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Abstract. In this work, we adopt the Biswas-Arshed equation, as innovative framework for
modeling soliton transmission through optical fibers in a media with Kerr-type nonlinearity.
Bright, dark, and W-shaped solitons were successfully acquired for this innovative model by using
the variational iteration method. This effective technique continues to rise in popularity for
numerically addressing model equations from various physical phenomena, including photonics.
The study is novel in that it employs an iterative variational approach to recover soliton-type
solutions for the model numerically. This approach eliminates the necessity to assume
linearizations or discretizations, which could potentially affect the physical characteristics of the
model. The algorithm presents the results with a very low error rate.
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1. Introduction
Optical solitons are of critical importance in the fields of mathematical physics and nonlinear

optics. The stability and regulation of solitons’ evolution within optical fiber render them
advantageous in optics and resilient in numerous scientific disciplines. Solitons are crucial in
the propagation of optical continuum and can be utilized to transmit data over extremely
long distances. In addition to being crucial in nonlinear optics, optical solitons inspire
research in various photonics subfields. Investigating nonlinear Schrodinger equations has
emerged as a prominent area of academic research in recent decades. These equations are
extremely useful in the fields of physics, including plasma physics, superconductive
properties, nonlinear optics, biological physics, star formation, quantum mechanics, and
others [1- 7]. The telecommunication industry can benefit from the renowned Biswas-
Arshed model [15], first proposed by Biswas and Arshed in 2018. This model finds
application in various domains, including light routing, photo-controlled switching devices,
and soliton transmission via optical fiber media. Two nonlinear iterations of this model were
introduced, namely the power law and the Kerr law. This model is distinguished by the
absence of self-phase modulation and its low count of group velocity dispersion. An
additional noteworthy characteristic of this model is its incorporation of second and third-
order spatiotemporal dispersions, which replenishes for the depleted group velocity
dispersion. Many dependable and efficient integration techniques have been investigated to
represent the Biswas-Arshed model’s soliton solution [8-14].
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Although there is an extensive variety of analytical methods available for solving the
Biswas-Arshed equation, only a limited number of numerical schemes are visible and
applicable. The aforementioned techniques include the variational iteration method (VIM),
finite element method, Adomian decomposition approach, and Laplace-Adomian
decomposition. In this paper, VIM is implemented to resolve Kerr-type nonlinearity in the
dynamics of soliton models centered on the Biswas-Arshed equation. For the obtained
solitons, the surface plot, contour plot, and error plot are all displayed. The remainder of the
paper is devoted to describing the specifics of VIM and its implementation in the model.

2. Governing model
The Biswas-Arshed model [15] is described by:

iqt + A1Gxx + ABGxe + i(bquxx + quxxt)
=i[o(laRa),+u(|q?),a+6q ay |

In Eq. (1), q(x,t) represents a complex field envelope, and x and ¢ are spatial and temporal

(1)

variables, respectively. The first component is denoted as the temporal evolution of pulses,
and the coefficients a; and a, in this equation provide the existence of spatiotemporal
dispersion and group velocity dispersion, respectively. The nonlinear terms denoting self-
steepening and nonlinear dispersions are guaranteed by the sequential coefficients of o, u,
and 6. The existence of third-order dispersion and third-order spatiotemporal dispersion is
definitively established by the sequential coefficients b; and b, . This study aims to examine

the Biswas-Arshed equation using the VIM. Consequently, solutions for bright, dark, and W-
shaped soliton waves, along with their corresponding existence constraints, are derived.

3. A brief overview of the VIM
The VIM is well-known and frequently employed to solve problems involving nonlinear

differential equations with initial conditions. This section will describe in minimal detail the
algorithm that will be implemented to conduct numerical simulations. The algorithm is a
direct result of the aforementioned methodology.

The VIM is utilized to analyze the following nonlinear partial differential equation:

{Lq(x,t)+ Rq(x,t)+Nq(x,t)=g(x,t),
Q(X'O) =qo(x).

