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1. Introduction 
The study of optical solitons has been going on for the past few decades, and this area of research 
in nonlinear optics is still burning bright [1-20]. One of the several models that have been 
addressed is the dispersive concatenation model. It is a sequel to the concatenation model first 
proposed in 2014 [8, 9]. Subsequently, the same group proposed its dispersive version the 
following year. This form of the concatenation model contains higher-order dispersion terms and 
is, therefore, referred to as the dispersive concatenation model. It conjoins three of the familiar 
models from nonlinear optics that governs the propagation of solitons through optical fibers 
across trans-continental and trans-oceanic distances. These are the Schrodinger-Hirota equation 
(SHE), the Lakshmanan-Porsezian-Daniel (LPD) model, and the dispersive nonlinear 
Schrodinger’s equation (NLSE). 

The model has been extensively studied during the past year using several approaches. The 
conservation laws have been retrieved [21], the model was next studied with a power-law form 
of self-phase modulation (SPM) [22], the quiescent optical solitons have been recovered for the 
model with nonlinear chromatic dispersion [23], the method of undetermined coefficients was 
applied to gain a full spectrum of optical solitons [24], and the conservation laws for the model 
with power-law of SPM were also reported [25, 26]. The current paper turns the page to address 
the bifurcation analysis of the model. The corresponding dynamical system is analyzed, and the 
phase portraits are exhibited for the model. Subsequently, using this approach, the cnoidal waves 
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and the soliton solutions are retrieved for the model. 
It must be noted that bifurcation analysis for the Radhakrishnan-Kundu-Lakshmanan (RKL) 

equation has already been studied in the past [21]. For the RKL model, the bifurcation analysis led to 
the formulation of dispersive optical solitons. However, the current model, which is the dispersive 
concatenation model, involves the conjunction of three well-known models containing third-order 
dispersion (3OD), fourth-order dispersion, as well as fifth-order dispersive effects stemming from the 
SHE, LPD model, and the dispersive NLSE. This is a departure from the RKL equation, which contains 
only 3OD. The current model addressed in this paper, with higher-order dispersion terms and a 
conjunction of three well-known models, may lead to new results. 

2. Mathematical analysis and phase portraits 
In the current work, the concatenation model in its dimensionless form is considered in the 
following form 

 
 




2 21 1 1 1 2
2 4 2 2 * 2 *2 3 4 5 6 7 8

2 4 *3 9 10 11 12
* * * 213 14 15

| | | |

| | | |

| |
0,

t xx xxx x

xxxx xx x x xx

xxxxx xxx x x xx

x xx x xx x x

iu a u b u u i u u u

u u u u u u u u u u u

i u u u u u uu u

u u u uu u u u

  

      

    

  

   

     

   

   

     (1) 

where  ,u u x t  is the complex-valued wave function, which represents the soliton profile. 
x  denotes the normalized propagation and t  stands for the retard time. The first five terms 
are from SHE, while the coefficient of  2  is from the LPD equation, and the coefficient of 3  
is from the dispersive NLSE. The coefficient of 1a  is the chromatic dispersion while the 
coefficient of 1b  accounts for the Kerr law of SPM. Finally, the coefficients of j  for j = 1,....,15 

and j  for j = 1, 2, 3 are all real-valued constants. x  denotes the normalized propagation 

and t  stands for the retard time. The first five terms are from SHE while coefficient of 2  
are from the LPD equation and the coeffocient of 3  are from the dispersive NLSE. The 
coefficient of 1a  is the chromatic dispersion while the coefficient of 1b  accounts for the Kerr 
law of SPM. Finally, the coefficients of j  for j = 1,....,15 and j  for j = 1, 2, 3 are all real-
valued constants. 

