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1. Introduction 
In recent years, optical solitons are one of the areas that attract the most attention in the 
field of telecommunications and nonlinear optics. As a result, a lot of researches have been 
performed on the subject (see, e.g., Refs. [1–24]). In fact, the main topic of these researches is 
the fibers that maintain polarization of light [25]. A Fokas–Lenells equation, a Lakshmanan–
Porsezian–Daniel model, a Radhakrishnan–Kundu–Lakshmanan equation, a Schrödinger–
Hirota equation, a Gerdjikov–Ivanov equation and some other equations are among the well-
known models employed in the field [26–39]. 

Another area that still needs to be examined is birefringent fibers. An optical 
birefringence as a natural phenomenon encountered in optical fibers represents a serious 
limitation for the speed in high-speed fiber communication links. It can also cause incorrect 
data transmission. There is a delicate balance between a dynamic chromatic dispersion (CD) 
and a self-phase modulation in a known Manakov system and a Thirring model, which allows 
soliton propagation [26]. In brief, the CD implies that the group velocity, which is the 
propagation velocity of an optical signal, varies with the light wavelength. When the CD is 
low, irrational results can occur during the transmission of fiber-optic pulses [40]. Since the 
CD represents one of the main reasons hindering high-transmission speeds in the optical 
networks, various approaches have been suggested to deal with it. One of them is Bragg 
gratings with dispersive reflectivity. Purely quartic solitons, which are shape-maintaining 
pulses that appear in many optical materials with a dominant fourth-order dispersion, have 
been offered as the alternative approach [41, 42]. In the case of low CD, the CD is replaced 
with the fourth-order dispersion. The disadvantage of this model if the fact that only 
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stationary optical solitons can be obtained analytically and analyzed numerically for the 
purely quartic nonlinear Schrödinger equation. Then a basic idea of cubic-quartic solitons 
has emerged, for which the CD is replaced by the third-order and fourth-order dispersions 
jointly. 

In this context, sixth-, fifth-, fourth- and third-order dispersions, together with an inter-
modal dispersion term, are considered in addition to the pre-existing CD. These dispersions 
make up highly dispersive solitons that provide a necessary delicate balance between the 
self-phase modulation and the CD for propelling solitons smoothly through the optical fibers 
at trans-continental and trans-oceanic distances [27, 43]. 

In this work we consider a stochastic perturbed Fokas–Lenells model for fiber Bragg 
gratings with a spatiotemporal dispersion and a generative white noise in the Itô meaning. It 
can be represented as follows [26]: 
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where  ,q x t  and  ,r x t  are complex-valued functions that describe the wave profiles, 

  1i   , and q  and r  represent complex conjugates of q and r. Note that the first terms 

in the right-hand sides of Eqs. (1) and (2) stand for the linear temporal evolution. Table 1 
introduces the parameters involved in Eqs. (1) and (2). The model discussed in this study, 
which is given by Eqs. (1) and (2), has been examined for the first time by Zayed et al. [26]. 
They have applied two different methods, an addendum Kudryashov’s method and a unified 
Riccati-equation expansion method to find the explicit solutions. As a consequence, these 
authors have acquired a bright soliton, straddled solitary solutions, singular solitons and a 
dark soliton. In the present work, we will discuss Eqs. (1) and (2) with the motivations of the 
study [26]. 

The article is organized as follows. In Section 2, a mathematical analysis of the model is 
made and its description is presented as an ordinary differential equation (ODE) with the 
complex-wave transform. Section 3 introduces an exp( ( ))f  -expansion method, a (G/G')-

expansion technique and a simplest-equation method, which represent our main 
approaches. Section 4 is devoted to applying the three above analytical schemes to a reduced 
ordinary differential equation. Here we obtain the soliton solutions of our main model. In 
Section 5 we give the physical structure of the solutions and their graphical representation. 
Finally, conclusions are drawn in Section 6. 
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Table 1. Description of the parameters involved in Eqs. (1) and (2). 

