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Abstract. This paper uses parallel hard-constraint physics-informed neural networks to investigate the 
prediction of nondegenerate soliton and estimate parameters for the coupled nonlinear Schrödinger’s 
equation. Based on our previous analytical results, three types of nondegenerate solitons have been predicted 
in the forward problem under the corresponding initial and boundary conditions. In the inverse problem, 
when employing pure data as the training set, the relative errors in predicting the system’s parameters of 
group velocity dispersion β2 and Kerr nonlinearity γ are both less than 1%. Moreover, upon introducing a 5% 
noise level to the training set, the relative errors for β2 and γ remain below 3%. Additionally, we introduce for 
the first time the application of Deep Operator Networks (DeepONet) to predict nondegenerate soliton, 
reducing relative L2 error to 10-3 and achieving a speedup of approximately 103 times higher compared to the 
phPINN method. This demonstrates the efficacy of operator learning methods in addressing nonlinear optical 
problems. 
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1.  Introduction 
Optical solitons, also known as temporal solitons, result from a balance between dispersion 
and nonlinearity in optical fibers [1-3]. Specifically, bright solitons are formed in the 
anomalous dispersion region of the optical fiber, while dark solitons are formed in the 
normal dispersion region. When an intense picosecond pulse is transmitted in a single-mode 
optical fiber, its dynamics are described by the standard or higher-order nonlinear 
Schrödinger’s equation. However, when optical waves with different modes, such as the 
same polarization state at different wavelengths or different polarization directions at the 
same wavelength, are transmitted together in the optical fiber, we need to extend this model 
to the coupled nonlinear Schrödinger’s equation (CNLSE) [4-6]. Recently, through the 
integrable theoretical methods, including the Darboux transformation and Hirota’s bilinear 
methods, many new structures of fiber solitons have been reported, such as the 
nondegenerate solitons in birefringent fibers, double-valley dark solitons in highly nonlinear 
optical fiber, solitons on the nonvanishing background and so on [7-10]. 
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Artificial intelligence has emerged as a prominent topic in recent years, with deep 
learning finding widespread applications in engineering and scientific computing. Notably, 
the concept of scientific machine learning has garnered considerable attention [11-19]. 
Among the foremost methodologies in this domain are physics-informed neural networks 
(PINN) [20] and neural operators. Physics-informed neural network (PINN) is adept at 
tackling both forward and inverse problems associated with nonlinear partial differential 
equations (PDEs). Its fundamental premise involves integrating physical constraints into the 
neural network training process. PINN can approximate unknown solution functions by 
incorporating known physical equations as constraints and glean insights into system 
behavior from available data. 

On the other hand, deep neural operators can learn nonlinear mappings across infinite-
dimensional function spaces using deep neural networks [21]. Serving as promising 
surrogate solvers for real-time prediction of partial differential equations, deep neural 
operators like deep operator networks (DeepONet) offer a novel simulation paradigm in 
science and engineering. Researchers have utilized PINN to address challenges in nonlinear 
optics through adjustments in network architecture, expressions of loss functions, and 
methods for sampling configuration points [22-27]. Our previous work proposed the parallel 
hard-constraint physics-informed neural networks (phPINN) and successfully improved the 
accuracy and efficiency of solving the NLS-Maxwell-Bloch equation [28]. DeepONet [29], the 
first neural operator, has performed well in building surrogate models for many PDEs. For 
example, DeepONet has been applied in multiscale bubble dynamics [30], boundary layer 
instabilities [31], solar–thermal systems forecasting [32], and fast multiscale modeling [33-
37]. However, research on DeepONet in solitons has not been reported yet. This study will 
use deep learning methods, including parallel hard-constraint physics-informed neural 
networks (phPINN) and DeepONet, to investigate nondegenerate solitons. 

In our previous work [9], the analytical optical nondegenerate solitons in a birefringent 
fiber with a 35-degree elliptical angle are reported. The following CNLSE is considered:  
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where u(z,t) and v(z,t) are the two polarization components of light wave, β0  represents the 
wave number difference between two modes, β1 is the reciprocal of group velocity, β2 

originates from group velocity dispersion, and γ is the Kerr nonlinearity.   

