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Abstract. The fundamental mode effective area of photonic crystal fiber (PCF) is calculated numerically using
the cubic polynomial correction function as the correction factor of Marcuse and Petermann II equations. The
numerical calculations are implemented using modified Marcuse and Petermann II methods for six different
PCFs in the 1-2 um wavelength range. The full-vectorial finite element method-based simulations are utilized
to determine the effective area and coefficients of the cubic polynomial functions. After using the correction
functions, by comparing the calculated effective area values with the values from the simulations, residuals of
correction are obtained in the range of -1.11x10-3 pm? - +2.66x10-3 pm? and -1.4x10-3 pm?2 - +5.112x10-3 um?
respectively. These low residual values indicate that the offered method can be used successfully to calculate
the wavelength-dependent effective mode area of PCFs in the investigated wavelength range without using
simulations and complex theory.
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1. Introduction
Photonic crystal fibers (PCFs) are an important milestone in developing optical fibers, which

have been utilized for decades due to their superior transmission properties compared to
copper lines in communication networks [1, 2]. PCFs, produced from a single material,
contain holes enclosed in the fiber cladding, arranged periodically/aperiodically, and parallel
to the fiber axis. Compared to conventional fibers, PCFs have very beneficial properties [3-5]
depending on changes in their geometry. They can theoretically be designed as single-mode
with infinite bandwidth [2, 4]. PCFs' dispersion, birefringence, and nonlinearity properties
can be tuned to required values with appropriate geometric designs [6]. Additionally, PCFs
have low bending losses [1-7].

There are several modeling methods for examining modes and mode properties in PCFs,
such as the effective index approach [2, 8-12], plane-wave expansion (PWE) method [8, 9],
localized-function method (LFM) [9, 12], multipole method (MM) [8, 9], beam propagation
method (BPM) [8, 9], finite-difference method (FDM) [8, 13], finite-difference time-domain
method (FDTD) [8, 9] and finite-element method (FEM) [8, 9, 14, 15]. As widely recognized
in various research fields, FEM is also reliably used in PCFs as it has flexible and effective
features [15].

The effective mode area, which is one of the significant characteristics of the
fundamental mode in optical fibers, is essential in terms of dispersion [16], nonlinearity [17],
splicing and bending losses [18], and confinement loss (an inherent feature of PCFs) [19].
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If the fundamental mode is restricted in the core region and has a small area, nonlinear
effects appear because the effective area and non-linear coefficient are inversely
proportional. Non-linear PCFs are exploited in many optical non-linear processes.
Supercontinuum generation in PCF has recently become a prominent research field of non-
linear effects [20-22].

In order to meet the need for very high bit rates in optical communication networks,
studies are carried out on very high-capacity fibers with wavelength division multiplexed
and space division multiplexed [23]. In high-capacity fibers of long-haul communication, due
to the summing of many multiplexed channels, transporting high power density of light
causes nonlinear effects in fibers [24]. Therefore, the effective area must be large enough.
Since the non-linearity parameter must be calculated at small wavelengths for addressing
the non-linearity problem [25], and additionally, the critical radius must be taken into
consideration for the bend loss problem at both small wavelengths and large wavelengths
[2], the effective area value depending on the wavelength must be accurately determined in
optical fibers that carry high power light in transmission fibers of communication networks.
Again, a large effective area in the fiber optics is favored to avoid these nonlinear effects,
provided that care is taken not to increase bending losses [26].

