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Abstract. The current paper recovers optical solitons for the dispersive concatenation model with
polarization-mode dispersion. The complete discriminant approach has made this retrieval possible. The
intermediary Jacobi’s elliptic functions gave way to the soliton solutions, with the limiting approach applied to
such functions. These solitons are classified, and their surface and contour plots are sketched.
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1. Introduction
The concept of the dispersive concatenation model was conceived just after the concept of the

concatenation model was established in 2014 [1, 2]. This dispersive concatenation model was
initially studied in 2015 [3-5]. The dispersive concatenation model is a conjoined version of three
well-known models, and they are the Schrodinger-Hirota equation, Lakshmanan-Porsezian-
Daniel model, and the fifth-order nonlinear Schrodinger’s equation. Amongst these three
fundamental equations, the first and last components are responsible for third-and fifth-order
dispersive effects, respectively, hence the name. Later, after a long hiatus, these two versions of
the concatenation model were extensively studied from various perspectives [6-20]. These
include the extraction of the conservation laws, application to magneto-optic waveguides,
quiescent optical solitons, gap solitons, numerical analysis of the models by the aid of Laplace-
Adomian decomposition, and many others. Subsequently, the concatenation model was extended
to polarization-mode dispersion. Today, the study on the dispersive concatenation model will be
taken further by considering it with differential group delay. The fundamental model will be first
presented in its dimensionless forms, and the coupled system will be next integrated to recover
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its soliton solution. The complete discriminant method is the tool of integration today. The
intermediary functions that made these soliton solutions retrieval possible are Jacobi’s elliptic
functions, with the limiting value of the modulus of ellipticity approaching unity. Also, we
disregard additional solutions, including singular periodic solutions and plane waves, that arise
from alternate signs of the discriminant [22-26], as they are irrelevant to the context of
optoelectronics. The results and their derivations are exhibited in the rest of the paper after a
quick introduction to the model.

2. Mathematical analysis

2.1. Governing model

The governing model for the dispersive concatenation model with differential group delay is
the coupled system [21]:
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Here u(x,t) and v(x,t) are the wave amplitudes of the split pulses that have emerged due to

birefringence. The first terms with coefficients i are the linear temporal evolution along the
two components of the pulses. The second term a()) is the coefficient of chromatic

dispersion along the two components of birefringent fibers. Then by) and bgj) for j=1,2 are
the coefficients of self-phase modulation (SPM) and cross-phase modulation (XPM) effects

respectively. Next, 65}1‘) and 05’2') are the SPM and XPM for intermodal dispersions
respectively. Now o-éj) is with fourth-order dispersions along the two components of a
birefringent fiber. Again, crfé) and cr‘(é) are the SPM and XPM for second-order dispersions,

respectively. Also, 0(1) stands for the SPM with quintic form of nonlinearity, while Géé) and
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aéé) account for XPM with quintic nonlinearity. However, aé{), aéé), aé{), a%), Gé{), and
Géé) come from the radiative effect of the solitons that stem from four-wave mixing (4WM)
effect and other sources of small-amplitude dispersive effects. Then, ng) comes from the

fifth-order dispersions along the two components of birefringence. Next up, 0%)1 and 0%)2
are the components of SPM and XPM that stems from third-order dispersions along the two

components. Again crﬂ)l is the SPM coefficient due to intermodal dispersion along the two
components while 651 ) and 611)3 are the coefficients of XPM due to intermodal dispersion

along the two components. Finally O'§2)1' agjz)z, ag)l, 0'%)2, O'ﬁ)l' aﬁ)z, o{é)l and Ggs)z,are
additional terms from soliton radiation along the two components that emerge from multi-
wave mixing and other sources. It is worth mentioning that the effect of 4WM, which
emerges from XPM, is ignored in the derivation of the model Egs. (2) and (3). This is to keep
the coupled system simple without additional nonlinear effects. Apart from neglecting the
4WM effects, the remaining included terms are equally important as they directly emerge
from the dispersive concatenation model.

