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Abstract. Quiescent optical soliton solutions within the Fokas-Lenells equation, accounting for nonlinear 
chromatic dispersion, are being investigated in this study for the first time. Two forms of self-phase 
modulation, quadratic and quadratic-quartic, are considered, including perturbation terms to introduce added 
complexity that refers to the inclusion of perturbation terms in the analysis of self-phase modulation. The F-
expansion integration method is employed for finding various soliton solutions, including bright, dark, and 
singular solitons. These solitons are characterized by specific features that are influenced by their behavior. 
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1. Introduction 
Quiescent optical soliton solutions, often referred to as stationary solitons, are a particular 
class of solitons in nonlinear optics [1–5]. These solitons are characterized by their stable, 
localized waveforms that do not change shape or move as they propagate through a 
nonlinear optical medium [6–10]. Unlike mobile solitons, which can exhibit a net shift in 
position over time, quiescent solitons remain stationary and are particularly useful in 
applications where preserving the waveform’s position is critical. Quiescent optical solitons 
are important in various areas of nonlinear optics and optical communication [11–15]. They 
can be used in the design of optical communication systems to transmit information without 
distortion, as the stationary nature of quiescent solitons ensures that they maintain their 
shape and position during propagation. One of the advantages of quiescent solitons is their 
inherent stability. Unlike mobile solitons, which can be subject to interactions and 
perturbations that may alter their shape or position, quiescent solitons tend to be more 
robust against external influences. Quiescent optical solitons can be described by various 
nonlinear partial differential equations (PDEs) that govern the propagation of optical pulses 
in a nonlinear medium [16–18]. The Fokas–Lenells equation (FLE) is an example of a PDE 
that can describe such solitons [19–27]. The FLE is a two-dimensional integrable system, 
which means it possesses a rich mathematical structure that allows for analytical solutions 
[19–23]. Integrable systems have symmetries and conservation laws that make them 
amenable to mathematical techniques, such as the inverse scattering method. The equation 
accounts for various nonlinear effects, leading to solitons forming [24–26]. The model 
considers dispersion effects, which can counteract the self-interaction and cause stationary 
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solitons [27]. The model can be solved using mathematical techniques, such as inverse 
scattering and F-expansion methods. These methods allow for the determination of 
analytical solutions and the exploration of the equation’s soliton solutions. The F-expansion 
method is a powerful mathematical technique to find soliton solutions to nonlinear PDEs, 
such as the FLE [28–30]. It involves making a series expansion of the solution and finding 
coefficients that satisfy the equation, resulting in various soliton solutions. It has been 
applied to various physical and mathematical problems, including fluid dynamics, plasma 
physics, and nonlinear optics. In the context of nonlinear optics, the method can be used to 
find soliton solutions for equations, which describe the behavior of solitons in some optical 
systems. These soliton solutions are critical for understanding and designing optical 
communication systems and other nonlinear optical phenomena. In the current study, the 
bright, dark, and singular soliton solutions to the FLE are derived by the F-expansion 
method. Bright solitons are localized waveforms balancing nonlinear self-focusing and 
dispersion, ensuring stable shapes. They have applications in nonlinear optics and 
distortion-free optical fiber communication over long distances. Dark solitons are localized 
reductions in intensity achieved by balancing nonlinear self-defocusing and dispersion. They 
find applications in nonlinear optics and the manipulation of optical pulses in atomic physics. 
Singular solitons have singularities in their waveforms, often resulting from a combination of 
nonlinear, dispersive, and higher-order nonlinear effects. They are less common and are 
studied for their mathematical properties and extremely localized behaviors in wave 
phenomena. 