Parameter Description 

 ( 1, 2; 1,...,6)lka l k   Constant coefficients of CD and third-, fourth-, fifth- and 
sixth-order dispersions 

 ( 1, 2)lb l   Spatiotemporal dispersion terms (constant coefficients) 
lc  and  ( 1,2)le l   Self-phase modulation terms (constant coefficients) 
ld  coupled with  ( 1,2)le l   Cross-phase modulation terms (constant coefficients) 
 ( 1, 2)lf l   Nonlinear dispersion terms (constant coefficients) 
 ( 1, 2)l l   Four-wave mixing terms (constant coefficients) 

 ( 1, 2)l l   Constant coefficients of cross-phase modulation and four-
wave mixing terms 

  A constant coefficient of noise strength 
( )W t  A standard Wiener process 

( )/dW t dt  A white noise 

, ,    ( 1, 2)l l l l     Constant coefficients of inter-modal dispersion-detuning 
effect and four-wave mixing  

, , ,    ( 1, 2)l l l l l      Self-sleeping and nonlinear dispersion terms (constant 
coefficients) 

2. Mathematical analysis 
We use the following transformation involving the noise coefficients and the  W t  terms in 

order to convert Eqs. (1) and (2) into an ODE with the variable x vt    [26]: 

     21, exp ( ) ,q x t u i x t W t t              (3) 

     22, exp ( ) ,r x t u i x t W t t              (4) 

where v  implies the soliton velocity,   the wavevector, and    is the frequency. The real 
functions 1u  and 2u  represent the amplitudes of the wave transformations. After 

substituting Eqs. (3) and (4) into Eqs. (1) and (2) and separating their real and imaginary 
parts, we take into account the following condition for the systems to be compatible: 

2 1 , 0, 1.u u     (5) 
Considering the real and imaginary parts rewritten with taking Eq. (5) into account, one 

obtains the soliton velocity, 
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the soliton wavevector, 
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and the constraint conditions, 
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Then the ODE 
(6) (4) 3

1 2 3 1 41 1 1 1 0u u u u u         ,   (9) 
can be obtained, with 
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Note that a detailed mathematical analysis of Eqs. (1) and (2) has been made by Zayed et al. 
[26]. 

3. Our methods 
Below we describe the algorithms of our methods used to study the exact solutions of the 
underlying equation. Let us consider a nonlinear equation of the form 

( , , , , ,...) 0,x t xx ttF q q q q q       (11) 

where ( , )q q x t  is an unknown function and F  denotes a polynomial in ( , )q q x t  and its 

partial derivatives, where the highest-order derivatives and the nonlinear terms are 
involved. To reduce the nonlinear equation given by Eq. (11), we choose the traveling-wave 
transformation: 

( , ) ( )q x t q  ,      (12) 
with x vt   . Using the traveling-wave variable in Eq. (12), one can reduce Eq. (11) to the 

ODE: 
( , , ,...) 0,F q q q         (13) 

with 
2

2
, ,...dq d qq q

d d 
   . 

3.1. exp( ( ))f  -expansion method 

Here we give a detailed explanation of the exp( ( ))f  -expansion method [45]. Suppose that 

the solution of Eq. (13) can be expressed by a polynomial in exp( ( ))f   as follows: 

0
( ( )) ,

N
ii

i
q A exp f 


       (14) 

with   f   satisfying the equation  

1 2( ) ( ( )) ( ( )) .f exp f exp f           (15)  
Here 1 2..., 0, , , ,iA i N    are constants. 

Eq. (15) has the solutions described as follows.  

i. 2
1 12 4 0, 0     : 

  
22 122 2 1 1

4( ) ln 4 tanh 2 .
2

f C
 

     
  

         
  (16) 
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ii. 2
1 12 4 0, 0     : 

  
21 222 1 2 1

4( ) ln 4 tan 2 .
2

f C
 

     
  

     



   

  (17) 

iii. 2
1 1 22 4 0, 0, 0       : 

  22( ) ln 1 .Cf e        (18) 

iv. 2
1 1 22 4 0, 0, 0       : 

    22 2( ) ln 2 4 .f C C                 (19) 

v. 2
1 1 22 4 0, 0       : 

 ( ) ln .f C        (20) 

The positive integer N can be found using a balancing principle. After substituting 
Eq. (14) into Eq. (13), using the ODE given by Eq. (15) and then collecting together all the 
terms with the same orders of exp( ( ))f  , one can convert the left-hand side of Eq. (13) into 

a new polynomial in exp( ( ))f  . Setting each of the coefficients of this polynomial to zero 

yields in a system of algebraic equations for 1 2..., 0, , , ,iA i N   . Solving the system of these 

equations and substituting , 0,.. ,. ,iA i N  one can get the exact solutions of reduced Eq. (13). 