The effective mode area is a critical parameter in many PCF applications. For example, in
fiber lasers and fiber amplifiers, the power is desired to be delivered with low nonlinearity, so
the mode area should be calculated accurately. Considering the importance of the PCF effective
area in various applications, such as communication and supercontinuum generation, research
is conducted using established fiber theory as a milestone. As is well-known, for the circularly
symmetric cylindrical step-index fibers (SIF), the fundamental mode's radial electric field
distribution is considered Gaussian-shaped [27]. In this case, the mode field diameter (MFD) is
used to calculate the effective mode area in SIFs [17]. Using similar approaches, numerous
studies have been conducted to define and calculate the V-number, which is an important
parameter for determining the PCF mode number and the mode area [8, 9, 12, 28]. Many
studies, in particular, have focused on measuring and calculating the MFD and the effective
area of the PCF fundamental mode. As one of the experimental studies, in the study of Miyagi et
al, at a wavelength of 1.55pm in some PCFs, MFD was measured by far-field scanning
technique and found by simulations. The effective area values of PCFs have been calculated
using the attained MFD values and correction factors at various values [17]. In addition, many
studies were based on simulation, analytical, and numerical calculations. For example,
Mortensen calculated PCF effective area numerically using a plane-wave basis model [29].
Nielsen et al. used numerical modeling to find effective index values and mode field radii in
PCFs [30, 31]. Saitoh and Koshiba's FEM simulation revealed that MFD increases as the hole
diameter to spacing ratio decreases in PCFs [9]. Sharma D. K. and Sharma A. employed an
analytical field model to compare MFD values for various PCFs in the 0.4-0.75 pm wavelength
range [32]. All these theoretical and experimental efforts in determining effective areas of PCFs
give researchers insights and approximate calculation opportunities. Although there are well-
developed empirical equations for PCFs [33] and approaches of Marcuse [30] and Petermann II
[16, 34], it seems that there is still a need for numerical methods for PCFs. It is needed to
contribute to the development of a numerical method for accurate calculation of PCF effective
area in a wavelength range.
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In this study, our work aims to perform numerical calculations using the Marcuse and
Petermann II methods to calculate the effective area of the fundamental mode in PCFs over a
broad wavelength range with relatively simple empirical equations. The effective area of the
fundamental mode is simulated and numerically calculated for a total of six different solid-
core PCFs made of silica glass, including two commercial ones. The calculations and
simulations covered a wavelength range from 1 to 2 um, using a package based on full-
vectorial Finite Element Method (FEM). To determine the effective V-number of the PCFs,
empirical relations Saitoh and Koshiba proposed [33] are employed in the numerical
calculations. The effective areas of the PCFs are computed using Marcuse [30] and
Petermann II definitions [16, 34] and a modified correction factor as a multiplier. In the
numerical calculations for the PCFs, correction factors are established as cubic polynomial
functions through data fitting. Following the implementation of these corrections using cubic
polynomial functions, residuals are identified in the modified Marcuse and Petermann II
methods for the PCFs. The rest of this paper is outlined as follows: Section 2 presents the
methodology used in this study and the relevant fundamental theory. Section 3 provides the
results, evaluations, and comparisons with previous studies. The study's conclusion is
presented in Section 4.

2. Materials and Methods
For SIFs, the fundamental mode area can be approximately calculated, assuming that the

shape of the fundamental mode is Gaussian. The fundamental mode area is calculated as a
circular area using diameter (MFD of the fiber), the radial width of electric field distribution
of guided single mode, taking the range between opposite el = 0.37 field amplitude points in
relation to the value at the fiber axis [27]. MFD can be measured by the spatial filtering
technique, the transverse offset technique, the near-field scanning technique, and the far-
field scanning technique [17, 18]. However, the electric field distribution of the fundamental
mode is not exactly Gaussian in PCFs because of holes and the shape of hole rings (mostly
hexagonal) in the cladding, as shown in Fig. 1. Therefore, the calculation of the mode area in
PCFs must be different and is called effective mode area.

Fig. 1. Fundamental mode field distribution and
geometry of the PCFs.