In the given equation, L=6/0t, R and N denote linear and nonlinear operators,

(2)

respectively, and an inhomogeneous term (or source) is represented by g(x,t) .

The VIM admits the use of the correction functional for Eq. (2) which can be written as:

A1 (X,6) =0, (x,0) + j }’(5)[5]\;6( X(f);) 1_?(2((:;))

In the given equation, 1(5) represents a general Lagrange multiplier that can be most

]dé, n=0. 3)

adequately determined through variational theory [19-22]. The correction term, denoted as
d,,is regarded as a restricted variation, with g, =0.

The stationary conditions for Eq. (3) can be determined in a subsequent manner:
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[0 "

1+A(¢) |:—¢=0.
Consequently, the Lagrange multiplier can be identified as l(é) =-1.

When the obtained multiplier is substituted into Eq. (3), the resulting iteration formula
is as follows:

Qo1 (0,8) =, (x,8) = [ (LG, (x,6) +Rq, (x.E)Ng, (x,) - g(x.&))dE,

t

Lay(x,£)dE - [(Rq, (x.)+ Ng, (x.£) - g(x.£))ds,  (5)

0

5
~

ZQn( )_

)

=qo(x,t)— [(Rq,(x.€)+Nq,(x,&) - g(x,£))d&, n>0.

Ot Ot O =+

We have employed:
4, (%,0)=qo (%) =q(x,0). (6)
Because of the generic iterative approach to solving Eq. (2), the following can be written:
a(xt)=a(x0),

(7)

Gnia (X)) =qo (x,t) = | (Rq, (x,6) + Ng,, (x,£) - g(x,£))dE, n>0.

O —y

The elements of sequence {qn} are constructed in accordance with the variational iteration

method so that the sequence converges to the exact solution [23]. The iterative
approximations of the solution, denoted as g,,;, n>0, can be easily obtained by selecting an

appropriate trial function q,. As a result, the solution can be expressed as:
lim g, (x,t)=q(x,t). (8)
n—o

Essentially, the correction functional (3) will provide several approximations, and the exact
solution is eventually reached as the limit of these consecutive approximations.

Numerous users have demonstrated that the VIM is highly effective and can be
implemented directly, eliminating the necessity for linearizing nonlinear terms that could
potentially alter the problem's physical characteristics.

4. Solution of the Biswas-Arshed equation by VIM
This section provides an overview of how VIM is utilized to derive an explicit solution to

Eg. (1) given the initial condition q(x,O) =qy(x,t). Expressing the Biswas-Arshed model as a

homogeneous equation, we have:
. . . 2
g + U qxy + A3y +I(b1qxxx + quxxt) _l|:o-(| q |2 Q)X + /‘[(|CI|2 )x q+ 9|Q| qx:l =0.
9)

According to the scheme of Eq. (2), the linear component is:
R= A Gxx T 2q + i(bquxx + quxxt )’ (10)

g =0 and the nonlinear part is given by:
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N=-i[o(1q a),+ jqP), a+0lal a | (1)
Applying VIM to Eq. (9), we obtain:
4 (x.6)=a(x0), (12)
and for n>0:
Gns1 (X,8) =G (x.6)

t
o2 o2 N o3
—1l]| as—=—+a +ib; —+ib x,&)|d 13
E')‘( Loxz 26x6§ 1 ox3 Zaxzag)q( 5)} 5 (13)

el ofla(x)Ea(x8)f,
of +ulla(x e )P} a(x)+0la(xe) g (x.€)

It is important to note that the initial condition qy(x,t)=q(x,0), is precisely the first term of

the series solution obtained from the VIM.