2. The phPINN and DeepONet methods 
In this work, we investigated the accuracy of phPINN and DeepONet in predicting nonlinear 
optical problems. A well-trained phPINN network represents the equation solution under a 
certain initial and boundary condition, while a well-trained DeepONet can quickly obtain the 
equation solution corresponding to any initial condition covered by the training set. Sections 
2.1 to 2.3 provide detailed information on data, neural network architecture, loss functions, 
and training environment. 
2.1. The phPINN for soliton evolution and equation parameters prediction 
phPINN aims to improve the performance of neural networks in predicting soliton solutions 
and parameter estimation in nonlinear fiber optic systems by improving the design of loss 
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functions and network architecture. The phPINN network effectively predicted the solutions 
of the NLS-MB equation, including single solitons, multiple solitons, and odd waves, and 
successfully solved the parameter estimation problem related to the NLS-MB equation. We 
employ four fully-connected neural networks  and hard-constraint initial conditions for all 
examples. 

We adopt the CNLSE as the physical constraint to construct the phPINN above. The u 
and v in Eq. (1) are the complex solutions of z and t, which will be determined subsequently, 
necessitating the separation of the real and imaginary components. We obtain the model 
corresponding to Eq. (1) for the phPINN as: 
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where Re{∙} and Im{∙} represent the real and imaginary parts of the respective quantities.  

 
Fig. 1. The framework structure of the phPINN for the CNLSE system. 

Fig. 1 shows the training process of the phPINN architecture. We first initialize the 
network parameters to obtain the initial estimates of the corresponding variables Re{u}, 
Im{u}, Re{v}, and Im{v} in Eq. (1). Give the initial estimation, we subsequently formulate a 
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loss function to minimize the PDE residuals, as well as the errors between the ground truth 
and the approximation in the boundary. Then iteratively update the network parameters 
until the total loss converges. 
2.2. DeepONet 
The methodologies for solving differential equations can be broadly categorized into several 
classes. One category encompasses traditional solvers, such as those based on finite 
difference, finite element, and finite volume methods, including Jacobi iteration, multigrid 
iterations, and spectrum discontinuous Galerkin methods. These methods conventionally 
discretize the problem onto a grid or a finite basis and subsequently solve a linear system or 
iterate over it to obtain the desired solution. In contrast, there exists a paradigm known as 
operator learning, which represents a surrogate model aimed at approximating the input-
output relationship or operator function in a simplified or lower-dimensional manner.  

Operator learning entails learning the input-output relationship defined by a given 
differential equation. It involves capturing relationships between functions over time steps 
or coefficients and their accumulations called operators. Like traditional supervised learning, 
operator learning typically involves collecting datasets comprising various medium 
conditions or initial conditions and corresponding solutions obtained through solvers or 
experimental observations. Subsequently, supervised learning techniques are applied to 
learn these relationships. Contrary to traditional methods, which discretize inputs and 
outputs into grids and solve them at each point using linear methods, operator learning 
resembles a statistical inference process that finds correspondences between input function 
spaces and output function spaces. This facilitates rapid prediction of results for new inputs, 
offering significant speedup compared to traditional approaches, often by orders of 
magnitude. 