This coupled system will now be integrated with the aid of the complete discriminant
approach after some preliminary mathematical analysis. We set the traveling wave
hypotheses as follows:

u(x,6)=0Q;(&)e?(xt), v(x,6)=0Q,(&)eid(xt), &=k(x-vt), ¢(xt)=—hx+ot+i. (3)
Here, Q,(é) for j=1,2 represents the amplitude component of the soliton, while & is the

wave variable, where v is the speed of the soliton and k is the width of the soliton. Also,
#(x,t) is the phase component of the soliton, where h is the wave number, @ is the

frequency, and ¢ is the phase constant. Substituting Eq. (3) into Egs. (1) and (2), the real
parts stick out as:
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and the imaginary parts evolve as:
el ool ol or
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where [=1,2. Setting:

Q= %01, (6)
Egs. (4) and (5) come out as:
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From Eq. (8), we obtain the velocity:

v= %(—Za(l)kh +36{ o {kh2 + a5V ks — 55 cht ), )

along with the necessary restrictive conditions:
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Abbreviate the real part of Eq. (7) as follows:
A0 + AQF01 + AgQ + AyQ1(Q1)? + By Q3 + ByQf + B3Q; =0, (11)
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where
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We take the trial equation
(@ = i (9). (13)

i=0
After substituting Eq. (13) into Eq. (11), we balance Q;" and Q7 to determine that n=4. The
trial equation can be expressed as:

where

24y~ Ay (24, + A,)* ~964,B,

C4 == ’ C3 = 0!
484, (15)
—-2B, —4Asc, —Bs — Ascy — Ajc
C2 Cl = O’ CO = .
2(Ay+ A, +20Alc4) A, +12A.¢c,
Therefore, Eq. (14) reduces to (Q;)2 =c,4Qf +c,Q7 +cy. Take the transformation
1 1
P=(4c,)3QF, & =(4c,)3¢, (16)
which turns Eq. (14) into:
_dP
P: )2 =P3+d,P2+d,P, P , 17
(7,) oPLediP Py =0 (17)
where
_2 1
dy=4c,(4cy) 3, dy=4cy(4cy) 3. (18)

Simplify Eq. (17) to the integral form:

+(& &)= J% (19)

03056 Ukr. ]. Phys. Opt. 2024, Volume 25, Issue 3



Optical Solitons for the Dispersive Concatenation

where &, is the center position of the pulse:

F(P)=P(P2+d,P+d,). (20)
We give the second-order polynomial discriminant system:

A=d3-4d,. (21)

In order to find the solutions to the original equation, we employ the second-order
discriminant system to classify the roots of the polynomial F(P). We can obtain optical
soliton solutions by resolving the corresponding integrals [22-26].

3. Optical solitons
Case-1: A=0.For P>0, if d2<0, the dark and singular solitons stand as:

(4 1[4 1 v
u(x,t)= {(4c4) 3 [—%tanhz (E —72[(4{4)3 E— éO]D} el(-hx+ot+) (22)
1/2
Uy (x,£) = {(4c4)‘§ [—%cothz [% /—%((4(:4);5 - gom} eil-herats) | (23)

respectively.

and

Case-2: A>0 and di=0. For P>-d,, if d>>0, the dark and singular solitons shape up as:

1/2
A0 d 1 d 1 _
u3(x,t):{(4c4) 3 [—%tanh2 [E‘ /—?2[(%4)3 & —§0D—d2J} ei(-hx+ot+l) (24)
1 g 1 [d 1 v
u,(x,t) =1 (4c,) 3 —72coth2[5 /—72((4(:4)35—50} —dy |V eil-hrratt) | (25)

respectively.

and

Case-3: A>0 and d; #0. Suppose that p; < p, < p3, one of them is zero, and the other two

areroots of P2+d,P+d;.For p; <P < p,, the snoidal wave turns out to be:

1 - . 1/2
us(x,t)= {(464 )3 {Pl +(pp = py)sn2 %(((464 )3¢ —&J.mﬂ} ) (26)

xel(—hx+ot+1)

and for P> p;, the combo snoidal and cnoidal wave appears as:

— 1
P35 — PySn2 p32p1(((4€4 )3& - éoj,m]
anJpaz—Pl[((%); - 5")"") . (27

1/2

Uug(x,t) =1 (4cy )_%

xel(—hx+ot+1)

where m2=22"P1 por Egs. (26) and (27), the corresponding optical solitons that emerge
P3~P1

when m— 1- are:
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) — . 1/2
L P e (O R

xel(—hx+ot+1)

and
1/2

[on 1
|| P3— potanh? ,032P1([(4C4 )3&- ffojj

ug(x,t)=1(4c,) 3
sech? \/’032_’01(((4% )% &- éojj

which are the dark and singular-singular straddled soliton solutions, respectively.

el(-hx+ot+1) (29)

Case-4: A <0, for P>0, the cnoidal wave stands as:
1/2

ug(x,t) =1 (4c, )_% T 2@1 -d; ei(-hx+ot+) -~ (30)
1+ cn2d} [((404 )3&- éoj,mj

1 d,
where m2 ==—
4d;

. When m — 1- one recovers the singular optical soliton as:

1/2

upo(x,t)= (4c4)_% T 2\/dy - -Jd; ei(-hx+ot+) - (31)
1+sech2d} [((4@1 )3&— .):OD

In this section, we recovered the soliton solutions u(x,t). Through relationship (6), we can
directly obtain the solutions v(x,t), so the solutions for v(x,t) are omitted here. Surface,

contour, and 2D plots in Figs. 1, 2, and 3 showcase the dark soliton solution (22). These
visual representations offer a comprehensive and insightful overview of how the dark soliton
solution behaves within the specified parameters, contributing to the understanding and
analyzing these complex mathematical phenomena. The parameters used in these

simulations are as follows: & =1, ¢, =1, d,=-1, k=1, h=1, al) =1, 6%1):1, 6%1):1,

sV =1, oM =1, oV =1,and o{V) =1.

Fig. 1. Surface plots of dark solitons in birefringent fibers.
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Fig. 3. 2D plots of dark solitons in birefringent fibers.

4. Conclusions

The current paper recovered optical soliton solutions to the dispersive concatenation model
with polarization-mode dispersion. The complete discriminant approach was to the rescue.
We ignore the emergence of singular periodic solutions and plane waves due to alterations in
the discriminant's signs [22-26], as they hold no significance in optoelectronics. Thus, from
the optics perspective, a complete spectrum of optical solitons has been recovered using the
complete discriminant approach and is being reported in this paper. These solutions are
fundamental in carrying out further future investigations of the model. Later, this model will
be applied to retrieve gap solitons with fiber Bragg gratings and quiescent optical solitons
for nonlinear chromatic dispersion. Later, the model will be numerically addressed using the
Laplace-Adomian decomposition approach and/or variational iteration method. The results
of such research activities will be sequentially disseminated after they are all connected with
the pre-existing ones [22-26].
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AHomayisa. Y yili cmammi ompumaHi po38’A3KU ONMUYHUX CO/iMOHI8 0 Modei
ducnepciiiHoi koHkameHayii 3 ducnepciero noasipusosaHoi modu. OmpumaHHs pe3yabmamis
CcMaso MoNHCAUBUM 3A80IKU BUKOPUCMAHHIO NOBHO20 OUCKPUMIHAHMHO20 hidxody. [IpomixcHi
eainmuyHi @yHkyii Ako6i nocmynuaucsi Micyem cONIMOHHUM PO38°s13KaM i3 3acCmocy8aHHIAM
00 HUX 2paHuYHuUX ymos. B pobomi kaacugikoeani i 306pasiceHi Yyi conimoHu.

Kamouoei cioea: modeav koHkameHayii, conimoHu, ducnepcisi, 06 mexceHHs napamempie
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