5. The numerical computations and graphic results
In this part, we will use the suggested approach to solve the nonlinear Biswas-Arshed

equation with Kerr law nonlinearity, as described by Eq. (1), utilizing different initial
conditions. We conduct numerical simulations to analyze optical solitons with different
characteristics, including bright, dark, and W-shaped solitons. Every stage of the
computation process is executed using the MATHEMATICA software program.

5.1. Simulation of bright solitons
Consider Eq. (9), with initial conditions [16-18]:

qo(x.t) = Ajsech[ By (x) Jeil-+x+Q0], (14)
where k represents the wavevector of the soliton and (), represents the phase center. The

soliton’s amplitude 4, is determined using the following equation:

A :i\/—Z(aHK(alK—aza))+1<2(b11<—b2w)) ’ (15)
k(c+0)

where o is the frequency, the soliton’s width, denoted as By, is determined by:

B, :i\/w—i-K(alK—aza))+K2(b1K—b2w). (16)
a; +3kb; —wb, —v(ay + 2kb, )

Table 1 compares the absolute error of the exact and approximate solutions for different

coefficients. Figs.1, 2, and 3 display the graphical representations of the approximate

solutions obtained by the use of VIM, the contour plot of the wave amplitude|q|?, and the

absolute error, respectively.

Table 1. Bright optical solitons.

Cases | a a, b, b, o H 0 n MaxError
B, 0.5 6.2 8.8 6.5 3.5 3.1 2.2 16 4.0x10-8
By 0.6 1.9 6.3 6.7 4.3 3.3 2.6 16 6.0x10-9
By, 01 -15 09 09 29 11 08 16  1.0x108
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lql? Absolute Error

Fig. 1. Graphical representation of the example given in case Bj: (left) 3D bright soliton, (center) 2D

waveform evolution, and (right) absolute error with n=16 iteration steps.

lq? lq|? Absolute Error

Fig. 2. Graphical representation of the example given in case Bj;: (left) 3D bright soliton, (center) 2D
waveform evolution, and (right) absolute error with n=16 iteration steps.

lql? lql? Absolute Error

Fig. 3. Graphical representation of the example given in case By : (left) 3D bright soliton, (center) 2D

waveform evolution, and (right) absolute error with n=16 iteration steps.

5.2. Simulation of dark solitons
Consider Eq. (9), with initial conditions [16-18]:

qo(x,t) = Agtanh][ B, (x) Jeil-*x+0], (17)
The soliton’s amplitude A, may be determined using the following equation:
- —(@+x(ayx —a,0)+ k2(bjx — b)) ' (18)
k(o +6)
and the soliton’s width, denoted as B,, is determined by:
B, =+ —(a)+1<(a11c—aza))+rc2(b11<—b2a))). (19)
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Table 2 compares the absolute error of the exact and approximate solutions for different
coefficients. Figs. 4, 5, and 6 display the graphical representations of the approximate
solutions obtained by using VIM, the contour plot of the wave amplitude|q|?, and the

absolute error, respectively.
Table 2. Dark optical solitons.

Cases | a; a, b, b, o H 0 n |MaxError|
D, 1.6 0.2 4.3 0.7 3.0 0.5 1.7 16 1.0x10-8
p, | 56 27 71 04 31 04 66 16  2.0x10-

Dy 1.8 0.7 2.2 3.7 0.9 4.2 4.8 16 1.5x10-8
lql? lq]? Absolute Error

-2 -1 1] 1 2
Fig. 4. Graphical representation of the example given in case D;: (left) 3D dark soliton, (center) 2D
waveform evolution, and (right) absolute error with n=16 iteration steps.

lq]? lq|?

Absolute Error

:
Fig. 5. Graphical representation of the example given in case Dj;: (left) 3D dark soliton, (center) 2D
waveform evolution, and (right) absolute error with n=16 iteration steps.