2. F–Expansion procedure 
Let us take into account the model equation [28–30]:  

  , , , , ,... 0,x t xt xxG q q q q q       (1) 

where G is a polynomial  ,q q x t , , , ,x t xt xxq q q q are the partial derivatives in which the 

highest order derivatives and nonlinear terms are involved, and x  and t  represent the 
spatial and temporal variables, respectively, within the context of the optic wave field 

 ,q q x t . Then let’s consider the constraints 

      , ,  ,q x t U x t          (2) 

where   and   take on the roles of the wave variable and wave width, respectively, with   

signifying the wave velocity. It follows that Eq. (1) becomes 
  2, , , ,... 0.P U U U U          (3) 

Step–1: In the presence of the condition defined by Eq. (3), the simplified model confirms the 
solution structure 

    
0
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N
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      (4) 

where Bl are real-valued constants, Fl is a new dependent variable, and N is the positive 
integer balance number. 
Through the application of the ancillary equation 

      4 2 ,F PF QF R         (5) 

where P, Q, R are real valued constants, we arrive at the soliton wave profiles 
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where the Jacobi elliptic functions (JEFs) sn   , ns   , cn   , ds    and dn    are 

associated with a modulus, 0 1m  . Furthermore, the constants lB  with l  ranging from 0  

to N  are a product of the balancing approach outlined in Eq. (3). 
Step–2: Combining Eqs. (4) and (5) within Eq. (3), we establish a system of equations that 
leads to the determination of the unknown constants in Eq. (4) through Eq. (12). 

3. Quiscent optical solitons 
Within this section, the integration method is employed to acquire quiescent optical solitons 
in conjunction with the model. The subsequent procedures are arranged in the upcoming 
subsections. 
3.1. Quadratic form of SPM 
The equation describing the perturbed FLE with both nonlinear chromatic dispersion (CD) 
and a quadratic self-phase modulation (SPM) for the first time is given by: 

        2 2 2 ,n
t x xxx x x

iq a q q q bq i q c q q i q q q q q            
 (13) 

where  ,q q x t  defines the complex envelope of the electric field, which represents the 

optical wave. In this context, x  denotes the propagation distance along the optical medium, 
while t  represents the time variable. The parameter b  stands for the nonlinear coefficient, 
characterizing the nonlinear self-interaction of the optical field due to the intensity-
dependent refractive index of the medium. This nonlinearity arises from the Kerr effect, a 
phenomenon in which the refractive index changes in response to the intensity of the light. 
Parameter a  signifies the nonlinear CD parameter, and the power-law parameter n  
introduces nonlinearity to the CD. The parameter   represents the nonlinear dispersion 
coefficient, while c  stems from the quadratic form of SPM. The first term in the equation, 

 tiq , accounts for the temporal evolution of the optical wave as it propagates through the 

nonlinear medium. The coefficient   is associated with inter-modal dispersion, and   is 
related to the self-steepening perturbation term. Finally,   contributes to the self-frequency 

shift. The quiescent optical soliton is characterized by the assumed profile: 
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      , ,i tq x t U kx e        (14) 

where both   and   are derived from the phase constant and frequency, respectively. The 
soliton amplitude component,  U kx , is characterized by the soliton wavevector k . By 

substituting Eq. (14) into Eq. (13), we arrive at the real part 

      22 2 1 2 4 31 1 0,n nak n n U U ak n U U U bU cU         (15) 

and the imaginary part  
   33 2 0.kUU k U U            (16) 

To satisfy the conditions of integrability, one considers 
 1,n        (17) 
 0,        (18) 

and 
 3 2 0.          (19) 

The governing Eq. (13) is transformed after the implementation of these changes to: 

        2 2 2 .t xxx x x
iq a q q q bq i q c q q i q q q q          

 (20) 

Following this, Eq. (15) turns into: 

  22 2 3 22 2 0.ak U ak UU U bU cU         (21) 

To achieve this, the balance of terms  2U  or UU  with 3U  in Eq. (21) results in 2N  . In 

this integration process, the solution structure of Eq. (4) is presented in a simplified form as 
      20 1 2 .U B B F B F         (22) 

The combination of Eq. (22) with Eq. (5) into Eq. (21) leaves us with the equations: 
 2 2 32 220 0,Pak B bB       (23) 

 2 21 2 1 224 3 0,Pak B B bB B      (24) 

 2 2 30 1 1 2 0 1 2 1 1 24 18 6 2 0,Pak B B Qak B B bB B B bB cB B       (25) 

 2 2 2 3 20 2 1 0 0 04 2  0,Rak B B Rak B bB cB B        (26) 

 2 2 20 1 1 2 0 1 0 1 12 12 3 2  0,Qak B B Rak B B bB B cB B B       (27) 
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   (28) 

 
2 2 2 2 20 2 1 2
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  (29) 

Upon solving these equations, one uncovers the outcomes: 
Result–1: 
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    (30) 

The inclusion of Eq. (30) with the help of Eq. (6) into Eq. (22) results in the dark soliton 
solution: 
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    215
2 645, tanh .

