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Abstract. The current paper recovers quiescent optical solitons for the Radhakrishnan–Kundu–Lakshmanan 
equation with a power law of self–phase modulation and nonlinear chromatic dispersion. The Lie symmetry 
analysis leads to stationary bright optical soliton solutions for linear and generalized temporal evolution. The 
parameter constraints for the existence of such solitons are enumerated.  
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1. Introduction 
The formation of quiescent optical solitons is a gigantic taboo in optoelectronics. The 
propagation of pulses through optical waveguides across trans-continental and trans–oceanic 
waveguides would be stalled, and catastrophic consequences would ensue. Therefore, it is 
imperative to study such solitons in optics. One of the leading causes for forming such kinds of 
solitons is when the chromatic dispersion (CD) is rendered nonlinear. The concept of quiescent 
solitons with nonlinear CD was first conceived in 2006, and later, a deluge of results started 
pouring in from this topic that received immense attention [1–15]. Various approaches have 
been implemented to address such quiescent solitons. The most popular approach is the one 
that implements Lie symmetry. Several models were also addressed to recover such solitons 
with nonlinear CD and a wide range of self–phase modulation (SPM) structures [1–13]. Some of 
these models that have been studied in this context are the nonlinear Schrödinger’s equation, 
Lakshmanan–Porsezian–Daniel model, concatenation model, dispersive concatenation model, 
Sasa–Satsuma equation, and several others. 



Abdullahi Rashid Adem et al 

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 3 03014 

The current paper will focus on the Radhakrishnan–Kundu–Lakshmanan (RKL) equation 
with nonlinear CD and arbitrary intensity along with third–order dispersion (3OD) and fourth–
order dispersion (4OD) terms. Incidentally, the RKL equation with nonlinear CD was already 
studied, and the integration methodologies were widely varied and completely different [13]. 
The wide variety of algorithms that were applied are sine–Gordon equation procedure,  
F –expansion approach, Riccati equation expansion, '/G G –expansion, Kudryashov’s 

methodology, exp–expansion, and the extended Jacobi’s elliptic function expansion. The model 
was, however, not considered with generalized temporal evolution. Only a special case of the 
nonlinear form of CD yielded results for the linear temporal evolution. This work strictly 
implements a far more robust approach to handle the model, namely Lie symmetry that 
reveals quiescent bright optical solitons. The paper is divided into two sections. First, the 
focus is on linear temporal evolution followed by generalized temporal evolution. In both 
cases, the parameter constraints for the existence of such solitons are enumerated. The 
details are exhibited in the rest of the paper. 

2. Linear temporal evolution 
The RKL equation with linear temporal evolution and nonlinear CD and general intensity is 
given as:  

 
   

2

2 2 2
1 2 3 4 .

n m
t xx

m m m
x xxx xxxx xxt xxxtx x

iq a q q b q q

i q q i q q i q q i q q i q q      

 

      
 (1) 

Here, in Eq. (1), ( , )q q x t is a complex-valued function representing the soliton profile, 

 represents the coefficient of self-steepening for short pulses,   is the higher-order 

dispersion coefficient,  is the inter-modal dispersion, the first term is the linear evolution 

term with its coefficient being 1i   . The coefficient of a  is the nonlinear CD with n  being 
the parameter of nonlinearity. For 0n  , the CD is linear. The coefficient of b  is the SPM with 
the parameter m  representing the general intensity. The dispersive parameters are given by 
the coefficients of j  for 1 4j  , which account for 3OD and 4OD for both, spatial and 

spatiotemporal. Eq. (1) does not support mobile solitons because the CD is nonlinear. 
Therefore, to locate the stationary solitons, the following substitution is selected:  
     , e .i tq x t x      (2) 

where  x  and   represent the amplitude component and frequency of the soliton, 

respectively. Upon substituting Eq. (2) into Eq. (1) and decomposing the resulting equation 
into real and imaginary components reveals the following pair of relations:  
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and  
           21 4 2 1 2 0.mx m m x x                (4) 

For integrability of Eq. (1) the following constraint conditions on the parameters must hold:  
 1 4 0,          (5) 
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 2 0,        (6) 

 1,n         (7) 
and  

  2 1 2 0.m m           (8) 

Implementing these constraints, the governing model given by Eq. (1) transforms to:  
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while Eq. (3) simplifies to:  
     2 13 0.mx x b x          (10) 

The above equation admits a single Lie point symmetry, namely / x  . With the 

implementation of this symmetry, the following solution is yielded:  
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Thus, the quiescent bright 1–soliton solution is given by:  
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which remains valid for  
 0,b        (13) 

and  
 3 0.        (14) 

3. Generalized temporal evolution 
The RKL equation with generalized temporal evolution reads:  
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In Eq. (15), the parameter l  represents the generalized temporal evolution. For 1l  , one 
recovers linear temporal evolution as given by Eq. (1). Applying the same transformation as 
given by Eq. (2), the real and imaginary components that come out of Eq. (15) are:  
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and 
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From Eqs. (16) and (17), the following constraints naturally emerge for integrability:  

1 4 0,l          (18) 

0,n l        (19) 

 2 2 0,l m l m           (20) 

and Eq. (6). Based on these relations, the governing model (15) reformulates as:  
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while Eq. (16) simplifies to:  

            22 2 2 23 1 0.ml x x l x l x b x              
   (22) 

The above equation again admits a single Lie point symmetry, namely / x  . Using this 

symmetry and performing the integration leads to its solution:  
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where the negative sign is discarded since the soliton would be pointing downward. Thus, 
the bright quiescent 1–soliton solution is given as:  
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This quiescent soliton solution remains valid for the same constraint conditions as Eqs. (13) 
and (14), and in addition to Eq. (13), one must have  

.m n       (25) 

4. Conclusions 
The paper identified bright quiescent optical solitons for the RKL equation with arbitrary 
intensity and 3OD and 4OD terms. The Lie symmetry analysis was the integration algorithm 
that made this retrieval possible. Unlike several other models, where only implicit quiescent 
optical solitons were recovered, the RKL model gave way to bright quiescent optical solitons 
[1–12]. Linear temporal evolution and generalized temporal evolution were considered. The 
parameter constraints for the existence of such solitons are also presented. The results of 
this paper are indeed very encouraging. Later, the model will be addressed with different 
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forms of SPM for the RKL equation. Additionally, this study will combine several other 
models for different optoelectronic devices. The research results of such findings will be 
disseminated after aligning them with the pre–existing works [16–28]. 
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Анотація. У цій статті продемонстрована можливість існування стаціонарних 
оптичні солітонів в моделі рівняння Радхакрішнана–Кунду–Лакшманана зі степеневим 
законом самофазової модуляції та нелінійною хроматичною дисперсією. Аналіз 
симетрії Лі приводить до появи стаціонарних світлих оптичних солітонних розв’язків 
при лінійній та узагальненій часовій еволюції. Встановлені параметричні обмеження 
для існування таких солітонів. 

Ключові слова: світлі солітони, стаціонарні солітони, симетрія Лі 


