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1. Introduction
In recent years, optical solitons are one of the areas that attract the most attention in the

field of telecommunications and nonlinear optics. As a result, a lot of researches have been
performed on the subject (see, e.g., Refs. [1-24]). In fact, the main topic of these researches is
the fibers that maintain polarization of light [25]. A Fokas-Lenells equation, a Lakshmanan-
Porsezian-Daniel model, a Radhakrishnan-Kundu-Lakshmanan equation, a Schrédinger-
Hirota equation, a Gerdjikov-Ivanov equation and some other equations are among the well-
known models employed in the field [26-39].

Another area that still needs to be examined is birefringent fibers. An optical
birefringence as a natural phenomenon encountered in optical fibers represents a serious
limitation for the speed in high-speed fiber communication links. It can also cause incorrect
data transmission. There is a delicate balance between a dynamic chromatic dispersion (CD)
and a self-phase modulation in a known Manakov system and a Thirring model, which allows
soliton propagation [26]. In brief, the CD implies that the group velocity, which is the
propagation velocity of an optical signal, varies with the light wavelength. When the CD is
low, irrational results can occur during the transmission of fiber-optic pulses [40]. Since the
CD represents one of the main reasons hindering high-transmission speeds in the optical
networks, various approaches have been suggested to deal with it. One of them is Bragg
gratings with dispersive reflectivity. Purely quartic solitons, which are shape-maintaining
pulses that appear in many optical materials with a dominant fourth-order dispersion, have
been offered as the alternative approach [41, 42]. In the case of low CD, the CD is replaced
with the fourth-order dispersion. The disadvantage of this model if the fact that only

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 5 S1017



Y.Saglam Ozkan et al

stationary optical solitons can be obtained analytically and analyzed numerically for the
purely quartic nonlinear Schrédinger equation. Then a basic idea of cubic-quartic solitons
has emerged, for which the CD is replaced by the third-order and fourth-order dispersions
jointly.

In this context, sixth-, fifth-, fourth- and third-order dispersions, together with an inter-
modal dispersion term, are considered in addition to the pre-existing CD. These dispersions
make up highly dispersive solitons that provide a necessary delicate balance between the
self-phase modulation and the CD for propelling solitons smoothly through the optical fibers
at trans-continental and trans-oceanic distances [27, 43].

In this work we consider a stochastic perturbed Fokas-Lenells model for fiber Bragg
gratings with a spatiotemporal dispersion and a generative white noise in the [t6 meaning. It
can be represented as follows [26]:

Iq, + 1111y + Ayply 10130 xx + 14Ty + 101575, + 1T« + Dyl

+(C1 lq?+d,| r|2)(elq+if1qx)+qr*(y1r+i171rx)

+G(q—ib1rx)cij_vtv“a1qx + Pir +6,q°r2 )
:i(ﬂi(WP q)X +V1(|’”|2 ‘I)X +H1(|‘I|2)XCI+91(|’”|2)XCI)'
and
Iy +10y1 qy + Ay Gy + 1053 g + 4G4, + 10755«
+6 G x + by +(Co | T2 +d; |q12)(eor +ifor, ) +rq* (7,0 +1n,q, )
(2)

+o (r—ibyq, )dd_vii/ +iogh, + Boq + 8r*q?

=i(Z(IrPr), +vp(lalr), +my(Ir ), r+6y(1aR), r),
where q(x,t) and r(x,t) are complex-valued functions that describe the wave profiles,

i = ~-1,and g* and r* represent complex conjugates of g and r. Note that the first terms

in the right-hand sides of Egs. (1) and (2) stand for the linear temporal evolution. Table 1
introduces the parameters involved in Eqgs. (1) and (2). The model discussed in this study,
which is given by Egs. (1) and (2), has been examined for the first time by Zayed et al. [26].
They have applied two different methods, an addendum Kudryashov’s method and a unified
Riccati-equation expansion method to find the explicit solutions. As a consequence, these
authors have acquired a bright soliton, straddled solitary solutions, singular solitons and a
dark soliton. In the present work, we will discuss Egs. (1) and (2) with the motivations of the
study [26].

The article is organized as follows. In Section 2, a mathematical analysis of the model is
made and its description is presented as an ordinary differential equation (ODE) with the
complex-wave transform. Section 3 introduces an exp(—f(£))-expansion method, a (G/G"-

expansion technique and a simplest-equation method, which represent our main
approaches. Section 4 is devoted to applying the three above analytical schemes to a reduced
ordinary differential equation. Here we obtain the soliton solutions of our main model. In
Section 5 we give the physical structure of the solutions and their graphical representation.
Finally, conclusions are drawn in Section 6.
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Table 1. Description of the parameters involved in Egs. (1) and (2).