The effective mode area Ay of the fundamental mode in PCFs can be calculated as
where A is the operating wavelength in vacuum, k(A) is the wavelength-dependent correction
function, and wey is mode field radius of the fundamental mode in the fibers, also called
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effective modal spot size [35]. Petermann II and Marcuse approaches have been empirically
developed for step index fibers. Although several effective parameters can be applied to
calculate PCF with step index approaches, these parameters do not give the correct results for
the Ao because of the complex structure of the PCFs. Since the fundamental mode electric field
distribution in conventional fibers (considering circular symmetry) is accepted as Gaussian, the

effective mode field can be calculated as ﬂa)ezﬂc [17]. Due to the complex geometric structure of

the claddings of the PCFs used in this study, the fundamental mode electric field distribution is
not properly Gaussian, so a correction factor should be used to correct the calculations of the
effective areas. In this study, instead of a constant of k, a correction function k(A) is used as
differently from the previous study, where A is calculated at a single wavelength [17]. Due to
a correction constant not providing enough matching for every wavelength in a range of
wavelengths, utilizing a correction function k(1) was preferred.

Marcuse and Petermann Il empirical approaches are the most widely used methods for
calculating the mode field radius in step-index fibers. Since core and cladding structures are
different in PCFs from step-index fibers, several modifications must be adapted to use these
methods. In general, instead of V-number, effective V-number [9], and instead of core radius,
effective core radius is used to calculate the mode field radius with the Marcuse and
Petermann II approaches for PCFs.

For PCF structure, as mentioned before, by using effective V-number [9], the effective
mode field radius wey can be calculated by the empirical Marcuse formula [30] for Gaussian
field distribution as

,
o 654 1619 , 2879 @

3/2 6
Aoy Vif'er  Ver
where aefis effective core radius in the fiber, and Ve is effective V-number.

A different method for calculating the radius of the fundamental mode that has a Gaussian
field distribution is the Petermann II approach [16, 34]. In the study of Hussey et al [34], by
combining Egs. (1) and (2) and using Verinstead of V, the formula for PCFs can be expressed as

Oepf 1.619 A 2.879 1.561
eff eff eff eff

In these Egs. (2) and (3), the effective core radius of PCFs is calculated as [9]

Aoy Z%' (4)

where A is the distance between the centers of two neighboring holes in the PCF cladding, as
shown in Fig. 1.

In order to calculate V. included in Egs. (2) and (3), effective indices of PCF modes
must be determined. Finding the effective indices of core and cladding modes in PCF requires
numerical modeling methods. Instead of finding the effective indices of PCF modes with
enormous and time-consuming numerical calculations, a calculation method has been
developed by Saitoh and Koshiba using some empirical relations [33]. By using this method,
the V-number of PCF namely V.5 can be calculated as [33]

d A
Veff(X’X) “At 1+A3exp(2A4ﬂ,/A) '

(5)
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The coefficients 4; in Eq. (5) are calculated as [33]

b; b; b;
d i1 d i2 d i3
a=ao+an[ ] vaal ] a7 (©)

In Egs. (5) and (6), d is the diameter of holes, which is in the PCF cladding as shown in
Fig. 1. In this study, the coefficients a; and b; in Eq. (6) are taken from the study of Saitoh and
Koshiba [33].

The Ve calculated in Eq. (5) is used in the Marcuse formula (Eq. (2)) and Petermann II
definition (Eq. (3)) to calculate wes The Aey values calculated with Eq. (1) and the Aqy values
from the simulation are used to determine the k(A) correction function in Eq. (1).