 
Fig. 2. The framework structure of DeepONet for the CNLS system. 
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The concept of neural operators draws inspiration from methods like Green's functions, 
commonly used in linear PDEs, where solutions are expressed in terms of integral functions. 
However, for more challenging nonlinear problems, linear transformations alone are 
insufficient to capture the behavior of the underlying operators. Therefore, linear and 
nonlinear operations are combined to approximate any continuous but nonlinear operators 
effectively. Early works in this domain employed graph neural networks to transform input 
functions into graph structures and then used graph neural network techniques to perform 
integrations, effectively treating them as message-passing operations. The DeepONet has 
been introduced by Lu et al. in 2019. The operators were decomposed into branch and trunk 
networks, enabling the representation of operators as tensor products of these networks' 
outputs. Fig. 2 shows the network structure of the DeepONet used in this article. Branch net1 
and Branh net2 input the initial conditions of u and v, while the Trunk net inputs coordinate. 
All the branch nets and the trunk net have the same number of outputs, merged via the 
Hadamard product and a subsequent summation. The entire network outputs the solution of 
the equation, i.e., u or v. 
2.3. Training data and network environment 
In supervised learning, training data is crucial for training neural networks. For this problem, 
we can obtain training data from the exact solution. In addition, we chose Xavier 
initialization and hyperbolic tangent (tanh) as activation functions. This article uses a 
pseudorandom generator with a PCG-64 algorithm to generate residual training points. All 
the code in this article was built using the DeepXDE library [38], based on Python 3.10 and 
Tensorflow 2.10. All numerical experiments reported in this article were run on a computer 
with an Intel (R) Xeon (R) W-2265 CPU @ 3.50GHz processor, 64GB memory, and 10GB 
Nvidia GeForce RTX 3080 graphics card. 

3.  The forward and inverse problems by phPINN algorithm 
In this chapter, we will delve into the application of the phPINN algorithm in CNLSE. We aim 
to solve both forward and inverse problems, namely, accurate prediction of soliton solutions 
and accurate estimation of system parameters. 
3.1. Prediction of soliton molecules 

Considering Eq. (1) with the parameter values γ=-4, β0=β1=2 and β2=1,  the explicit 
soliton molecules solution can be found in Eq. (4) of reference [9]. Specifically, we select 
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training dataset for the specified initial and boundary conditions, the spatial region [-20, 20] 
and the temporal region [-20, 30] are discretized into 512 points, and the exact solution of 
the soliton molecules is discretized accordingly. These data will be used to calculate the 
relative L2 error. Furthermore, a smaller training set containing boundary data is generated 
by randomly selecting the boundary data points Nb=1000 from the original dataset. The 
initial value of the number of PDE residual training points is Nf=25000. With 30000 
iterations using the Adam optimizer and an additional 9553 iterations using the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimizer, the phPINN framework 
successfully learns the soliton molecules utilizing four subnetworks. The network achieves 
the relative L2 error of u as 9.026×10-4 and v as 9.193×10-4, with a total of 39563 iterations 
and a training time of 2704 seconds. 
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Fig. 3. Prediction results of soliton molecules. (a) and (b) show the exact and predicted dynamic 
evolution of soliton molecules, respectively. (c) present the point-by-point absolute error between the 
predicted and exact solutions. (d), (e), (g), and (h) show the 3D stereograms of the true and predicted 
solutions of soliton molecules, respectively. (f) and (i) show the comparison between the exact (solid 
curve) and predicted (dash curve) solutions of u and v at z=-10 and z=10, respectively.  

Fig. 3 illustrates the deep learning results of soliton molecules based on the CNLSE 
using the phPINN. The phPINN architecture effectively resolves the local features of soliton 
molecules' dynamics. The predicted solution closely matches the exact solution. The absolute 
errors were up to 10-4 orders for the u and v fields. 
3.2. Prediction of the symmetric double-double-hump solitons 
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symmetric double-double-hump solitons solution can be found in reference [9]. Using the 
same scheme as soliton molecules, except for the temporal region being changed to [-30,30] 
to construct the network and training set, the phPINN framework successfully learns the 
symmetric double-double-hump solitons utilizing four subnetworks. The network achieves a 
relative L2 error of u as 1.162×10-3, and v as 9.649×10-4, with a total of 38478 iterations and 
a training time of 1743 seconds. 
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Fig. 4 presents the outcomes of deep learning applied to symmetric, symmetric double-
double-hump solitons. The phPINN architecture effectively resolves the local features of the 
dynamics of the symmetric double-double-hump solitons. The order of absolute errors was 
up to 10-4 for the u and v fields. A close examination reveals the point-by-point absolute error 
between the predicted and exact solutions, with a peak value of merely 4×10-4. 