Parameter Description
ay (1=1,2k=1,.6) C.onstant coef.ficienFs of CD and third-, fourth-, fifth- and
sixth-order dispersions

b (1=12) Spatiotemporal dispersion terms (constant coefficients)

¢;and ¢ (1=1,2) Self-phase modulation terms (constant coefficients)

d; coupled with e; (I=1,2) Cross-phase modulation terms (constant coefficients)

fi=12) Nonlinear dispersion terms (constant coefficients)

7 (1=1,2) Four-wave mixing terms (constant coefficients)

mU=12) Constan't 'coefficients of cross-phase modulation and four-
wave mixing terms

o A constant coefficient of noise strength

w(t) A standard Wiener process

dw(t)/dt A white noise

a, B8 (1=1,2) gfof:;stzr;ltdc;)oejii_cvi\;r‘l,tes I(IJlf1 )i(ri’lrtlegr-modal dispersion-detuning

A v 6 (1=1,2) Self-sllgeping and nonlinear dispersion terms (constant
coefficients)

2. Mathematical analysis
We use the following transformation involving the noise coefficients and the W (t) terms in

order to convert Egs. (1) and (2) into an ODE with the variable £ =x—vt [26]:
q(x,t)=uy (&)expli(—xx+ ot +cW(t)-oc2t)], 3)
r(x.t)=uy(&)exp|i(—xx+at+oW(t)-o2t)], (4
where v implies the soliton velocity, k¥ the wavevector, and @ is the frequency. The real
functions u; and u, represent the amplitudes of the wave transformations. After
substituting Egs. (3) and (4) into Egs. (1) and (2) and separating their real and imaginary
parts, we take into account the following condition for the systems to be compatible:
U, = yuy, ¥ 20,1 (5)
Considering the real and imaginary parts rewritten with taking Eq. (5) into account, one
obtains the soliton velocity,

be o x+ )(Z(an —3a,3x2 +4a;, k3 +5a;5k* — K5 — 201,k + b1a)—b1c72)

X —bx

(6)
YA s (021 —3ay3K2 +40a,, K3 +5ay5k% — Ay K5 — 205, K +b2a)—b2c72)
x—bx '
the soliton wavevector,
— a5 — 25 (7)
6a,, 60,4

and the constraint conditions,
20a,x3 —10a,5x2 —4a .k + a3 =0, 200,053 —10ay552 —4ay,k +ay3x =0,

¢y fy =34 =2y +(dy fy +my —3v; =26, ) x2 =0, (8)
x(Cafy =32 = 2445) +(dy fo + 115 =3v, =260, ) 2 =0.

Ukr. ]J. Phys. Opt. 2024, Volume 25, Issue 5 S1019



Y.Saglam Ozkan et al

Then the ODE
can be obtained, with
A= 505K +ay, —15a,5K2
16

bikW —b; k02 +ay4K* +ay5K5 +ap1 K —ay3K3 (10)
A; = 2 _ a1
3 a1 K+0 w 16
— K0 —ay,K2 + By +—Z

N ¢ fik+cie; —kA }116_1.
x

Note that a detailed mathematical analysis of Egs. (1) and (2) has been made by Zayed et al.

[26].

Ay =[)((d1f11<+dlel +KI —KV +8; +71)

3. Our methods
Below we describe the algorithms of our methods used to study the exact solutions of the

underlying equation. Let us consider a nonlinear equation of the form

F(9,9x,9 90 et ) =0, (11)
where gq=gq(x,t) is an unknown function and F denotes a polynomial in q=g(x,t) and its
partial derivatives, where the highest-order derivatives and the nonlinear terms are
involved. To reduce the nonlinear equation given by Eq. (11), we choose the traveling-wave
transformation:

a(x,t)=q(s), (12)

with & =x—vt. Using the traveling-wave variable in Eq. (12), one can reduce Eq. (11) to the
ODE:
F(q.9.q",..)=0, (13)

dg o _d%q
-2,

3.1. exp(—f(&)) -expansion method

with ¢' =

Here we give a detailed explanation of the exp(—f(£))-expansion method [45]. Suppose that
the solution of Eq. (13) can be expressed by a polynomial in exp(—f(&)) as follows:
N
q=> Aexp(-f(£)), (14)
i=0
with f(&) satisfying the equation
f(&)=exp(=f(&)) +ryexp(f(E)) + 75 (15)
Here A4,;,i=0,..,N,7;,7, are constants.

Eq. (15) has the solutions described as follows.

i t2-4r,>0,70#0:

f(&)= ln[— - Jtp 41, tanh[”zzz_‘”l(g +c)j/211} (16)
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il. 77-47,<0,7,#0:
fl&)= ln[— T+ 41 —1,2 tan[\MZ_TZZ@ +C)]/271J. (17)

iii. 77-47,>0,7,=0,7,#0:

f(E)=—In(7,/e(5+C) 1), (18)
iv. 77-47,=0,7,#0,7,#0:

f@E)=In(-[275(&+C)+4]/[r2(£+C)]). (19)
V. 13-41,=0,71,=1,=0:

f(E)=In(+C). (20)

The positive integer N can be found using a balancing principle. After substituting
Eq. (14) into Eq. (13), using the ODE given by Eq. (15) and then collecting together all the
terms with the same orders of exp(—f(&)), one can convert the left-hand side of Eq. (13) into

a new polynomial in exp(—f(&)). Setting each of the coefficients of this polynomial to zero
yields in a system of algebraic equations for 4;,i=0,..,N, 74,7, . Solving the system of these
equations and substituting 4;, i =0,..,N, one can get the exact solutions of reduced Eq. (13).