3.2. A brief overview of the  /G G -expansion method 

The principal aspects of the well-known  /G G -expansion method can be described as 

follows [47–49]. Suppose that the solution of Eq. (13) can be expressed by a polynomial in 
 /G G  as 

0
,

iN

i
i
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G

   
       (21) 

where ( )G G   satisfies the second order linear ODE in the form 

0,G BG CG    .     (22) 
while 1 2, ,..., , ,NA A A B C  are constants to be determined later ( 0NA  ). Using the general 

solutions of Eq. (22), we have 
2 2

1 22
2

2 2
1 2

2 2
1 22

2 2
1 2

4 4sinh cosh
2 24 , 4 0

2 2 4 4cosh sinh
2 2

4 4sin cos
2 24

2 2 4 4cos sin
2 2

B C B CC C
B CB B C

B C B CC C

G
B C B CG C C

B CB
B C B CC C

 

 

 

 



         
        

    
   

   

             
      

        
  

 2

2 2

1 2

, 4 0

, 4 0.
2

B C

C B B C
C C 











  
 



   



, (23) 



Y.Sağlam Özkan et al 

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 5 S1022 

The parameter N  in Eq. (21) is a positive constant. It can be determined by balancing 
the nonlinear term with the linear term of the highest order in Eq. (13). By substituting 
Eq. (21) into Eq. (13) and using the second-order terms in the linear ODE Eq. (22), we obtain 

an algebraic equation in the powers of  /G G . Since all the coefficients involved in  / iG G  

must be identically equal to zero, we arrive at a system of algebraic equations for 

1 2, ,..., , ,NA A A B C . In this stage, one can solve this system, using computer-algebra systems 

such as Maple. After solving the system and inserting 1 2, ,..., NA A A  from the general solutions 

of Eq. (22) into Eq. (21), one obtains the traveling-wave solutions of Eq. (11). 
3.3. A simplest-equation method 

In this subsection, we outline the basic steps of the simplest-equation method suggested by 
Kudryashov [44, 46]. Suppose that Eq. (13) has the solutions of the form 

 
0

( ) ( )
M i

i
i

q k w 


 ,     (24) 

where ( )w   satisfies the well-known Bernoulli and Riccati equations. Balancing the highest-

order derivative term with the nonlinear term, one arrives at a system of algebraic equations 
for the arbitrary constants 0 1, , , .Mk k k  The forms of the solutions obtained using auxiliary 

equations are given below. 
For the Bernoulli equation we have 

2( ) ( ) ( ) ,w aw bw          (25) 

where a  and b  are arbitrary constants. The solution is represented as 
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For the Riccati equation we have 
2( ) ( ) ( ) ,w Bw Aw D          (27) 

where ,A B  and D  are arbitrary constants. The solutions are represented as  

  tanh
2( )

2

B C
w

A




 
      (28) 

and 

   
   

tanh
2 2( )

22 cosh sinh
2 2

B sech
w

AA C

 


 

 
  

 


, (29) 

where the condition 2 2 4 0B AD     holds true and C  is a constant of integration. 

4. Applications of our methods 
In this Section, the methods suggested above are implemented to Eq. (9) in order to retrieve 
the optical-soliton solutions. 
4.1. Application of the exp( ( ))f  -expansion method 

Using the balancing principle for the terms (6)
1u  and 3

1u  in Eq. (9), we obtain that  3N  . 
Therefore, the trial solution can be considered as 
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     2 3
0 1 2 3

f f fq A A e A e A e        .   (30) 

Substituting Eqs. (30) and (15) into Eq. (9) and then equating each coefficient associated 
with exp( ( ))f   to zero, we get a set of algebraic equations. Solving this system, we obtain 

the following two parameter sets. 