 
Fig. 4. Prediction results of the symmetric double-double-hump solitons. (a) and (b) show the exact 
and predicted dynamic evolution of the symmetric double-double-hump solitons, respectively. (c) 
present the pointwise error between the predicted and exact solutions. (d), (e), (g), and (h) show the 
3D stereograms of the true and predicted solutions of soliton molecules, respectively. (f) and (i) show 
the comparison between the exact (solid curve) and predicted (dash curve) solutions of u and v at z=-
10 and z=10, respectively. 

3.3. Prediction of the symmetric double-hump-single-hump solitons  
In this section, we consider predicting symmetric double-hump-single-hump solitons. Using 
the same scheme as symmetric double-double-hump solitons to construct the network and 
training set, the phPINN framework successfully learned symmetric double-hump-single-
hump solitons through 30000 iterations using the Adam optimizer and 8478 iterations using 
the L-BFGS optimizer. The network achieved a relative L2 error u of 1.162×10-3 and v of 
9.649×10-4, with 38478 iterations and a training time of 1743 seconds. Fig. 5 shows the 
phPINN architecture effectively resolves the local features of symmetric double-hump-
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single-hump solitons dynamics. The absolute errors were up to 10-4 order for the u and v 
fields, with the maximum pointwise absolute error reaching only 4×10-4. 

 
Fig. 5. Prediction results of the symmetric double-hump-single-hump solitons. (a) and (b) show the 
exact and predicted dynamic evolution of the symmetric double-hump-single-hump solitons, 
respectively. (c) present the pointwise error between the predicted and exact solutions. (d), (e), (g), 
and (h) show the 3D stereograms of the true and predicted solutions of soliton molecules, respectively. 
(f) and (i) show the comparison between the exact (solid curve) and predicted (dash curve) solutions 
of u and v at z=-10 and z=10, respectively.  

3.4. Prediction of equation parameters 
In this section, our attention is directed towards addressing the inverse problem associated 
with CNLSE systems, wherein the task entails discerning the parameters of the CNLSE 
system model by utilizing known solutions as the training dataset. To ascertain the unknown 
parameters β2 and γ in Eq. (1), we employ the phPINN framework previously utilized. 20000 
data points are randomly sampled from the original symmetric double-hump-single-hump 
solitons solution to form the training dataset. The residual equation is evaluated utilizing 
Nf=10000 points generated through the pseudorandom method. The unknown parameters 
β2 and γ are initialized with arbitrary values upon preparing the training dataset. After 
50000 iterations using the Adam optimizer and additional L-BFGS iterations, all the 
learnable parameters of the phPINN model are optimized, and the loss function is adjusted to 
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facilitate the prediction of the unknown parameters β2 and γ. The relative error of the 
unknown parameters is defined as: 

 E 1 %
ˆ

R 00

  ,    (3) 

where ̂  and   represent the predicted and true values, respectively.  
Fig. 6 shows our prediction results. Fig. 6a describes the dependence of unknown 

parameters β2 and γ on the iterations number, with shadows representing an error range of ± 
10%, dashed lines representing true values, and solid lines representing learned parameters. The 
final relative error of β2 is 0.031%, and the final relative error of γ is 0.502%. Afterward, we 
added 5% noise to the solution and continued the experiment, as shown in Fig. 6b. The final 
relative error of β2 is 0.124%, and the final relative error of γ is 2.188%. 

 

 
Fig. 6. phPINN parameter estimation results. The dependence of unknown parameters β2 and γ on the 
iterations number under noise levels of (a) 0% and (b) 5%, respectively. 