-2 | 0 1

lql? lq]? Absolute Error

: -q\\b/
00

2

Fig. 6. Graphical representation of the example given in case Dy : (left) 3D dark soliton, (center) 2D
waveform evolution, and (right) absolute error with n=16 iteration steps.
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5.3. Simulation of W-shaped solitons
Consider Eq. (9), with initial conditions [16-18]:

qo(x,t) = (T + Agsech[ By (x) ])ell-#x+0]. (20)
The soliton’s amplitude A, satisfies the following relation:
Ay=~Jo2 1212, (21)
The soliton’s width, denoted as Bs, is determined by:
B,=-97T. (22)
a

In order to guarantee the existence of a W-shaped soliton, I' must be a real number such
that:

IT|<|4s| and TA;<0. (23)
Table 3 compares the absolute error of the exact and approximate solutions for different
coefficients. Figs.7, 8, and 9 display the graphical representations of the approximate
solutions obtained by using VIM, the contour plot of the wave amplitude of |q|2, and the
absolute error, respectively.
Table 3. W-shaped optical solitons.

Cases | a; a, b, b, o H 0 n |MaxError|
w, | 24 72 11 35 4.0x10-8
Wy 9.1 5.4 0.6 2.2 4.0x10-8
Wy | 38 58 73 69 15x10-8

Absolute Error

Fig. 7. Graphical representation of the example given in case W : (left) 3D W-shaped soliton, (center)
2D waveform evolution, and (right) absolute error with n=16 iteration steps.

lql? Absolute Error

Fig. 8. Graphical representation of the example given in case Wy;: (left) 3D W-shaped soliton, (center)
2D waveform evolution, and (right) absolute error with n=16 iteration steps.
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Absolute Error

A

Fig. 9. Graphical representation of the example given in case Wy, : (left) 3D W-shaped soliton, (center)
2D waveform evolution, and (right) absolute error with n=16 iteration steps.

6. Conclusions
Optical solitons of the Biswas-Arshed equation with Kerr-law nonlinearity and higher order

dispersions have been successfully addressed in this article employing the implementation
of the variational iteration method. We have obtained W-shaped, dark, and bright optical
solitons using the aforementioned scheme considering certain constraints. Consequently, the
integration technique demonstrated tremendous efficacy when applied to the model selected
for the present investigation. Later on, the equation will be studied with full nonlinearity
using effective integration methodologies. The valuable findings will be promptly presented.
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AHomayis. Y yiii po6omi mu euxkopucmasau pieHsiHHsA Biceaca-Apweda, sixk  iHHogayiliHUt
nioxio do modeaweaHHss hepedaui co/nimoHI8 vepe3 onmuyHi 60/0KHA 8 cepedosuwyi 3
Keppiecbkoio HesiHilinicmio. Byau ompumani sickpasi, memui ma W-nodi6Hi cosnimonu 8
pamkax yieiyiei iHHosayitliHoi Modesi 3a donomozor Memody eapiayiliHux imepayiil. LJe
edpekmusHull Memod, nonyAsspHicmb 51IK020 NpodosxuCcye 3pocmamu 015 4YUceabHOI piuleHHs
MOOesbHUX PIBHAHb PI3HUX PI3UYHUX A8ULY, Y MOMY YUCAl hoMOHIKU. []0CAIOHCEHHS € HOBUM Y
momy, Wo 80HO BUKOPUCMOBYE imepayitiHull eapiayitiHutl nidxid 0451 Yuce/bHO20 8i0H08/1eHHS
piweHb conimoHHozo muny. leii nioxid ycyeae HeobxidHicmb npunyckamu AiHeapu3ayito a6o
duckpemusayir, siKi nomeHYItiHO MOXCymb 8NAUHYMU HA Pi3uvHi xapakmepucmuku Modei.
Anzopumm Hadae pesysbmamu 3 dysice HU3bKUM PIBHEM NOMUJIOK.

Kawuoei caoea: pisHsHHa bBiceaca-Apweda, HeaiHiliHicmb 3akoHy Keppa, memod
sapiayilinux imepayitl, conimoHu.
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