In the FEM-based simulations, parameters related to the geometry of the PCFs (d, A,
and fiber cladding diameter D) and the refractive index of silica glass, the material of which
the PCFs are made, are used as input parameters. Both calculations and simulations use six
different d/A ratios in the PCFs. The d/A ratios are 0.30, 0.40, ~0.44,~ 0.46, 0.50, and 0.60,
respectively, and the PCFs are named based on this order as PCF-i (i = 1 to 6). PCF-3 and
PCF-4 at ratios of 0.4374 and 0.46154 here belong to commercial products ESM-12B and
LMA-10, respectively. There are 126 holes in the cladding of the PCFs, and they are
arranged as six concentric hexagonal rings. The cladding diameter D is 125 pm in all the
PCFs. The distance between two holes in the claddings is 8 um in all PCFs except PCF-4,
where this value is 6.5 pm. In the simulations, a perfectly matched layer (PML) is used as
the outermost layer of the PCFs. FEM-based methods have been applied to PCF structures
in many studies due to their advantages in terms of accuracy [15]. However, they require
numerous and complex numerical calculations or access to high-cost programming
platforms. With the help of FEM-based simulations, the final results of the study are
straightforward and can be used to calculate the effective area of several PCFs using
relatively simple analytical equations.

3. Results and Discussion
Effective V-number (Vey) values for six different solid-core PCFs are calculated at various

wavelengths within the 1-2 pm of wavelength range using the Egs. (5) and (6). The effective
area Aeg of the fundamental mode is determined by finding the effective mode field radius,
which is obtained through the Marcuse and Petermann II relations given by Egs. (2) and (3).
Additionally, in the A calculations from Marcuse and Petermann II, at first the correction
factor k(A) is taken as 1 (k(A)=1). Additionally, with the simulation based on full-vector FEM,
the effective area of the fundamental mode in these PCFs was found for various wavelengths.

The wavelength-dependent variations of the A.; values obtained through three different
methods for six different PCFs are shown in Fig. 2. Ay values are plotted against wavelengths
in Fig. 2 while keeping the k(A) constant at 1 to show the importance of the correction
function. Obviously, both of the results for the Marcuse and Petermann II approaches differ
from the results found with FEM, as shown in Fig. 2.

While it is possible to use a constant instead of a correction function at a single wavelength,
as seen in the study of Miyagi et al. [17], it is not sufficient for the entire wavelength range
investigated in this study. The required correction functions for Aes values calculated at some
wavelengths with Marcuse and Petermann II approaches for each PCF are determined as relative
values for the FEM results. The relative effective area values (k(A) values) are obtained by
dividing the Marcuse and Petermann II values by the simulation values.
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Fig. 2. Variations of the effective area found in the six PCFs with 3 methods as a function of wavelength.
k(A)=1.0. M - Marcuse method, P - Petermann Il method.

Similar to conventional fibers, Ao in PCFs varies with wavelength. Additionally, as seen
in Fig. 2, the wavelength dependence of the A, values varies with d/A values. Apparently,
due to the complex geometry of PCFs, the correction function is expected to also depend on
wavelength. The correction functions are chosen as cubic polynomials due to being simple
while fitting significantly well to the relative Aey values with minimum residuals. If the linear
functions are used for the correction, very large residuals reaching 70% are obtained.
Quadratic functions could also be considered, but it is observed that cubic functions resulted
in lower residuals. The graphs of the wavelength-dependent k(A) values found with the two
methods for PCF-2 are shown in Fig. 3. The General expression of the wavelength-dependent
correction function is as follows

k(A)=AA3+BA2+CA+D. (7)

The coefficients in the cubic polynomial functions (4, B, C, D) given in Eq.(7) are
determined and provided in Table 1 for all PCFs and the methods employed in the study.
Fig. 3 and 4 present the results only for PCF-2 (d/A = 0.4) for the purpose of clarity and
simplicity. From Fig. 3, the k(A) values fall within the range of 0.916 to 0.935 for the Marcuse
method and 0.923 to 0.949 for the Petermann II method within the studied wavelength
range.

The effective area calculated with the presented method and, previously, Mortensen’s
numerical calculation [29] with the plane wave basis model can be compared. For example
for 1550 nm wavelength and (d/A=0.46, A=6.5pum) our method gives 57 um? but
Mortensen’s are around ~55 um2. When the results obtained in two different studies are
compared, they are found to be compatible. After applying corrections to the values obtained
with Marcuse and Petermann II methods, wavelength dependent effective area values are
plotted for PCF-2 as shown in Fig. 4. In Fig. 4, it is apparent that the three curves for Ay
calculated using three different methods completely overlap.
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Fig. 3. Wavelength-dependent changes of the k(A) obtained by the Marcuse and Petermann Il methods
for PCF-2.