3.2. A brief overview of the (G' / G) -expansion method

The principal aspects of the well-known (G'/G)-expansion method can be described as

follows [47-49]. Suppose that the solution of Eq. (13) can be expressed by a polynomial in
(G'/G) as
N G’ i
q=ZAi(—j, (21)
i=0 G
where G =G(¢&) satisfies the second order linear ODE in the form
G"+BG'+CG=0,. (22)
while A4;,4,,..,Ay,B,C are constants to be determined later ( Ay #0). Using the general
solutions of Eq. (22), we have
/B2 B2 —
C;sinh 374(:5 +C,cosh 37465
B B2-4C 2 2
_5+ - 7 =2 , B2-4C>0
Clcosh[z_Cf]+Czsinh[“2_C§j

== B2 [_B2 2
G . (—Clsin(B;L}C §]+C2cos(82+4c 5)} , (23)
_B_ -B2+4C , B2—4C <0

2 2 /|-B2 [-B2
Clcos[B;r%§]+Czsin[Bz+4C§j
_ G B poyc -
Ci+C6 2
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The parameter N in Eq. (21) is a positive constant. It can be determined by balancing
the nonlinear term with the linear term of the highest order in Eq. (13). By substituting
Eg. (21) into Eq. (13) and using the second-order terms in the linear ODE Eq. (22), we obtain

an algebraic equation in the powers of (G'/G). Since all the coefficients involved in (G'/ G)i
must be identically equal to zero, we arrive at a system of algebraic equations for
Ay, Ay, Ay, B,C . In this stage, one can solve this system, using computer-algebra systems
such as Maple. After solving the system and inserting 4;,4,,..,Ay from the general solutions
of Eq. (22) into Eq. (21), one obtains the traveling-wave solutions of Eq. (11).

3.3. A simplest-equation method

In this subsection, we outline the basic steps of the simplest-equation method suggested by
Kudryashov [44, 46]. Suppose that Eq. (13) has the solutions of the form

M .
&)= ki (w(8))', (24)
i=0
where w(&) satisfies the well-known Bernoulli and Riccati equations. Balancing the highest-
order derivative term with the nonlinear term, one arrives at a system of algebraic equations
for the arbitrary constants ky,kq,...,k). The forms of the solutions obtained using auxiliary

equations are given below.
For the Bernoulli equation we have

wi(&)=aw(&)+bw(£)2, (25)
where a and b are arbitrary constants. The solution is represented as
a(cosh(a(&+C))+sinh(a(£+C)))

wie)= 1-bcosh(a(& +C))~bsinh(a(& +C)).

(26)

For the Riccati equation we have
w(&)=Bw(&)+ Aw(£)? + D, (27)

where A,B and D are arbitrary constants. The solutions are represented as

. B+®tanri‘;(§+c)) 28
and
B+®tanh(95) SeCh(Qf)
wie)= o +Ccosh((;)§)—%lsinh((;)§), )

where the condition ®2 =B2—-4AD >0 holds true and C is a constant of integration.

4. Applications of our methods
In this Section, the methods suggested above are implemented to Eq. (9) in order to retrieve

the optical-soliton solutions.
4.1. Application of the exp(—f(£)) -expansion method

Using the balancing principle for the terms u£6) and uj in Eq. (9), we obtain that N = 3.

Therefore, the trial solution can be considered as
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q= Ay + A1ef(E) + Aye=2f(&) + Age3f(¢). (30)
Substituting Egs. (30) and (15) into Eq. (9) and then equating each coefficient associated
with exp(—f(&)) to zero, we get a set of algebraic equations. Solving this system, we obtain

the following two parameter sets.
Ay =3321; —831,2,A, = 946(41; — 1,2 )* , Ay =—1260(47; - 1,2)°,

Inserting these values in Eq. (30), we acquire the solutions as follows.

If 72 —4t, > 0,7, # 0, the singular solutions are given by

CI1(XI)=( 6 \-35A4717, (67 —752)

—1, =12 — 41, tanh(l/Z 7,2 — 41 (x —vt+C))

144./-35A,17,7,2 (32)
(—r2 —\JTo2 —47; tanh(l/Z T2 — 4ty (x—vt +C)))2
i 192,/-35A,17,3

(—TZ — 1% —41y tanh(l/Z./rZZ —47y (x—vt +C)))3

4
T

ei(—rcx+cot+o‘W(t)—0'2t),

and
r(x,t) = xq,(x,t). (33)
If 72 — 47, <0,7; #0, the singular periodic solutions are given by
q(x,t) 2( 64=354,717,(67; —72)

144,/-35A, 17,2
—Ty + 41, — 72 tan(l /24ty — 1,2 (x—vt +C))

144,/-35A,11,7,2 (34)
(—12 +J4r, — 72 tan(l/21/4r1 —-72(x —vt+C)))2

—Ty +4J41y — 1,2 tan(1/ 2 /41 — 1,2 (x -Vt +C ’
( )

+

+

+ el(-kx+wt+oW(t)-o2t)
)

and
n(x,t)= xq,(x,t). (35)

If 122 —47, >0,7; =0,7, # 0, one arrives at the bright-singular combo optical-soliton solution:

+
( e (x-vt+C) _1)2 ( et (x-vt+C) _1)3 , (36)

x ei(—KX+wt+o‘W(t)—0'2t)
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and
r3(x,t) = xq3(x,t).
If 722 —4t, =0,7; #0,7, 20, one has the rational solutions:
18,/-35A, 17,4 (x—vt +C)
(2ry(x—vt+C)+4)

, 364358, TryS (x vt + C)?
(212()(—\/1:+C)+4)2

24,/-35A, 11,6 (x—vt +C)’
(Zrz(x—vt+C)+4)3

el(-xx+wt+oW(t)-c2t)

)

and
ry(x,6) = xqu(x,t) .