Set 1: 
   

 

2 32 2 21 1 2 2 1 2 3 1 2
1 2 10 4 2 1 2 1 4 1

1 12 4 2 3 4

332 83 , 946 4 , 1260 4 ,
6 35 6 , 72 35 ,

36 35 , 24 35 .
A A

A A

     
   



 

 

          
         
        

          (31) 

Inserting these values in Eq. (30), we acquire the solutions as follows. 
If 2

1 12 4 0, 0     , the singular solutions are given by  
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and 

1 1( , ) ( , ).r x t q x t      (33) 

If 2
1 12 4 0, 0     , the singular periodic solutions are given by 
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and 

2 2( , ) ( , )r x t q x t .    (35) 

If 2
1 1 22 4 0, 0, 0,        one arrives at the bright-singular combo optical-soliton solution: 
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and 

3 3( , ) ( , )r x t q x t .    (37) 

If 2
1 1 22 4 0, 0, 0,        one has the rational solutions: 
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and 

4 4( , ) ( , )r x t q x t .    (39) 

If 2
1 1 22 4 0, 0,        the other rational solutions follow:  
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Inserting these values in Eq. (30), we acquire the solutions as follows. 
If 2

1 12 4 0, 0     , we have 
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and 

6 6( , ) ( , )r x t q x t .      (44) 
Complexitons are denoted by these solutions, subject to the conditions given by 2

12 4 0    
and 4 0  . These solutions contain singularities of unifications of both exponential and 
trigonometric function waves that possess novel style distinct travelling wave speeds. 
If 2

1 12 4 0, 0     , we obtain 
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and  

7 7( , ) ( , )r x t q x t .     (46) 
These solutions stand for the complexitons solutions based on the conditions 2

12 4 0    
and 4 0  . 
If 2

1 1 22 4 0, 0, 0,        we have 
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and 

8 8( , ) ( , )r x t q x t .      (48) 

The solutions obtained are indicative of complexitons, given that the condition 4 0   is 
satisfied.  
If 2

1 1 22 4 0, 0, 0,        the rational solutions are obtained: 
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and 
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9 9( , ) ( , )r x t q x t .     (50) 

If 2
1 1 22 4 0, 0,        the other rational solutions can be found: 

 
  2

14
10 3

24 35
( , ,) i x t W t tq x t e

x vt C
   


    


 

  (51) 

and  

10 10( , ) ( , )r x t q x t .     (52) 
4.2. Implementations of the  /G G -expansion method 

Using the homogeneous balance principle in Eq. (9), we find N = 3. Then Eq. (21) degenerates 
to the following form: 

2 3

0 1 2 3
G G Gq A A A A
G G G
               

     
.   (53) 

Substituting Eqs. (53) and (22) into Eq. (9), collecting the coefficients of  / iG G  and putting 

them to be zero, we obtain an algebraic system. Solving this system by Maple, we derive the 
following sets of parameters. 

Set 1: 
 

   

1 2 1 10 4 1 4 2 4
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24 35 , 83 332 , 946 4 , 1260 4 .
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Inserting Eq. (54) into Eq. (53), one can obtain the hyperbolic, trigonometric and rational-
function solutions.  
When 2 4 0B C  , the solitary-wave solutions are as follows: 
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3
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 (55) 

and 

11 11( , ) ( , )r x t q x t .    (56) 

Putting 1 20, 0C C  , we have the singular-soliton solutions 
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When putting 2 10, 0C C  , one gets the dark-soliton solutions  
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  (58) 

and 11 11( , ) ( , )r x t q x t . 

In the case of 2 4 0B C   one gets 
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2 2
2 1 2
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2
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4
2

4 42 cos sin
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B
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B
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3

,i x t W t te       

               



 (59) 

and 

12 12( , ) ( , )r x t q x t .     (60) 
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When 1 20, 0C C  , one obtains the periodic solutions  

 

 

 

    2

1 212 4

2 2
14

2
2 2

14

3
2 2

14

( , ) 6 35 6

4 472 cot 35
2 2 2

4 436 cot 35
2 2 2

4 424 cot 35
2 2

.e
2

i x t W t t

q x t B C B

B C B CB x vt C

B C B CB x vt B

B C B CB x vt    







   


     


   
       

  

   
       

  
               

 

 

 

 (61) 

When 2 10, 0C C  , one arrives at the periodic solutions  
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(62) 

and 12 12( , ) ( , )r x t q x t . 