8 32

ci t
bc cq x t x e

b a
     

 
   (31) 

Incorporating both Eqs. (30) and (7) into Eq. (22) leads to the singular soliton solution: 

    215
2 645, coth .

8 32

ci t
bc cq x t x e

b a
     

 
   (32) 

When Eq. (30) is employed with the application of Eq. (10) within Eq. (22), the combined 
singular soliton solution is obtained as 

    22 15
645, coth csch .

8 8 8

ci t
bc c cq x t x x e

b a a
           

    
  (33) 

By inserting Eq. (30) with the utilization of Eq. (11) into Eq. (22), the complexion solution is 
regained as 

    22 15
645, tanh sech .

8 8 8

ci t
bc c cq x t x i x e

b a a
           

    
  (34) 

When Eq. (30) is incorporated with the help of Eq. (12) within Eq. (22), we retrieve the 
combo bright–dark soliton solution as 

    2

2
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85, .
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c x
acq x t e

b c x
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  (35) 

The wave profiles, as characterized in Eq. (31) through Eq. (35), are defined as 
 0.ac        (36) 

Figs. 1, 2, and 3 offer visual representations of numerical simulations illustrating bright, dark 
and combo bright–dark soliton solutions, respectively. In Figs. 1(a), 2(a), and 3(a), we observe 
the  impact  of nonlinearity when 1c    and  1a   .  Additionally, Figs. 1(b), 2(b),  and 3(b) 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Profile of a dark soliton solution (31): (a) 
effect of nonlinearity; (b) effect of nonlinear CD; 
(c) effect of quadratic SPM. 
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(a) 

 
(b) 

 
(c) 

Fig. 2. Profile of a bright soliton solution (38): (a) 
effect of nonlinearity; (b) effect of nonlinear CD; 
(c) effect of quadratic SPM. 
 

demonstrate the influence of nonlinear CD when 1c   and 1b   , while Figs. 1(c), 2(c), and 
3(c) depict the effects of quadratic SPM for 1a   and 1b   . 
Result–2: 
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Incorporating both Eqs. (37) and (8) into Eq. (22) leads to the structuring of the bright 
soliton solution 

    215
2 645 5, sech .

8 8 32

ci t
bc c cq x t x e

b b a
       

  
  (38) 

The inclusion of Eq. (37) with the use of Eq. (9) into Eq. (22) results in the structure of the 
singular soliton solution as 

    215
2 645 5, csch .

8 8 32

ci t
bc c cq x t x e

b b a
       

  
  (39) 

The wave profiles, detailed from Eqs. (38) to (39), are revealed by Eq. (36). 



Quiescent Optical Solitons 

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 5 S1045 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Profile of a combo bright–dark soliton 
solution (35): (a) effect of nonlinearity; (b) effect 
of nonlinear CD; (c) effect of quadratic SPM. 

 

3.2. Quadratic–Quartic form of SPM 
The perturbed FLE, including nonlinear CD and a quadratic-quartic SPM for the first time, is 
expressed as: 

 
   

   

2 3

2 2 ,

n
t xxx

x x x

iq a q q q bq i q c q q d q q
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  (40) 

where d  is associated with the quadratic-quartic SPM. When Eq. (14) is applied to Eq. (40), 
we arrive at the real part 

      22 2 1

2 4 3 5

1 1
0,

n nak n n U U ak n U U
U bU cU dU

   