If 72 — 47, =0,7; =7, =0, the other rational solutions follow:

q5(x,t) = w ei(—KX+a)f+0'W(t)—o-Zt)
(x-vt+C)’
and
r5(x,t) = xqs(x,t).
83 ,
A= 47, —7,2)(~293+3i3/2399),
1= 6860 172 I )
A, = —;(—44697365+ 1880673i 2399)(471 —1,2),
3607298
Az :i(—32129+879i 2399)(471 —7,2),
Set 2: 1803649
A0:13343i(—4200i11+1211 2399 —293ir,2 — 31,2 2399) ==y
A= 1;231'(—9931'@2_14001'11+411 2399 - ,22399) 354, 1,

Inserting these values in Eq. (30), we acquire the solutions as follows.

If 2 — 47, >0,7; #0, we have
qe(x,t) = (133431'(—4200111 +127,+/2399 - 293it,2 —37,2/2399 ) =35, 711,

36 1(~993ir,2 —1400ir; +47,+/2399 —7,24/2399 )/-35A, 17

+
1343 (—r,—\[r,;2—4r; tanh(1/2Jr,2— 47, (x - Ve +C)))
N 14‘4‘ —35A471T2712

(—TZ - 12 41, tanh(l [ 2\T2 4ty (x =Vt +C)))2

T 192354, ‘[13 ei(—KX+Wt+UW(t)—O'2t)’

(—rz -2 -4, tanh(l/Z 7,2 — 41y (x—Vt+C)))3

(837)

(38)

(39)

(40)

(41)

(42)

(43)

51024
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and
rg(x,t) = xqe(x,t). (44)
Complexitons are denoted by these solutions, subject to the conditions given by 72 —4z; >0

and A, <0. These solutions contain singularities of unifications of both exponential and
trigonometric function waves that possess novel style distinct travelling wave speeds.
If 72 — 47, <0,7; #0, we obtain
3
x,t)=
q;(x,t) ( 1

3431’(—42001'11 +12713/2399 - 293y ~31,24/2399 ) |[-35A, 17,

36 i(~993ir,? ~1400ir, + 47,2399 - 7,24/2399 /=354, 11,
1343 (o + JAr, -2 tan(1/ 2, — 12 (x-ve +C)))

. 144./-35A, 17,72 (45)
(—rz + /41y — 1,2 tan<1/2./411 —1,2 (x—vt +C)))2
. 192=35A,-17,3

| (—12 +J41, — 7,2 tan(l/ZJALi'1 —12(x—vt +C)))3

x ei(—rcx+cot+o‘W(t)—0'2t)
)

and

r(x,t)= 247 (x.t). (46)
These solutions stand for the complexitons solutions based on the conditions 72 —4r; <0
and A, <0.

If 72 — 47, > 0,7, =0,7, #0, we have

qg(x,t) = ( 133431'(—2931'122 —~3r,24/2399),/-354, 17,

18 . ,
+13431(—9931122—r22 2399)
(47)
% \[_35A4_1T2 N 36 _35A4_1T23 + 24’\,_35 A4_1T23
( eTx(x—vt+C) — 1) I ( eT(x-vt+C) _ 1)2 ( et(x-vt+C) _1)3
Xei(—rcx+cot+o‘W(t)—0'2t)’
and
rg(x,t)= xqg(x,t). (48)

The solutions obtained are indicative of complexitons, given that the condition A, <0 is
satisfied.
If 72 —4t, =0,7; # 0,7, # 0, the rational solutions are obtained:

18,/-35A, 17,4 (x —vt +C)
(205 (x—vt+C)+4)

qo(x,t) = [3 —35A,7 17,3 -

.36 35A,17,5(x —vt+C)’  24=35A, 17,6 (x —vt +C)’
2t,(x—vt+C)+4 2 2t,(x—vt+C)+4 X
2 2

xel(-xx+ot+oW(t)-ot)
)

(49)

and

Ukr. ]J. Phys. Opt. 2024, Volume 25, Issue 5 S1025



Y.Saglam Ozkan et al

ro(x,t) = 2q9(x,) - (50)

If 72 — 47, =0,7; =7, =0, the other rational solutions can be found:

_ 1
qlo(x,t):24 35A4 - ei(-xx+ot+oW(t)-ot) (51)
(x—vt+C)
and
ro(x,t)= xq10(x,t) . (52)

4.2. Implementations of the (G' / G ) -expansion method

Using the homogeneous balance principle in Eq. (9), we find N = 3. Then Eq. (21) degenerates
to the following form:

q=4y+4 (%)-FAZ (%)2 + Ay (%)3 (53)

Substituting Eqgs. (53) and (22) into Eq. (9), collecting the coefficients of (G'/G)i and putting

them to be zero, we obtain an algebraic system. Solving this system by Maple, we derive the
following sets of parameters.

