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Absract. The current paper studies the Lakshmanan–Porsezian–Daniel equation with nonlinear chromatic 
dispersion and Kerr law of self–phase modulation having generalized temporal evolution. The governing 
model is analyzed using Lie symmetry. The implicit solution is in terms of Appell hypergeometric function. The 
parameter constraints of the solutions are also enumerated.  
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1. Introduction 
One of the most important optoelectronics and quantum optics models is the Lakshmanan–
Porsezian–Daniel (LPD) model [1, 2]. This equation has been extensively studied in various 
contexts. A modified version of this model was also studied when the chromatic dispersion (CD) 
was replaced by the third–order and fourth–order dispersion pair, and the solitons that emerged 
from this model were referred to as cubic–quartic solitons. In this context, the perturbed version 
of the cubic–quartic LPD model was analyzed using the semi-inverse variational principle [2]. The 
quiescent optical solitons, with nonlinear CD and Kerr law of self–phase modulation (SPM), were 
also addressed in 2021 [1]. However, the case with generalized temporal evolution was 
inadvertently omitted in the study of quiescent optical solitons. Only the linear temporal 
evolution was covered. The current paper, therefore, brings in the required closure. The Lie 
symmetry analysis is applied to the LPD model with generalized temporal evolution, and an 
explicit solution has been found. The parameter constraints are also enumerated for the solutions 
to exist. The details are jotted down in the subsequent section. 
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2. Generalized temporal evolution 
The dimensionless form of the LPD equation with Kerr law nonlinearity having generalized 
temporal evolution and nonlinear chromatic dispersion is given as:  
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In Eq. (1), the complex–valued function  ,q x t  represents the wave amplitude while the 

independent variables x  and t  account for the spatial and temporal co–ordinates, respectively. 
The generalized temporal evolution is characterized by the parameter l . If 1l  , this model 
collapses to the regular version of LPD equation, with linear temporal evolution and Kerr law 
nonlinearity having nonlinear chromatic dispersion as it was studied during 2021. The first term 
is, therefore, the generalized temporal evolution, with its coefficient being 1i   . The 
coefficient of a  is the nonlinear chromatic dispersion, whereas n  is the nonlinearity parameter. 
Next, the coefficient of b  accounts for SPM that comes from Kerr’s law of nonlinear refractive 
index change, c is real-valued constant, which yields the coefficient of higher-order dispersion, qx 
is the inter-modal dispersion,  qxx is the chromatic dispersion, qxxxx is the fourth–order dispersion. 
On the right-hand side, the terms are from the LPD model with the same physics [1].The 
coefficients of all terms for the model (1) are all real-valued constants.  

In order to solve Eq. (1) for quiescent optical solitons, the following substitution is 
selected:  

     ,, ei tq x t x       (2) 

where  x  is the amplitude component of the waveform (2) and  is the wave number of 

the soliton. Substituting Eq. (2) into Eq. (1) and decomposing into real and imaginary parts, 
the following pair of relations emerge:  
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For integrability, the following constraints must hold:  
 0,        (5) 
 0,        (6) 

and  
 0.c        (7) 

With these parameter constraints in place, the governing model (1) shrinks to:  
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and thus Eq. (4) collapses to:  
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The above Eq. (9) admits a single Lie point symmetry, namely / x  .  

This symmetry will be used in the integration process and it leads to the following implicit 
solution in terms of the Appell hypergeometric function of two variables:  
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where  
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and  
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The Appell hypergeometric function of two variables:  
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has a primary definition through the hypergeometric series:  
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where ( )ma  is the Pochhammer symbol and the series is convergent inside the region:  
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The parametric restriction (16) translates to:  
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together with:  
 2 3 0,A A        (18) 

and  

2 2 3 .bA A A       (19) 

The Appell hypergeometric function (10) stands valid with the condition:  
0.a         (20) 

3. Conclusions 
The current paper addressed the LPD equation with nonlinear CD and the Kerr law of SPM 
with generalized temporal evolution. This yielded the implicit solution in terms of the Appell 
hypergeometric function. The results are consistent with those reported earlier with linear 
temporal evolution. Upon setting the generalized temporal evolution parameter to unity, it is 
observed that the results scale back to the previously reported results with linear temporal 
evolution. The results of the paper and the model serve as monumental prospects down the 
road. The model will be studied numerically later, and the corresponding bifurcation analysis 
will be carried out. Later, this model will be further analyzed for quiescent optical solitons 
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and the power law of SPM. These results will be aligned with the pre-existing ones and 
reported [3–5]. 
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Анотація. У цій статті досліджується рівняння Лакшманана–Порсезіана–Деніела з 
нелінійною хроматичною дисперсією та законом Керра самофазової модуляції, що має 
узагальнену часову еволюцію. Модель аналізується за допомогою симетрії Лі. Неявний 
розв’язок отримано в термінах гіпергеометричної функції Аппеля. Перераховані також 
обмеження параметрів рішень. 
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