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Abstract. In this work, we adopt the Biswas-Arshed equation, as innovative framework for 
modeling soliton transmission through optical fibers in a media with Kerr-type nonlinearity. 
Bright, dark, and W-shaped solitons were successfully acquired for this innovative model by using 
the variational iteration method. This effective technique continues to rise in popularity for 
numerically addressing model equations from various physical phenomena, including photonics. 
The study is novel in that it employs an iterative variational approach to recover soliton-type 
solutions for the model numerically. This approach eliminates the necessity to assume 
linearizations or discretizations, which could potentially affect the physical characteristics of the 
model. The algorithm presents the results with a very low error rate.   
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1. Introduction 
Optical solitons are of critical importance in the fields of mathematical physics and nonlinear 
optics. The stability and regulation of solitons’ evolution within optical fiber render them 
advantageous in optics and resilient in numerous scientific disciplines. Solitons are crucial in 
the propagation of optical continuum and can be utilized to transmit data over extremely 
long distances. In addition to being crucial in nonlinear optics, optical solitons inspire 
research in various photonics subfields. Investigating nonlinear Schrodinger equations has 
emerged as a prominent area of academic research in recent decades. These equations are 
extremely useful in the fields of physics, including plasma physics, superconductive 
properties, nonlinear optics, biological physics, star formation, quantum mechanics, and 
others [1- 7]. The telecommunication industry can benefit from the renowned Biswas–
Arshed model [15], first proposed by Biswas and Arshed in 2018. This model finds 
application in various domains, including light routing, photo-controlled switching devices, 
and soliton transmission via optical fiber media. Two nonlinear iterations of this model were 
introduced, namely the power law and the Kerr law. This model is distinguished by the 
absence of self-phase modulation and its low count of group velocity dispersion. An 
additional noteworthy characteristic of this model is its incorporation of second and third-
order spatiotemporal dispersions, which replenishes for the depleted group velocity 
dispersion. Many dependable and efficient integration techniques have been investigated to 
represent the Biswas–Arshed model’s soliton solution [8-14]. 
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Although there is an extensive variety of analytical methods available for solving the 
Biswas-Arshed equation, only a limited number of numerical schemes are visible and 
applicable. The aforementioned techniques include the variational iteration method (VIM), 
finite element method, Adomian decomposition approach, and Laplace-Adomian 
decomposition. In this paper, VIM is implemented to resolve Kerr-type nonlinearity in the 
dynamics of soliton models centered on the Biswas-Arshed equation. For the obtained 
solitons, the surface plot, contour plot, and error plot are all displayed. The remainder of the 
paper is devoted to describing the specifics of VIM and its implementation in the model. 

2. Governing model 
The Biswas-Arshed model [15] is described by:  
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In Eq. (1),  ,q x t  represents a complex field envelope, and x  and t  are spatial and temporal 

variables, respectively. The first component is denoted as the temporal evolution of pulses, 
and the coefficients 1a  and 2a  in this equation provide the existence of spatiotemporal 

dispersion and group velocity dispersion, respectively. The nonlinear terms denoting self-
steepening and nonlinear dispersions are guaranteed by the sequential coefficients of  ,  , 

and  . The existence of third-order dispersion and third-order spatiotemporal dispersion is 
definitively established by the sequential coefficients 1b  and 2b . This study aims to examine 

the Biswas-Arshed equation using the VIM. Consequently, solutions for bright, dark, and W-
shaped soliton waves, along with their corresponding existence constraints, are derived.   

3. A brief overview of the VIM  
The VIM is well-known and frequently employed to solve problems involving nonlinear 
differential equations with initial conditions. This section will describe in minimal detail the 
algorithm that will be implemented to conduct numerical simulations. The algorithm is a 
direct result of the aforementioned methodology. 

The VIM is utilized to analyze the following nonlinear partial differential equation:  
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In the given equation, L t   , R  and N  denote linear and nonlinear operators, 
respectively, and an inhomogeneous term (or source) is represented by  ,g x t .  

The VIM admits the use of the correction functional for Eq. (2) which can be written as:  
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In the given equation,     represents a general Lagrange multiplier that can be most 

adequately determined through variational theory [19-22]. The correction term, denoted as 

nq , is regarded as a restricted variation, with 0nq  .  

The stationary conditions for Eq. (3) can be determined in a subsequent manner:  
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Consequently, the Lagrange multiplier can be identified as   1    . 