Set 1: 4
Ay =24/735A,1, A, = -83B2 +332C, Ay = 946(B2 —4C)?, Ay =1260(B2 —4C)’

Inserting Eq. (54) into Eq. (53), one can obtain the hyperbolic, trigonometric and rational-
function solutions.
When B2 —4C >0, the solitary-wave solutions are as follows:

11 (0t) = /?A—?’S(—6B(—6C+BZ)
4

e T o T )
Z{Clcosh{\/Bzz_izw(x—vt)}rCzsinh[\/Bzz_izw(x—vt)n

B2 —4C(Clsinh(\/Lyzz_i%‘(x—vt)jnLCzcosh(\/BZZ_ﬁ(x—vt)jj
ZEClcosh[Jsaz_ﬁ(x—vt)}rc*zsinh[\/mz_ﬁ(x—vt)jj

et T ) T )
[t ] )

Xei(—KX+wt+o‘W(t)—0'2t)
J

9}

+72| -

N |y

+36| —

B (55)

N |

+24| —

N |

and
r1(x,t)= xq1(x,t). (56)

Putting C; =0,C, #0, we have the singular-soliton solutions
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2_ =
+72 —g B > il coth[ B > ul (x—vt)j}/—SSAflC
2 (57)
2_ B2 —
36| B NBEZAC | VB2 AC (x—vt) -35A,71B
2 2 2
3
2_ Bz —
+24 —§+ B 5 4 Coth( B 5 4 (X—Vt)]J 1I—35A41Jxei(—1<x+wt+oW(t)—<72t)_

When putting C, =0,C; # 0, one gets the dark-soliton solutions

qll(x,t):( —6,/-35A,1B(~6C + B2)

o7 Gl T w5

B /BZ2-4C B -4C (58)
+36| — =+ 5 tanh[ —vt)D -35A,1B

2

2_ 2_
+24 —§+ B 5 ac tanh[ JB2-4C vt)) J-35A —l]xe (-rx+at+oW(t)-ot)

and ry;(x,t)= xqy1(x,t).
In the case of B2 —-4C <0 one gets

qp(xt)= \/% (-6B(-6C + B2)
M(—Clsin(@(x’ —Vt)) + Czcos[*/_mzﬁ(x —vt)D
[P s P o)

+72| —

N |

m{ clsm(m (x- vt)}czcos(@(x_vt)j}
Z[Clco{\/—WZW(X_W)}FCZQD(\/—BZW(X_W)D

+36| —

N |

B (59)

\/m(—clsin[‘/_lgzzﬁ(x —vt)j + czcos[*/_BZZW(x - vt)n
O e B

+24{ —

N |

xel(-xx+ot+o W(t)—O'Zt),
and

ra(x,t)= 2q15(x,t) . (60)
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When C; =0,C, #0, one obtains the periodic solutions

—B2 —B2
172 B BZ+4Ccot[V 5 +4C(x—vt)D,/—35A4—1C

2 2

2

2 (61)
—B2 —B2
136 -2+ BZ+4C cot[\' BZ+4C( D J354,1B
3
(

X—vt)
vt)

_B2 —B2
124 —§+ B 2+4C cot[v B 2+4C X— D J=35A, 1 |eil-kxtatrow(t)-ott),

When €, =0,C; #0, one arrives at the periodic solutions

qlz(x,t)z( —64—-35A,~1B(-6C + B2)

~B2 [~B2
172 -8B B +4Ctan( Bz+4C (x—vt)D,/—SSAl;lC

2 2
B +-B%Z+4C —-B%+4C ’ (62)
+36 - 5 tan[ 5 (x—vt)D —-35A,~1B

3
[—B2 /_ 2 .
24 2 32+4cm( Bz”C(x—”)J] JBEAL |ell-wxrotsow()-ov),

and ry,(x,t) = xq1,(x,t) .

When B2 -4(C =0, the rational solutions are obtained as

q13(x,t]=(3 %533+18(# BJ —35p2

4 Cy+Cy(x—vt) 2\ A,
2 3 (63)
+36 #_E iSB+24 #_E __35 el’(—rcx+wt+o‘W(t)—0'2t)'
Cl +C2(X—Vt) 2 A4 Cl +C2(X—Vt) 2 A4_
and
ri3(x,t) = 2q:3(x,t) . (64)
Ay =—3—i(-4200iC - 293iB2 + 3822399 ~ 12C/2399) B =2,
1343 A,
4, =18 i(_993iB2 ~1400iC + B2/2399 - 4C/2399) |32,
1343 A,
Set2: {4, =36 |52B, 4, =24 |=22 A, =83 (B2 _4c)(293+31V2399), (65)
A, A, 2686
A, :;(44697365+ 1880673i+/2399 (B2 - 4C)’,
3607298
3=—230 {32129+ 8791/2399 )(B2 - 4C)’.
1803649
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Inserting Eq. (65) into Eq. (53), one can obtain the following solutions.
If B2—-4C >0, we have

ua(x,t) = 15( 3_j(~4200iC - 293iB2 +3B2/2399 ~ 122399 B
A, (1343

18 ;[ B+\/M( Clsinh(‘I’)+C2cosh(‘I’))]

1343 2 2(Cycosh(¥)+C,sinh(¥))

x(—C(4\/2399 + 1400i)+ BZ(\/2399 —993i))
+36[—§ /B2 —4C(Clsinh(‘P)+Czcosh(‘P))JzB

2 2(Cycosh(¥)+C,sinh(¥))