When 2 4 0B C  , the rational solutions are obtained as 
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23 213
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2
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(63) 

and  

13 13( , ) ( , )r x t q x t .    (64) 

Set 2: 
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Inserting Eq. (65) into Eq. (53), one can obtain the following solutions. 
If 2 4 0B C  , we have 

 

    
    

    
    

    

2 214
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2
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2

35 3( , ) 4200 293 3 2399 12 2399
1343

4 sinh cosh18
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2
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  2

3
1 2

1 2

sinh cosh
,

2 cosh sinh
i x t W t tC C C

e
C C

      
           

 (66) 

and 
14 14( , ) ( , )r x t q x t ,    (67) 

where  
2 4
2

B C x t
   .  

Putting 2 4 0B C   and 4 0   into Eqs. (66) and (67) leads to complexions. 
If 2 4 0B C  , we obtain 
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2
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  2

3
1 2

1 2

sin cos
,

2 cos sin
i x t W t tC

e
C C

      
             

(68) 

and 
15 15( , ) ( , )r x t q x t ,     (69) 

with  
2 4 .
2

B C x vt 
    The above solutions correspond to complexions solutions if the 

conditions 2 4 0B C   and 4 0   are held. 
When 2 4 0B C  , one reveals the rational solutions 

 

   
  2

23 216
4 1 2

2 3
2 2

1 2 1 2

35( , ) 3 18
2

36 24
2

,
2

i x t W t t

C Bq x t B B
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 (70) 

and 
16 16( , ) ( , )r x t q x t . (71) 
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4.3. Implementation of the simplest-equation method 

Using the homogeneous balance principle in Eq. (9), we find N = 3. Then Eq. (24) degenerates 
to the following form: 

2 30 1 2 3( ) ( ) ( ) ( ) .q k k w k w k w          (72) 

The Bernoulli equation 

Substituting Eq. (72) and Eq. (25) into Eq. (9), collecting the coefficients of   iw   and setting 

them to zero, we arrive at an algebraic system. Solving this system by Maple, we derive the 
following sets of parameters. 

Set 1: 
3 2 30 1 2 3

4 4 4
2 4 61 2 3

35 35 356 , 0, 36 , 24 ,

83 , 946 , 12 .60

k a k k b a k b

a a a

            
        

           (73) 

Consequently, the solutions of Eqs. (1) and (2) are given by 

      
      

      
      

  2

2
3 2 317 2

4 4

3
3 3

3
4

cosh sinh35 35( , ) 6 36
1 cosh sinh

cosh sinh3524
1 cosh i

,
s nh

i x t W t t

a x vt C a x vt C
q x t a b a

b a x vt C b a x vt C

a x vt C a x vt C
b a e

b a x vt C b a x vt C
      

    
    

       

      
       

 (74) 

and 
17 17( , ) ( , )r x t q x t .     (75) 

Set 2: 

 

 

 

 

3 20 2
4 44
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4 4
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3
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        (76) 

The solutions of Eqs. (1) and (2) are as follows: 

 

        
      

      
      

318
4 4

3

4
2

2 3
2

4

3 3

4

35 3 1( , ) 6 993 35 83965
2686

cosh sinh18 1993 35 83965
1343 1 cosh sinh

cosh sinh3536
1 cosh sinh

3524

q x t a

a x vt C a x vt C
ba

b a x vt C b a x vt C

a x vt C a x vt C
b a

b a x vt

i

C b a x vt C

b a

i

  
         

    
 

      

    
 

      

 


      
      

  2

3

3
cosh sinh

1 cosh sinh
,i x t W t ta x vt C a x vt C

e
b a x vt C b a x vt C

      
    

  




  

   (77) 
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and 

18 18( , ) ( , )r x t q x t .    (78) 

If the condition 4 0   is satisfied, the solutions of Eq. (77) and (78) correspond to 

complexions. 
The Riccati equation 

Substituting Eq. (72) and (27) into Eq. (9), collecting the coefficients of   iw   and putting 

them to zero, we obtain an algebraic system. Solving this system with Maple, we derive the 
following sets of parameters.  
 