In Fig. 4 inset, the difference between the results found after applying corrections with
the Marcuse and Petermann II methods and the results obtained with FEM is presented as
the residuals of correction. In the inset of Fig. 4, for the Marcuse and Petermann Il methods,
effective area residuals vary between -1.11x10-3 to +2.66x10-3pum? and -1.4x103 to
+5.112x10-3 um?, respectively.
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Fig. 4. Effective area versus wavelength after correction for PCF-2 for the 3 methods. Inset: correction
residuals for both methods.

For six PCFs and the two methods, coefficients and the norm of residuals of the k(1) are
given in Table 1. As seen in Table 1, for cubic polynomial correction functions selected for
the PCFs, the norm of residuals take values in the range of 2.77x10-5-15.87x10->. In their
study, Sharma D. K. and Sharma A. used various MFD calculation methods for some PCFs
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[32]. When Ay is calculated, it was seen that there is a difference of 55.2x10-3 pm?2 in two

different methods with the closest values in a PCF [32]. At the same time, the difference

between numerical and experimental results in the study of Miyagi et al. has been given at a

single wavelength of 10x10-3 um?2 [17]. In our study, we have chosen the correction function

cubic polynomial to have much smaller residuals in the wavelength range.

Table 1. Coefficients of cubic polynomial correction functions.

NRCP#,

PCF Method A B D 105
PCF-1 | Marcuse 0.0002137 -0.01039 -0.007027 0.7317 7.867
PetermannlIl  -0.0004662 -0.008695 -0.01927  0.7295 9.362

PCF-2 | Marcuse -0.0004274 -0.003555  -0.005848 0.9449 7.57
Petermann Il -0.001263 -0.0007984  -0.01477  0.9658 5.943

PCF-3 | Marcuse -0.001238 0.001211 -0.00997 1.012 2.77
Petermann Il -0.001344 0.0008467 -0.01319 1.037 2.82

PCF-4 | Marcuse 0.00003885 -0.008275 0.004074 1.043 14.91
PetermannIl  -0.0008159 -0.005594  -0.003992  1.073 15.87

PCF-5 | Marcuse -0.001632 0.004569 -0.01107 1.106 7.6
Petermann Il -0.001865 0.005221 -0.0148 1.141 7.82

PCF-6 | Marcuse -0.001554 0.006235 -0.01026 1.222 10.8
Petermann Il -0.001437 0.006107 -0.008718  1.266 11.18

NRCP* - Norm of residuals for cubic polynomial.

Table 2. The optimal correction constants of the PCFs used to concur 4. values calculated with
the 3 methods at the wavelength of 1500 nm.

k correction Minimum and maximum values of Aegf Maximum residuals
constants

é M* P** Marcuse PetermannlIl FEM Marcuse Petermann II
n 97,00127512 96,14559868 99,239| -2,237724877  -3,093401323
5 | 0,582 0,566

A~ 112,4803548 113,6407346 109,17| 3,310354839 4,470734635
o 88,05766188 87,77969626 88,872| -0,814338121 -1,092303735
5107721 0,7811

~ 97,14504516 97,49000786 95,996 1,149045164 1,494007855
o 84,50092387 84,31888404 85,036| -0,535076133 -0,717115964
% 10,9956 1,0145

A~ 92,29072226 92,52667697 91,484 0,806722257 1,04267697
<+ 54,9580718 54,8218744 55,385| -0,426928205 -0,563125599
5 | 1,0304 1,052

