,k) are non-zero constants.
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By inserting Eq. (27) into Eq. (2), analyzing the coefficients of the exponential functions
produced, and solving the resulting solution, we derive
f'l :_ro, R:il,

_2b
A

(28)

c1 = ,Cy =%, k=-A3q,

where (4,a,b,ry)=(A,a,b,iy) and other parameters are left unconstrained. This

demonstrates that the exponential solution (27) given by
u=+1+ ei(Ax+A3at), (29)

is valid under conditions (28).

6. Second set of exponential solutions
Similarly, to provide alternative exponential solutions to Eq. (2), we establish
1
u= L~
R+ei®

(30)

where (R,A,k) are non-zero constants.

By inserting Eq. (30) into Eq. (2), analyzing the coefficients of the resulting exponential
functions, and solving the resulting system of equations, we obtain

_Cit2p
==en , b=—Ac,,

(31)
R==+1, k= A(Clgzcz),

where (4,cq,¢;)=(4,¢q,¢;) and other parameters are left unconstrained. This demonstrates

the validity of the exponential solution (30) within the specified parameters (31).

7. Periodic solutions
This section will focus on proving the existence of periodic solutions for Eq. (2). We achieve

this by introducing the following ansatz:
u=R sec(Ax —Ct)ei®, (32)

where (R,A,C,k) are constants.

By inserting Eq. (32) into Eq. (2) and analyzing the coefficients of the trigonometric functions
in the resulting expression, we ultimately obtain
b A(6A%a - R?cq)
R2 ’
C=-4A3a, k=—-4A43aq,

where (A,a,c;)=(A,a,c;) and other parameters are left free. Accordingly, the following

6A2a - R2cy
2R2 (33)

periodic solutions are obtained
u=R sec(Ax + 4A3at)ei(Ax+44A%t), (34)
Note that solutions (34) are only valid under conditions (33).
It should be highlighted that we can additionally demonstrate the singular solution
u=Rcsc(Ax + 4A3at)ei(Ax+4A%at), (35)

is also valid under conditions (33).
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8. Variety of other TW solutions
The following schemes are considered to provide a range of solitonic solutions for Eq. (2).

8.1. The combined sec and tan factor
Here, we suppose the solution is in the following form

u=(Rsec(Ax —Ct)+R, tan(Ax - Ct))ei®, ¢ (36)
where O(Ax—kt) and (R,Ry,AC,k) are non-zero constants. By inserting Eq.(36) into

Eg. (2), and following the previously stated analysis, we obtain
_343a-2R?% . _b

C1 2 ’ - )

SZ?R A3 “ (37)
—_»a —a =
c=-34, k-9, R =R,

where (A,a,b,R)=(A,a,b,R) and substituting Eq. (37) into solution (36) gives a new TW
solution.

8.2. The combined sin and cos factor
Here, we suppose the solution is in the following form

u=(Rsin(Ax —Ct)+ R, cos(Ax —Ct))ei®, (38)
where (R,Rl,A,C,k) are non-zero constants. By inserting Eq. (38) into Eq. (2), and following

the previously provided methodology, we obtain

b = —ACl, C2 = _%Cl’
C=-4A3a, k=-4A3q, * (39)

R1:R,

where (4,a,¢;,R)=(A,a,c,,R) and substituting system (39) into solution (38) gives a new
TW solution.
8.3. The combined tan and cot factor
Here, we suppose the solution is in the following form

u=(Rtan(Ax — Ct)+ R, cot(Ax — Ct))ei®, (40)
where (R,R1,A,C,k) are non-zero constants. By inserting Eq. (40) into Eq. (2) and following

the previously stated analysis, we obtain the following three sets of solutions:
Set-1

¢ _6A%—R?% . _ b
! ARz 72248 (41)
C=-7A3a,k=-13A3q, R, =R,
where (A,a,b,R)=(A,a,b,R).
Set-1I
ARz 727 24° (43)

¢ = 6A43a—R2b = b
C =5A43a, k=2343a, R, =-R,

where (A4,a,b,R)=(A,a,b,R).
By substituting systems (41) and (42) into solution (40), new TW solutions can be obtained.
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9. Conclusion
The following points encapsulate the significant findings of our research:

e Using integration algorithms and modified exponential rational function methods, this
paper found a wide range of solutions to the nonlinear Schrédinger equation (NLSE)
with third-order dispersion and in the absence of chromatic dispersion.

e Novel approaches have been applied to extract a rich collection of new and compatible
wave solutions for a specific NLSE.

e Wide ranges of solutions to the proposed problem have been derived using integration
algorithms and modified exponential rational function methods.

e The investigation unveils various modulated envelope soliton solutions, including bright
and dark envelope solitons, alongside other new waveforms for the studied equation.

e Employing innovative techniques, the authors uncover diverse solitonic and wave-like
solutions with exponential, trigonometric, and hyperbolic features.

e The work rigorously derives the conditions for the existence of modulated structures
within the obtained solution family, paving the way for further exploration.

e This study presents valuable solutions and establishes a framework for future
investigations into related nonlinear Schrodinger equations.

The solutions we obtained are expected to explain many ambiguities around some nonlinear

phenomena that arise in various plasma physics systems, in addition to optical fibers and

many other media.
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Anomayis. lle Hose docaidxceHHs eusyae HesiHiliHe pieHaHHA Ilpedinzepa (NLSE),
cpopmosaHe 6e3 8paxyeaHHs XxpomamuyHoi ducnepcii. Hosi aszopummu iHmezpyeaHHs
pO3KpUBarMsv pPIZHOMAHIMMS ONMUYHUX CO/NIMOHI8 Ma [HWUX MOYHUX pO38's3Kie pIi3HUX
@izuuHux cmpykmyp. Lle docaidxceHHs BUKOpUCMOBYE apceHaa NOMydx*CHUX memodis,
gk/4aYu pisHi opmu modugikogeaHoeo memody eKCnoHeHYiaAbHUX payioHAAbHUX
dyHkyill, 0aa poskpumms 6azamozo po3Maimmsi po3e'si3kie 0451  A0cAidHCYy8aH020
He/liHiliHO20 pieHsHHA llpediHzepa. KoxcHa KoHKpemHa MemoOdukd pO3KpUBd€ YHIKA/bHI
p038's13Ku 015 6ixcy4oi Xeusi pa3oM (3 OCHOBHUMU OOMeXCyl4YuMUu hapamempamu, SKi
8uU3Ha4aromsy ixHe icHysaHHs. Kpim moeo, 3a nesHux napamempis yell iHcmpymenmapiii dae
Habip HOBUX ONMUYHUX piwleHb: MOJY1b08AHI X8UI, ACKpA8l ma meMHI CONIMOHU 02UHAKYOI,
a makodic hepiodu4Hi ma 6ixcyui gpopmu xeuab. Odepiicani daHi po3kpusaroms pisHoMaHimms
p038's3Ki8 0151 Yb020 pIiBHsIHHSA, BI0KpUBANYU WASIX 045 2/AU6WO20 PO3YMIHHI 8 MAKUX
2ay3sx, IK ONMUYHI 80/10KHA ma Gizuxka naasmu.

Kawuosi caoea: pisHanHa Ilpedineepa, modugikosaHull Memod eKcnoHeHyianabHOOi
payioHanbHoi PyHKYIT, CONIMOHHI po38’s3KU.
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