 
 
 
 
 
 
 
 
 
Set 1: 
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(79) 

Then the dark-soliton solutions of Eq. (1) and (2) are given by 
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(80) 

and 

19 19( , ) ( , )r x t q x t .      (81) 

Using the Riccati equation, the other hyperbolic-function solutions can be written out:  
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 (82) 

and 

20 20( , ) ( , )r x t q x t .    (83) 

Here we have 
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44 tanh
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.
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2 4
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H

A
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  (84) 

5. Discussion 

Here we present the numerical simulations to illustrate the physical properties of the 
solutions obtained by us. 3D plots of some of our results have been obtained using Maple. 
With the three methods employed, we have obtained a total of seven different parameter 
sets and the corresponding solutions. These solutions involve a large number of parameters. 
Because these parameters affect the shapes of the solutions, one can generate a wide variety 
of plots by taking random values for the parameters. Using these plots, one can ascertain the 
nature of the solitons. 

While drawing the plots, we have selected the parameter values given by 

1 2 11 12 13 14 15

16 23 24 25 26 1 1 2 1

2 1 1 2 1 2 1 2

1 1 1 2
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9 4 25 2

42 20 25 1, 3, , , 1 / 2, 1 / 4, 1, , 1,
25 11 28 3

0.5, 2, 1, 3

A B C C C a a a a a

a a a a a b c c d

d e f f v v
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for the cases illustrated by Fig. 1 and Fig. 3, respectively.  
Fig. 1 and Fig. 3 display the dark-soliton solutions for the squares of modules of the 

solutions of Eqs. (55) and (56) and Eqs. (74) and (75), respectively. Fig. 2a shows the plot of 
2

11( , )q x t  for 1, 2, 3, 4t  . This wave propagates to the left along the x–axis. Fig. 2b and 

Fig. 2c depict the plots of 11Re( ( , ))q x t  and 11Im( ( , ))q x t  for the cases 1.3, 2.1, 2.41, 3  . 

After examining carefully all the plots, one can conclude that Fig. 2b and Fig. 2c imply that 
the wavelength of the soliton decreases with increasing noise effect. Fig. 4a shows a graph of 

2
17( , )q x t  for 1, 2, 3, 4t  . One can see that the wave moves to the right along the x–axis. 

Fig. 4b and Fig. 4c depict the plots of 17Re( ( , ))q x t  and 17Im( ( , ))q x t  for the cases 

0.1, 0.5, 0.95, 1.3  . Here the noise effect is observed as a fluctuation on the soliton. This 

effect becomes the greatest at 1.3  . 

 
(a)    (b) 

(c) 

Fig. 1. Profiles of dark-soliton solutions given by Eqs. (55) and (56): (a) surface plot of square of the 
modulus of the solution 11( , )q x t , (b) density plot of square of the modulus of the solution 11( , )q x t , 

and (c) surface plot of square of the modulus of the solution 11( , )r x t .. 
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(a)     (b)     (c) 

Fig. 2. Plots of 11( , )q x t : (a) square of the modulus of the solution 11( , )q x t  for different t , (b) real 
part of the solution 11(0.01, )q t  for different noise values  , and (c) imaginary part of the solution 

11(0.01, )q t  for different noise values  .  

 
 (a)    (b) 

(c) 

Fig. 3. Profiles of dark-soliton solutions given by Eqs. (74) and (75): (a) surface plot of square of the 
modulus of the solution 17( , )q x t , (b) density plot of square of the modulus of the solution 17( , )q x t , 
and (c) surface plot of square of the modulus of the solution 17( , )r x t .  
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(a)     (b)     (c) 

Fig. 4. Plots of 17( , )q x t : (a) square of the modulus of the solution 17( , )q x t  for different t , (b) real 
part of the solution 17(2, )q t  for different noise values  , and (c) imaginary part of the solution 