    
   (41) 

and the imaginary part Eq. (16). In order to ensure integrability, it is necessary to meet the 
criteria provided in Eq. (17) through Eq. (19). Following the implementation of these criteria, 
the governing Eq.  (40) is modified: 

 
   

   
2 3

2 2 .
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x x

iq a q q q bq i q c q q d q q
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  (42) 

In this process, Eq. (41) is simplified to: 

  22 2 3 2 42 2 0.ak U ak UU U bU cU dU         (43) 

With the aim of achieving this, the terms  2U  or UU  with 4U  are balanced in Eq. (21) 

which leads to 1N  . Through this integration technique, the solution structure of Eq. (4) is 
simplified to: 

    0 1 .U B B F       (44) 

By incorporating Eq. (44) along with Eq. (5) into Eq. (43), we obtain the simplest equations: 
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 2 2 41 16 0,Pak B dB       (45) 

 2 3 30 1 0 1 14 4 0,Pak B B dB B bB        (46) 

 2 2 2 2 2 21 0 1 0 1 14 6 3 0,Qak B dB B bB B cB        (47) 

 2 3 20 1 0 1 0 1 0 1 12 4 3 2  0,Qak B B dB B bB B cB B B       (48) 

 2 2 4 3 21 0 0 0 02  0.Rak B dB bB cB B         (49) 

By addressing these equations, the results can be extracted: 
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 (50) 

Combining Eqs. (50) with the assistance of Eq. (8) into Eq. (44) results in the bright soliton 
solution: 

  
3 3
10 103 3, sech .

10 10 20

c ci t
dc c cq x t x e

d d a
   

 
       

  
  (51) 

By incorporating Eq. (50) with the help of Eq. (9) into Eq. (44), the complexion solution is 
obtained: 

  
3 3
10 103 3, csch .

10 10 20

c ci t
dc c cq x t i x e

d d a
   

 
       

  
  (52) 

The wave forms depicted in Eqs. (51) and (52) are given by 
 0,    0.ac cd       (53) 

4. Conclusions 
In this study, a comprehensive exploration of quiescent optical soliton solutions within the 
framework of the FLE, accounting for the influence of nonlinear CD in optical systems, was 
undertaken for the first time. Two distinct forms of SPM, namely the quadratic and 
quadratic-quartic variations, were investigated, along with the introduction of perturbation 
terms, to unveil the complexities inherent in the behavior of optical solitons. The choice of 
the F-expansion integration method as the analytical tool proved invaluable in deciphering 
the intricate dynamics within this optical system. This method confirmed the existence of 
various soliton solutions, and their categorization into three distinct types – bright, dark, and 
singular solitons – was made possible. With their localized, amplitude-modulated 
waveforms, bright solitons represent a robust category of solitons well-suited for signal 
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transmission and manipulation. On the other hand, dark solitons demonstrate the ability to 
confine regions of reduced intensity within their profiles, making them significant in 
scenarios where controlled signal attenuation is required. The exceptional singular solitons, 
with their unique characteristics, further expand our understanding of the diverse behaviors 
exhibited by optical pulses. From a practical standpoint, profound implications for optical 
communication systems and nonlinear optical devices are carried out by this research. The 
ability to harness and manipulate solitons is essential in optimizing signal transmission and 
information processing in these systems, and the contributions made by our findings to this 
endeavor are significant. 
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Анотація. У цьому дослідженні вперше розглядаються розв'язки стаціонарних 
оптичних солітонів в межах рівняння Фокаса-Ленеллса з урахуванням нелінійної 
хроматичної дисперсії. Розглянуто дві форми самомодуляції фази - квадратична та 
квадратично-квартична, з включенням членів збурення для введення додаткової 
складності, яка стосується включення членів збурення в аналізі самомодуляції фази. 
Використовується метод інтегрування F-розкладу для знаходження різних розв'язків 
солітонів, включаючи яскраві, темні та сингулярні солітони. Ці солітони 
характеризуються певними особливостями, які визначають їхню поведінку. 

Ключові слова: збурене рівняння Фокаса–Ленеллса, нелінійна хроматична дисперсія, 
стаціонарний оптичний солітон, метод F-розкладу. 