In order to derive optical soliton solutions, traveling wave solutions, and bifurcation phase 
diagrams for the concatenation model (1), we first decompose: 

         ,
0 0, Φ ,  ,  , ,i x tu x t e k x v t x t x t              (2) 

where  Φ   is a real-valued function representing the amplitude component of the soliton, 
and 0v  represents its velocity. The coefficient   represents the frequency of soliton, while   
and 0  denote the wave number and phase constant, respectively. Substituting (2) into (1) 
and then decomposing it into real and imaginary parts, we get: 
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Imaginary part:  
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Certain restrictions are provided by Eq. (3) when the coefficients of its linearly independent 
functions are set to zero, as shown below  

2 5 4 31 3 9 2 3 1 1 0,a                    (5) 

 2 3 21 3 9 2 3 1 110 6 3 0,k a                (6) 
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   2 3 12 13 14 15 2 6 72 2 2 0,k                    (8) 

3 11 2 5 0,          (9) 

   2 3 10 12 13 14 2 4 83 0,k                    (10) 

and 
 4 3 9 2 35 0.k           (11) 

According to the imaginary part (4), we know that the soliton speed reaches:  
3 20 1 2 3 1 12 4 3 ,v a               (12) 

along with the parameter constraints:  
  2 4 6 7 8 3 13 1 22 4 0,                  (13) 

9 10 11 15 0,            (14) 

12 13 14 0,          (15) 

and  

2 3 1 14 0.          (16) 

From the restrictions (14)-(16), Eq. (4) can be rewritten as follows: 
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Integrating Eq. (17) once, one has  
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For Eq. (18), denote Φ' y , it is easy to find that Eq. (18) can be transformed as the 

following planar dynamical system  

 
31 2

Φ ,

Φ Φ,h h

d y
d
dy N N
d





 

   


     (19) 



Lu Tang et al 

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 3 03034 

with the Hamiltonian system  

   1 22 4 21Φ, Φ Φ ,
2 4 2

h hN NH y y h        (20) 

where  
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Note   31 2Φ Φ Φh hH N N   . When 1 2 0h hN N  , we obtain there exist three zeros of  ΦH , 

which include 0Φ 0 , 2
1

1
Φ h

h

N
N

   and 2
2

1
Φ h

h

N
N

 . When 1 2 0h hN N  , we get one zero of 

 ΦH , which is 3Φ 0 . Assume that  Φ ,0i iS   0, 1, 2i   represents the equilibrium points 

of the system (19). Thus, the eigenvalue of (19) at the equilibrium point is  1,2 ' ΦH   . It 
follows from the bifurcation theory of planar dynamical systems [3, 4], we obtain that the 
point  Φ ,0i iS  is called saddle point if  ' Φ 0iH  . The point  Φ ,0i iS  is called a degraded 

point if  ' Φ 0iH  . The point  Φ ,0i iS  is called the center point if  ' Φ 0iH  . From this, we 
get the phase portraits of the system (19) that depend on different parameters 1hN  and 2hN , 
shown in Fig. 1 and Fig. 2. 

      
(a)      (b) 

Fig. 1. The bifurcation phase portraits of the system (19): (a) the case 1 0hN  , 2 0hN  ; (b) the case 

1 0hN  , 2 0hN  . 
 
Case 1. 1 0hN , 2 0hN . 

In this case, it is notable that  1 2 1 ,0h hS N N  and  2 2 1 ,0h hS N N  stand for the center 

points, while the origin point  0 0,0S  represents a saddle point. 

 i  For  2
12 4 ,0hhh N N  , we find two families of periodic orbits (see Fig. 1(a)). Thus the 

Eq. (19) can be rewritten as follows:  
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(a) (b)  

Fig. 2. The bifurcation phase portraits of the system (19): (a) the case 1 0hN  , 2 0hN  ; (b) the case 

1 0hN  , 2 0hN  . 