17(2, )q t  for different noise values  . 
6. Conclusions 

Using the exp( ( ))f  -expansion method, the  /G G -expansion technique and the simplest-

equation method, we have obtained a number of general soliton solutions to the underlying 
model. The results obtained by all of our methods are concerned with some unknown 
parameters. They can reveal the structures associated with either trigonometric (tan, sec) or 
hyperbolic (tanh, sech) functions, as well as rational or exponential functions. If the 
parameters are selected according to the Sets 1 and 2, the solutions of Eqs. (63) and (64) and 
Eqs. (70) and (71) in Section 4.2 can be reduced to those of Eqs. (38) and (39), Eqs. (40) and 
(41), Eqs. (49) and (50) and Eqs. (51) and (52), which are calculated in Section 4.1. A total of 
four families of the analytical solutions have been obtained using the first and the second 
methods. On the other hand, the three families of the analytical solutions have been obtained 
using the third method. Although these methods are not too complicated in terms of their 
implementation, they represent suitable and reliable techniques for finding the exact 
solutions. 

The results obtained in the present work can be compared to those obtained by Zayed 
et al. [26] with Eqs. (1) and (2). Using the addendum Kudryashov’s method and the unified 
Riccati-equation expansion method, the authors [26] have obtained the solutions of different 
types. A comparison of our results with those reported in Ref. [26] shows that the soliton 
solutions obtained with the appropriate parameter values are similar. To be clearer, the 
results obtained for the Sets 1 and 2, using the  /G G -expansion technique, and the 

hyperbolic solutions of Eqs. (55) and (56) and Eqs. (66) and (67) in this work are the same 
as the solutions of Eqs. (49) and (50) obtained in the work [26]. This emphasizes that the 
method applied by us is a powerful mathematical tool, from which some new exact solutions 
can be derived, since the both methods mentioned above are able to obtain the solutions 
already known from the literature. 

Moreover, the trigonometric solutions of Eqs. (59) and (60) and Eqs. (68) and (69) in 
this work are the same as the soliton solutions of Eqs. (55) and (56) obtained in the study 
[26]. The mathematical structure of the solutions of Eqs. (80) and (81) obtained by the 
simplest-equation method in the current study is similar to that of the solutions of Eqs. (51) 
and (52) obtained in the work [26].  
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We have also obtained the solutions which are similar to those reported in the other 
studies mentioned above. Besides of those similar solutions, some solutions obtained in the 
current study are structurally different from those reported earlier. They are found for the 
first time. 

Hence, the methods applied in this work to extract the exact solutions of nonlinear 
Schrödinger equations  are reliable, efficient and well-suited. By selecting the appropriate 
parameter values, we have displayed both 3D and 2D plots of some representative solutions, 
including the dark solitons. Considering the results analyzed above, one can see that the 
efficiency of our methods is evident. Moreover, we have also discussed the effect of the 
multiplicative white noise on the solutions. It is evident that the increase in the noise-
strength parameter can cause fluctuations in the soliton. Finally, further researches can be 
done in the future to obtain different kinds of the soliton solutions, using different fractal-
fractional derivative operators. 
Contributions. Yeşim Sağlam Özkan: conceptualization, methodology, writing (original 
draft); Emrullah Yaşar: conceptualization, software, methodology, writing (original draft), 
validation.  
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Анотація. Розглянуто високодисперсійну стохастичну збурену модель Фокаса–
Ленелля для волоконних бреггівських ґраток із просторово-часовою дисперсією та 
генерованим білим шумом у розумінні Іто. Для одержання солітонних рішень 
використано метод exp( ( ))f  -розкладу, метод (G/G')-розкладу та метод 
найпростішого рівняння. Для ліпшого розуміння характеру розповсюдження хвиль 
побудовано тривимірні та двовимірні графіки. Виконано порівняння одержаних 
солітонів різних типів, таких як темні, сингулярні, періодичні, раціональні та 
комбіновані солітони. Оцінено ефективність наших методів для базової моделі.  

Ключові слова: високодисперсійна стохастична збурена модель Фокаса–Ленеллса, 
метод exp( ( ))f  -розкладу, метод (G/G')-розкладу, метод найпростіших рівнянь, 
солітони. 