X 3
124 B | B2 _4C(Clslnh(ly)+CZCOSh(\P)) ei(—Kx+cot+o‘W(t)—02t)’
2 2(Cycosh(W)+C,sinh(¥))

and
ra(x,6)= xqu4(x,t),

where ¥ =

Sy

Putting B2—-4C >0 and A, <0 into Egs. (66) and (67) leads to complexions.
If B2—-4C <0, we obtain

qy5(x,t) = 15( 3_j(~4200iC - 293iB2 +3B2/2399 ~ 122399 B
A, (1343

18 ;[_E. —BZ+4C(—Clsin(Y)+C2cos(Y))]
1343 2 2(Cycos(Y)+Cysin(Y))

x(—C(4\/2399 + 1400i)+ BZ(\/2399 —993i))
+36{ B «/—BZ+4C(—Clsin(Y)+Czcos(Y))JzB

2 2(Cycos(Y)+Cysin(Y))

. 3
+24(_§ : J-B2+4C (—Clsm(Y)+C2CoS(Y))] }ei(_mmﬁgw(t)_gzt)’

2 2(Cycos(Y)+Cysin(Y))

and
ris(x,t) = xqis5(x,t),

(66)

(67)

(68)

(69)

J-BZ+4C
with Y =T(X —vt). The above solutions correspond to complexions solutions if the

conditions B2—-4C <0 and A, <0 are held.
When B2 -4C =0, one reveals the rational solutions

-35 C, B
x,t)= [—|3B3+18| ———~=——-—|B2
G16(x.1) \ A, ( [C1+C2(x—vt) ZJ

2 3 (70)
+36 #_E B+24 #_E ei(—KX+a)t+O'W(t)—O'ZC)’
Ci+Cy(x—vt) 2 Ci+Cy(x—vt) 2
and
S1029
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4.3. Implementation of the simplest-equation method

Using the homogeneous balance principle in Eq. (9), we find N = 3. Then Eq. (24) degenerates
to the following form:

(&) = ko + kyw(&) + kyw(£)? + kaw(E . (72)
The Bernoulli equation
Substituting Eq. (72) and Eq. (25) into Eq. (9), collecting the coefficients of w(é)i and setting

them to zero, we arrive at an algebraic system. Solving this system by Maple, we derive the
following sets of parameters.

ko =—6a3 |-32 k, =0,k, =36 |32 h2a,ky =24 |-32p3,
Set 1: A4 A4 A4 (73]

A, =-83a2,A, =946a%,A; =1260a6.
Consequently, the solutions of Egs. (1) and (2) are given by

q17(x,t)= ( —6a3 { +36 / 5 p2gs (cosh( (X_Vt+C))+Sinh(a(x_"t+c)))2
' Ay (1-bcosh(a (x—vtJr(]))—bsinh(a(x—vt+6)))2

(74)
. 3
24 ,—£b3a3 (cosh(a(x—vt+C))+smh(a(x—Vt+C))) : ei(-kx+atsoW(t) o)
Ay (1-bcosh(a(x—vt+C))—bsinh(a(x—vt +C)))
and
n7(xt)= xq17(x,t) . (75)
35 35
kg =—-6a3| |-—=-———-993 V83965 k,=36 |-==b2a,
0=7od (\/ A, 2686( 35+ )\/TJ 270
18 .
k1=@<9931\/£+\/83965) azT ey =24 ——b3
Set2: A =-83a2| |-35 3 (993135 + /83965 ) | |-2%, (76)
A, 2686 Ja, )V 35
Ay=—>_ (14(237521904-%\/—35(993 35+ 83965)),
47005 2686
Ay=——36 06(10955 879 [735(993V-35 + 83965)).
1343
The solutions of Egs. (1) and (2) are as follows:
35 3 . 1
,t)=| —-6a3| |-=—= —-——-993i,/35 83965 |—
antco-{ oo [ -5igoon 55595 -
h —-vt+C inh —-vt+C
18 (993ix/£+x/%)ba3 (cosh(a(x—vt+C))+sin .(a(x vt +C))) 1
43 (1-bcosh(a(x—vt+C))-bsinh(a(x —vt +C))) /A,
36 35b (cosh( (x—vt+C))+sinh(a(x—vt+C)))2 (77)
Ay (1-bcosh(a (X—Vt+C))—bSinh(a(X—Vt+C)))2
24 35b (cosh( (x—vt+C))+sinh(a(x—vt+C)))3

- ei(—rcx+a)t+0’W(t)—0'2t)’
Ay 1 bcosh(a (x—Vt+C))—bsinh(a(x—vt+C)))
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and

rig(x,t)= xqu8(x,t). (78)
If the condition A, >0 is satisfied, the solutions of Eq.(77) and (78) correspond to
complexions.
The Riccati equation
Substituting Eq. (72) and (27) into Eq. (9), collecting the coefficients of W(é)i and putting

them to zero, we obtain an algebraic system. Solving this system with Maple, we derive the
following sets of parameters.

2
—-B2+4DA
Ko ——3—By35| [-L (20382 + 420004) + 342399, | B2 4PA) |
1343 A, .