3.5. Predicting nondegenerate solitons by DeepONet method 
To test the DeepONet model's ability to predict nondegenerate optical solitons in nonlinear 
birefringent fibers, we tested its prediction on a series of different physical parameters. Liu's 
work used bilinear methods to derive the following expressions for u and v [9]:  
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We constructed a training and testing set consisting of the values of β2 and γ.  The 
specific steps are as follows: let β2 = 5,5.5,6,6.5,7,7.5,8,8.5,9,9.5,10,15,20,25,30, 
35,40,45,50,55} and γ =-{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. 
Then, by permeating and combining each value of β2 and γ into Eq. (4), we obtain 400 
solutions, which serve as our training set. Similarly, the parameters β2 that comprise the test 
set are randomly selected as 10 numbers between 5 and 55, and γ is randomly selected as 10 
numbers between -11 and -0.1. 
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Fig. 7. The DeepONet prediction for a test sample with β2=33.6, γ=-4.68.  

Fig. 8. The DeepONet prediction for a test sample with β2=12.8, γ=-7.4.  

As described in Section 2, the DeepONet model takes the initial conditions as input and 
uses the dot product coarse grid of networks Branch net1, Branch net2, and Trunk net to 
predict the solution of the CNLSE. Compare these predictions with actual values. The sample 
prediction is shown in Fig. 7 and Fig. 8. The relative L2 error of modelu  is 9.99×10-3, and the 
relative L2 error of modelv  is 8.80×10-3. Fig. 9a,b show the training process of modelu and 
modelv, respectively. The relative L2 error of the two polarization components of light and 
the training loss convergence history are presented. We observed rapid convergences in the 
loss function and relative L2 error over the first 10000 iterations. The relative L2 error 
reached a roughly stable state after 20000 iterations. Fig. 9c shows the time and error 
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distribution required for the phPINN and DeepONet methods to obtain a solution. DeepONet 
can quickly achieve a solution with a small error, underscoring a key advantage of operator 
learning methodologies. 

 
Fig. 9. (a) convergence behavior of the DeepONet training for u. (b) convergence behavior of the 
DeepONet training for v. (c) performance Comparison between DeepONet and phPINN. 

4.  Conclusion 
This work studies the nondegenerate solitons of the CNLSE (1) by the phPINN (a fusion of 
parallel subnet and hard constraints in the PINN method) and DeepONet (an operator 
learning approach). The research results show that phPINN can successfully predict soliton 
molecules, symmetric double-double-hump solitons, and symmetric double-hump-single-
hump solitons and demonstrates very low training loss and good consistency with analytical 
solutions, thereby showcasing the capability of phPINN as a forward solver. The phPINN 
algorithm also effectively addresses parameter estimation issues related to the CNLSE, 
demonstrating its ability to retrieve parameters under various noise conditions accurately. 
This is a first work to study the nonlinear optical problems using the neural operator, the 
numerical experiments show that neural networks successfully learn the mapping between 
initial conditions and solutions of nondegenerate solitons. We believe that neural network 
approaches in operator learning will play an increasingly important role in studying 
nonlinear localized waves. 
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Анотація. У цій статті використовуються паралельні нейронні мережі з жорсткими 
обмеженнями, засновані на фізичних даних, для дослідження передбачення 
невиродженого солітону та оцінки параметрів для зв’язаного нелінійного рівняння 
Шредінгера. На основі наших попередніх аналітичних результатів у прямій задачі було 
передбачено три типи невироджених солітонів за відповідних початкових і граничних 
умов. У зворотній задачі, коли в якості навчального набору використовуються чисті 
дані, відносні похибки у передбаченні параметрів системи дисперсії групової швидкості 
β2 та нелінійності Керра γ становлять менше ніж 1%. Крім того, при введенні 5% рівня 
шуму в навчальну множину відносні похибки для β2 і γ залишаються нижчими ніж 3%. 
Крім того, ми вперше представляємо застосування Deep Operator Networks для 
прогнозування невироджених солітонів, зменшуючи відносну помилку L2 до 10-3 і 
досягаючи прискорення приблизно в 103 рази більшого порівняно з методом phPINN. Це 
демонструє ефективність методів навчання операторів у вирішенні нелінійних 
оптичних проблем. 

Ключові слова: невироджені солітони, зв’язане нелінійне рівняння Шредінгера, phPINN, 
DeepONet 