When the obtained multiplier is substituted into Eq. (3), the resulting iteration formula 
is as follows:  
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We have employed:  
     0,0 , ,0 .nq x q x t q x      (6) 

Because of the generic iterative approach to solving Eq. (2), the following can be written:  
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The elements of sequence  nq  are constructed in accordance with the variational iteration 

method so that the sequence converges to the exact solution [23]. The iterative 
approximations of the solution, denoted as 1nq  , 0n  , can be easily obtained by selecting an 

appropriate trial function 0q . As a result, the solution can be expressed as:  

   lim , , .nn
q x t q x t


      (8) 

Essentially, the correction functional (3) will provide several approximations, and the exact 
solution is eventually reached as the limit of these consecutive approximations. 

Numerous users have demonstrated that the VIM is highly effective and can be 
implemented directly, eliminating the necessity for linearizing nonlinear terms that could 
potentially alter the problem's physical characteristics. 

4. Solution of the Biswas-Arshed equation by VIM 
This section provides an overview of how VIM is utilized to derive an explicit solution to 
Eq. (1) given the initial condition    0,0 , .q x q x t  Expressing the Biswas-Arshed model as a 

homogeneous equation, we have:  

      2221 2 1 2 0.| |t xx xt xxx xxt xx x
iq a q a q i b q b q i q qq q qq             

 (9) 
According to the scheme of Eq. (2), the linear component is:  

 1 2 1 2 ,xx xt xxx xxtR a q a q i b q b q        (10) 

0g   and the nonlinear part is given by:  
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Applying VIM to Eq. (9), we obtain:  
   0 , ,0 ,q x t q x     (12) 

and for 0n :  
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It is important to note that the initial condition    0 , ,0 ,q x t q x  is precisely the first term of 

the series solution obtained from the VIM. 

5. The numerical computations and graphic results 
In this part, we will use the suggested approach to solve the nonlinear Biswas-Arshed 
equation with Kerr law nonlinearity, as described by Eq. (1), utilizing different initial 
conditions. We conduct numerical simulations to analyze optical solitons with different 
characteristics, including bright, dark, and W-shaped solitons. Every stage of the 
computation process is executed using the MATHEMATICA software program.  

5.1. Simulation of bright solitons 
Consider Eq. (9), with initial conditions [16-18]: 

     0Ω
0 1 1, sech i xq x t A B x e      ,   (14) 

where   represents the wavevector of the soliton and 0Ω  represents the phase center. The 

soliton’s amplitude 1A  is determined using the following equation:  
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where   is the frequency, the soliton’s width, denoted as 1B , is determined by:  
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Table 1 compares the absolute error of the exact and approximate solutions for different 
coefficients. Figs. 1, 2, and 3 display the graphical representations of the approximate 
solutions obtained by the use of VIM, the contour plot of the wave amplitude 2| |q , and the 

absolute error, respectively. 
Table 1. Bright optical solitons.  

Cases 1a  2a  1b  2b        n   MaxError  

IB  0.5  6.2  8.8  6.5  3.5  3.1  2.2  16  84.0 10  

IIB  0.6  1.9  6.3  6.7  4.3  3.3  2.6  16  96.0 10  

IIIB  0.1  1.5  0.9  0.9  2.9  1.1  0.8  16  81.0 10  
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Fig. 1. Graphical representation of the example given in case IB : (left) 3D bright soliton, (center) 2D 
waveform evolution, and (right) absolute error with 16n   iteration steps.  

 
Fig. 2. Graphical representation of the example given in case IIB : (left) 3D bright soliton, (center) 2D 
waveform evolution, and (right) absolute error with 16n   iteration steps. 

 
Fig. 3. Graphical representation of the example given in case IIIB : (left) 3D bright soliton, (center) 2D 
waveform evolution, and (right) absolute error with 16n   iteration steps. 

5.2. Simulation of dark solitons 
Consider Eq. (9), with initial conditions [16-18]: 

     0Ω
0 2 2, tanh .i xq x t A B x e          (17) 

The soliton’s amplitude 2A  may be determined using the following equation:  
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and the soliton’s width, denoted as 2B , is determined by:  
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Table 2 compares the absolute error of the exact and approximate solutions for different 
coefficients. Figs. 4, 5, and 6 display the graphical representations of the approximate 
solutions obtained by using VIM, the contour plot of the wave amplitude 2| |q , and the 

absolute error, respectively. 
Table 2. Dark optical solitons. 