2

—B? + 4DA

k=18 35| [ (1400p4-+99382) + y2309 | B2 H4PAN |,
1343 A, A,

k,=36 |-32 A28, k=24 |-32 43,
A4— A4-

_ _B2 2
A1=—E§——éi{293/—i}(—BZ+4DA)—3J2399 ﬁ_E_jjfEQ_}
4

2686 A,
Set 1: (79)
J-A
Ay =—Y—2 (-B2+4DA)
3607298
2
—B2+4DA
x| 44697365 —~1—(—324—4DA)—1880673J2399 ﬁ————————l-‘
A4 A4
630,/-A
3= —— V4 (B2 4pa)
1803649
2
—B2+4DA
«| 32120 [~ (_B2 + 4a) 87942399, | 2 4PA) |
A4 A4
Then the dark-soliton solutions of Eq. (1) and (2) are given by
2 —
1o =335 54D h[_JB;DA (x-ve +c)j
1 (-B2+4DA)’
x| =1050 |-—=(4AD~B2)-3+/2399, [~ —— /-
2
2
1343 tanh| YEETPA o) || S (aap-B2)
Xei(—KX+a)t+GW(t)—O'2C)’
and
ro(x,t) = xqq9(x,t). (81)

Using the Riccati equation, the other hyperbolic-function solutions can be written out:
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2
—B2+4DA
Goo(X,t) = —BJ_ /—%(29332 +4200DA) +3+2399 (£B2+4DA)°
4 4
18 1 (~B2 + 4DAY’
+—=°-35 (1400DA+993B2)++/2399, [ ————— |AH (82)
1343 A, Ay
136 |-3542BH2 + 24 |32 4313 | x ei(-xx+otroW(t)-o),
A, A,
and
ro(X,t) = xqz0(x,t) .- (83)

Here we have

B+./B2—-4DA tanh(“BZ;}DA(x - vt)]

H=
2A
sech[“Bz;LLDA(x—vt)J (84)
+ - )
; Asinh(B;M)A(x—vt)j
Ccosh w(x—vt) -2
2 B2 -4DA

5. Discussion

Here we present the numerical simulations to illustrate the physical properties of the
solutions obtained by us. 3D plots of some of our results have been obtained using Maple.
With the three methods employed, we have obtained a total of seven different parameter
sets and the corresponding solutions. These solutions involve a large number of parameters.
Because these parameters affect the shapes of the solutions, one can generate a wide variety
of plots by taking random values for the parameters. Using these plots, one can ascertain the
nature of the solitons.
While drawing the plots, we have selected the parameter values given by

A=1,B=8,C=1,C1=1,C2:0,6111=1,012=1,(113=%,al4=1?4,a15=—1,
46 9 126 1
42 20 25 1
d,=—=,e, =3, Ju=1/2,11,=1/4,v,=1Lv,==,0=1,
T T e e A Y
Ot1=0.5,51=2,7]1=1,T72=3,}/1=2,ﬂ,1=1,ﬂ.2=1,O'=1,91=1,92=2,W(t)=
a=—2,b=—2,C:0,(111=1,(112=1,(113=%,al4Z%,alsz—l,
- _46  _ - - —1c = —4 4= -
a16——1,a23—?,a24—1,a25—1,a26—1,b1—1,cl—12,(:2—4,;(—3,d1—2,
42 25 1 (86)
d, = =3, = u=1/2,u,=1/4,v,=1,v, ==, 0=1,
2= 25 fi= f 28 u=1/2,11,=1/4,v; 273
=3,6,=2,m =1,m,=3,7,=2, 193 Lo=10=1, 6,=3,w(t)=
01=301=a4Mm =L =571 = /11— Jp=10=10,= 2= (t)=t
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for the cases illustrated by Fig. 1 and Fig. 3, respectively.
Fig. 1 and Fig. 3 display the dark-soliton solutions for the squares of modules of the
solutions of Egs. (55) and (56) and Egs. (74) and (75), respectively. Fig. 2a shows the plot of

|q11(x,t)|2 for t=1,2,3,4. This wave propagates to the left along the x-axis. Fig. 2b and

Fig. 2c depict the plots of Re(qq;(x,t)) and Im(q;;(x,t)) for the cases o=1.3,2.1,2.41,3.

After examining carefully all the plots, one can conclude that Fig. 2b and Fig. 2c imply that
the wavelength of the soliton decreases with increasing noise effect. Fig. 4a shows a graph of

|q17(x,t)|2 for t=1,2,3,4. One can see that the wave moves to the right along the x-axis.
Fig.4b and Fig.4c depict the plots of Re(q;(x,t)) and Im(g;,(x,t)) for the cases
0 =0.1,0.5,0.95,1.3. Here the noise effect is observed as a fluctuation on the soliton. This

effect becomes the greatest at o =1.3.

] // 1206407
1.2 % 10 MW

1.% 1.,1_- ”z/ Ig//??/ Yotero?