 

By integrating the first equation of Eq. (19) along the periodic orbits in the right(left) half-
plane via the Eq. (20), one has  
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From the Eqs. (2), (22), and (23), the smooth periodic wave solutions of system (1) take the 
form  
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where  dn ,   is the Jacobi elliptic function. 

 ii  For 0h  , we find that 2
1 0m   and 2

2 12 2 h hm N N  . As a result, we construct two 

families of bell-shaped soliton solutions of Eq. (1) in the following form (see Fig. 3):  

        2
2 2 0 0 0

1

2, sech exp .h
h

h

Nu x t N k x v t i x t
N

            (25) 



Lu Tang et al 

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 3 03036 

             
(a)      (b) 

Fig. 3. The graphics of bell-shaped soliton solution given by Eq. (25) at 1 1hN  , 2 2hN  , 0 2v  , 
1k  , and 0 0  : (a) real 3D surface; (b) real 2D surface. 

 
 iii  For  0,h  , the first equation of Eq. (19) can be rewritten as follows:  
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Next integrating the first equation of system (19) along the periodic orbits in the right(left) 
half-plane via Eq. (26), one has:  
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It follows from Eqs. (2) and (27), we derive two families of periodic soliton solutions of 
system (1) that take the form:  
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where  cn ,   is the Jacobi elliptic function. 

 
Case 2. 1 0hN , 2 0hN . 

Under the conditions of 1 0hN  , and 2 0hN  , it is notable that the system (19) has two 

heteroclinic orbits, which connect two saddle points  1 2 1 ,0h hS N N  and  2 2 1 ,0h hS N N .  

Thus, there is a family periodic orbits, which enclose center point   0 0,0S  (see Fig. 1(b)). 
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, we deduce a family of periodic of (19) defined by the algebraic 

equation as follows:  
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Substituting Eq. (29) into the first equation of (19) and integrating them along the 
periodic orbits, one has:  
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From Eqs. (2) and (30), the periodic soliton solutions of system (1) take the form:  
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where  sn ,   is the Jacobi elliptic function. 
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   . Thus, two families of kink-shaped 

solitary solutions of system (1) take the form (see Fig. 4)  
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The distinction between the dispersive concatenation model and the RKL equation does not 
lie not in the exact replication of results but rather in the comprehensive integration of various 
dispersion effects and underlying models. While the figures may exhibit similar outcomes, it is 
crucial to note that the mechanisms driving these results differ significantly. 

        
(a)     (b)  

Fig. 4. The graphics of a kink-shaped solitary solution given by Eq. (32) at 1 1hN  , 2 2hN   , 0 3v  , 

1K  , and 0 0  : (a) real 3D surface; (b) real 2D surface. 
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The dispersive concatenation model amalgamates three well-known models, each 
contributing distinct dispersive effects: third-order dispersion, fourth-order dispersion, and fifth-
order dispersive effects stemming from the SHE, the LPD model, and the dispersive NLSE, 
respectively. This integration offers a more nuanced representation of the underlying physical 
processes. 

Conversely, the RKL equation primarily addresses third-order dispersion and may not 
capture the higher-order dispersion effects in the dispersive concatenation model. While some 
similarities in the results may exist, the underlying physics and the comprehensive consideration of 
dispersion effects in the dispersive concatenation model distinguish it from the RKL equation. 

3. Conclusions 
This paper carried out a comprehensive analysis of the dispersive concatenation model from 
the bifurcation analysis perspective. The dynamical system yielded the phase portraits of the 
model. This led to the soliton solutions of the model. These results thus give a fresher and a 
different perspective to the model. These interesting results are new and are being reported 
here for the first time. The results are very prospective toward future efforts with the same 
model. A natural extension of this study would be to look at the dispersive concatenation 
model with the power-law of SPM and carry out its bifurcation analysis. Later, the model 
would be studied from various perspectives, such as carrying out its numerical analysis with 
the aid of Laplace-Adomian decomposition, addressing it with differential group delay, and 
eventually, for dispersion-flattened fibers. Such results would be sequentially disseminated 
after aligning them with the pre-existing ones [13-20]. 
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Анотація. У цій роботі проведено біфуркаційний аналіз дисперсійної моделі 
конкатенації з законом Керра фазової самомодуляції. Cпочатку формулюється 
динамічна система і аналізуються фазово-площинні портрети. Після цього з аналізу 
відновлюються відповідні розв'язки солітонів. 

Ключові слова: біфуркаціний аналіз, оптичні солітони, дисперсійна модель 
конкатенації 