Cases 1a  2a  1b  2b        n   MaxError  

ID  1.6  0.2  4.3  0.7  3.0  0.5  1.7  16  81.0 10  

IID  5.6  2.7  7.1  0.4  3.1  0.4  6.6  16  82.0 10  

IIID  1.8  0.7  2.2  3.7  0.9  4.2  4.8  16  81.5 10  

 
Fig. 4. Graphical representation of the example given in case ID : (left) 3D dark soliton, (center) 2D 
waveform evolution, and (right) absolute error with n=16 iteration steps.  

 
Fig. 5. Graphical representation of the example given in case IID : (left) 3D dark soliton, (center) 2D 
waveform evolution, and (right) absolute error with n=16 iteration steps. 

 
Fig. 6. Graphical representation of the example given in case IIID : (left) 3D dark soliton, (center) 2D 
waveform evolution, and (right) absolute error with n=16 iteration steps. 
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5.3. Simulation of W-shaped solitons 
Consider Eq. (9), with initial conditions [16-18]: 

      0Ω
0 3 3, Γ sech .i xq x t A B x e          (20) 

The soliton’s amplitude 3A  satisfies the following relation:  

2 23 2Γ .A        (21) 

The soliton’s width, denoted as 3B , is determined by:  
2

3
1

Γ .B
a
       (22) 

In order to guarantee the existence of a W-shaped soliton, Γ  must be a real number such 
that:  

3 3Γ           Γ 0.A and A      (23) 

Table 3 compares the absolute error of the exact and approximate solutions for different 
coefficients. Figs. 7, 8, and 9 display the graphical representations of the approximate 
solutions obtained by using VIM, the contour plot of the wave amplitude of 2| |q , and the 

absolute error, respectively. 
Table 3. W-shaped optical solitons. 

Cases 1a  2a  1b  2b        n   MaxError  

IW  2.4  7.2  1.1  3.5  6.0  0.1  5.9  16  84.0 10  

IIW  9.1  5.4  0.6  2.2  5.1  2.4  0.5  16  84.0 10  

IIIW  3.8  5.8  7.3  6.9  2.2  0.5  2.6  16  81.5 10  

 
Fig. 7. Graphical representation of the example given in case IW : (left) 3D W-shaped soliton, (center) 
2D waveform evolution, and (right) absolute error with n=16 iteration steps. 

 
Fig. 8. Graphical representation of the example given in case IIW : (left) 3D W-shaped soliton, (center) 
2D waveform evolution, and (right) absolute error with n=16 iteration steps. 
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Fig. 9. Graphical representation of the example given in case IIIW : (left) 3D W-shaped soliton, (center) 
2D waveform evolution, and (right) absolute error with n=16 iteration steps. 

6. Conclusions 
Optical solitons of the Biswas-Arshed equation with Kerr-law nonlinearity and higher order 
dispersions have been successfully addressed in this article employing the implementation 
of the variational iteration method. We have obtained W-shaped, dark, and bright optical 
solitons using the aforementioned scheme considering certain constraints. Consequently, the 
integration technique demonstrated tremendous efficacy when applied to the model selected 
for the present investigation. Later on, the equation will be studied with full nonlinearity 
using effective integration methodologies. The valuable findings will be promptly presented. 
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Анотація. У цій роботі ми використали рівняння Бісваса-Аршеда, як  інноваційний 
підхід до моделювання передачі солітонів через оптичні волокна в середовищі з 
керрівською нелінійністю. Були отримані яскраві, темні та W-подібні солітони в 
рамках цієїцієї інноваційної моделі за допомогою методу варіаційних ітерацій. Це 
ефективний метод, популярність якого продовжує зростати для чисельної рішення 
модельних рівнянь різних фізичних явищ, у тому числі фотоніки. Дослідження є новим у 
тому, що воно використовує ітераційний варіаційний підхід для чисельного відновлення 
рішень солітонного типу. Цей підхід усуває необхідність припускати лінеаризацію або 
дискретизацію, які потенційно можуть вплинути на фізичні характеристики моделі. 
Алгоритм надає результати з дуже низьким рівнем помилок.  

Ключові слова: рівняння Бісваса–Аршеда, нелінійність закону Керра, метод 
варіаційних ітерацій, солітони. 