‘qll(x,f)z u.xlo"—- \ \ “ / //// 3.00e+06
n.xm"—: Vit ! //

3% 10°

% 10—
2
Iy (.| 1

1% 10°

(c)
Fig. 1. Profiles of dark-soliton solutions given by Egs. (55) and (56): (a) surface plot of square of the
modulus of the solution qq1(x,t), (b) density plot of square of the modulus of the solution q;;(x,t),

and (c) surface plot of square of the modulus of the solution ry4(x,t) ..
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Fig. 2. Plots of qq1(x,t): (a) square of the modulus of the solution q;4(x,t) for different ¢, (b) real
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—————————
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0

(©

20

1
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part of the solution g;4(0.01,t) for different noise values o, and (c) imaginary part of the solution
q11(0.01,¢) for different noise values o .
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Fig. 3. Profiles of dark-soliton solutions given by Egs. (74) and (75): (a) surface plot of square of the
modulus of the solution q;;(x,t), (b) density plot of square of the modulus of the solution q;;(x,t),
and (c) surface plot of square of the modulus of the solution ry,(x,t).
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g (x0)f
»

Im(g,,(2.1))

Re(g:(

t=1 —_— =2 e t=3  — =4 6=0.1 ==6=0.5 — 6=0.95 —0c=13 6=0.1 ==06=0.5 — 6=0.95 —c=1.3

a b c
Fig. 4. Plots (of) q17(x,t) : (a) square of the modulfls)of the solution q;,(x,t) for differ(erzt t, (b) real
part of the solution g(2,t) for different noise values o, and (c) imaginary part of the solution
q17(2,t) for different noise values o .
6. Conclusions

Using the exp(—f(&)) -expansion method, the (G'/ G) -expansion technique and the simplest-

equation method, we have obtained a number of general soliton solutions to the underlying
model. The results obtained by all of our methods are concerned with some unknown
parameters. They can reveal the structures associated with either trigonometric (tan, sec) or
hyperbolic (tanh, sech) functions, as well as rational or exponential functions. If the
parameters are selected according to the Sets 1 and 2, the solutions of Egs. (63) and (64) and
Egs. (70) and (71) in Section 4.2 can be reduced to those of Egs. (38) and (39), Egs. (40) and
(41), Egs. (49) and (50) and Egs. (51) and (52), which are calculated in Section 4.1. A total of
four families of the analytical solutions have been obtained using the first and the second
methods. On the other hand, the three families of the analytical solutions have been obtained
using the third method. Although these methods are not too complicated in terms of their
implementation, they represent suitable and reliable techniques for finding the exact
solutions.

The results obtained in the present work can be compared to those obtained by Zayed
et al. [26] with Egs. (1) and (2). Using the addendum Kudryashov’'s method and the unified
Riccati-equation expansion method, the authors [26] have obtained the solutions of different
types. A comparison of our results with those reported in Ref. [26] shows that the soliton
solutions obtained with the appropriate parameter values are similar. To be clearer, the

results obtained for the Sets 1 and 2, using the (G'/G)-expansion technique, and the

hyperbolic solutions of Eqgs. (55) and (56) and Egs. (66) and (67) in this work are the same
as the solutions of Egs. (49) and (50) obtained in the work [26]. This emphasizes that the
method applied by us is a powerful mathematical tool, from which some new exact solutions
can be derived, since the both methods mentioned above are able to obtain the solutions
already known from the literature.

Moreover, the trigonometric solutions of Egs. (59) and (60) and Egs. (68) and (69) in
this work are the same as the soliton solutions of Eqgs. (55) and (56) obtained in the study
[26]. The mathematical structure of the solutions of Egs. (80) and (81) obtained by the
simplest-equation method in the current study is similar to that of the solutions of Egs. (51)
and (52) obtained in the work [26].
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We have also obtained the solutions which are similar to those reported in the other
studies mentioned above. Besides of those similar solutions, some solutions obtained in the
current study are structurally different from those reported earlier. They are found for the
first time.

Hence, the methods applied in this work to extract the exact solutions of nonlinear
Schrodinger equations are reliable, efficient and well-suited. By selecting the appropriate
parameter values, we have displayed both 3D and 2D plots of some representative solutions,
including the dark solitons. Considering the results analyzed above, one can see that the
efficiency of our methods is evident. Moreover, we have also discussed the effect of the
multiplicative white noise on the solutions. It is evident that the increase in the noise-
strength parameter can cause fluctuations in the soliton. Finally, further researches can be
done in the future to obtain different kinds of the soliton solutions, using different fractal-
fractional derivative operators.
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draft); Emrullah Yasar: conceptualization, software, methodology, writing (original draft),
validation.
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AHomayis. PoszasiHymo 8ucokoducnepciliHy cmoxacmuyHy 36ypeHy modeab Pokaca-
JleHennst 04151 80/10KOHHUX 6Opezzi8cbKUX T'pamok 13 npocmopog8o-4yacosoio ducnepciero ma
2eHepo8aHuM 6iAuUM WYMOM y po3ymiHHi Imo. [Jasi odepicaHHsi COAIMOHHUX pilleHb
sukopucmaHo Memod  exp(—f(&))-po3kaady, memod (G/G')-po3knady ma memod
Halinpocmiwo02o pIBHAHHA. [lA51 Ainwo020 po3yMIHHA Xxapakmepy pO3N08CHOINCEHHS X8UJb
no6ydosaHo mpusumipHi ma deosumipHi epagiku. BukoHAHO nNOPIGHSIHHA 00epHCaAHUX
CO/IMOHI8 pI3HUX Munie, MAkux sIK MeMHi, CUH2Y/spHi, nepioduyHi, payioHaAbHI ma
KoMm6iHo8aHi conimoHu. OyiHeHo ehekmugHicmb Hawux Memodis 015 6a3080i modedi.

Kawuoei caoea: sucokoducnepcilina cmoxacmuyHa 36ypeHa modeab Pokaca-/leHesnnca,
memod exp(—f(&))-posknady, memod (G/G')-poskaady, memod Halinpocmiwux pi8HsHb,

CO/IIMOHU.
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