A~ 61,22389904 61,39672475 60,48\ 0,743899038 0,916724754
n 78,47096261 78,39742486 78,753| -0,282037386 -0,35557514
5 | 1,0942 1,124

A~ 84,70776909 84,86599923 84,331| 0,376769089 0,534999226
© 69,04895646 68,99342111 69,053| -0,004043535 -0,059578888
5 [1,21734  1,25882

~ 73,68283458 73,73958432 73,66 0,02283458 0,079584322

*M - Marcuse, P** - Petermann II
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In order to examine the situation where the correction factor is taken as a constant, the
Aegr (M) values found by the Marcuse and Petermann II methods in each PCF were multiplied
by optimum constants. These graphs coincided at the wavelength of 1500 nm, which is the
middle of the spectrum, with the graphs found by FEM.

Aegrvalues found with these calculations are given in Table 2. Additionally, the residuals
at the extreme points of the spectrum are also given in the table. As seen in the Table 2, if the
correction factor is taken as an optimum constant, the residuals decreases as the d/A value
increases.

In comparison of the cubic polynomial correction function and correction constant, as
seen in Table 1 and Table 2, the function residuals appear to be at least 1000 times smaller
than those of the constants.

4. Conclusion
In this study, the effective area values in 6 different PCFs that have non-Gaussian

fundamental mode fields have been calculated as a function of wavelength using the Marcuse
and the Petermann II methods within a wavelength range of 1-2 pm. In these calculations
carried out with Eq. (1), it is shown that it is more appropriate to use the correction function
instead of the correction constant for more quantitatively accurate calculations in a
wavelength range. Cubic polynomials are selected as the correction functions for Aes
calculations of the PCFs.

It is shown that, instead of enormous numerical calculations of numerical PCF modeling
methods, the fundamental mode area in PCF is calculated numerically using the modified
Marcuse and Petermann Il methods along with a cubic polynomial correction function. When
this correction function is used, the norm of residuals falls within the range of
2.77%x10-5-15.87x10- for all PCFs and both methods. After the corrections are implemented,
residuals of corrections are found in Marcuse and Petermann II methods for the PCF-2 as
varying between -1.11x103 to +2.66x103pum? and -1.4x103 to +5.112x10-3 pum?,
respectively. Based on these results, it is found that the designation of a cubic polynomial
function of wavelength as a correction factor is highly suitable for calculating the A It is not
only simple but also demonstrates a remarkable fit to the relative Aey values, resulting in
minimal residuals.

Optimizing A in fiber optics, particularly in the context of endlessly single-mode
bandwidth PCFs, is expected to be a critical issue in the future of communication networks.
As a direct and simple method, our calculation approach on PCF fundamental mode area,
which works in a wavelength range, can serve as a valuable tool for studies in future PCF
research.
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Numerical Calculation

Anomayisn. YucenvHo po3paxosaHa egekmusHa naowjd OCHOBHOI MoOOU PHOMOHHO20
KpucmasiuHozo eos10kHa (PKB) 3a donomozoto Ky6iuHoi noniHoMiaibHOT KopekyiiiHoi gyHkyil,
K nonpaso4Hozo koediyienma pieHsiHb Mapkyse ma IlemepmaHa II. HuceavbHi po3paxyHku
BUKOHAHI 3 BUKOpUCMAHHAM ModugpikosaHux memodie Mapkyse ma [lemepmana Il 015 wecmu
pisHux ®KB 6 OJiana3oHi 0osixcuH xeuab 1-2mkm. ModenrogaHHs1 HA OCHO8I NOBHO20
86KMOpPHO20 Memody CKIHYeHHUX e/leMeHmie eukopucmosyiomuscsi 0451 GU3HAYEeHHS
epekmusHoi naowi ma koegdiyienmie Ky6iuHUX noaiHOMiaabHux — @yHkyiil. Ilicas
BUKOPUCMAHHSL  KOpPeKYIlHUX @YHKYill WAIXOM NOPIBHSIHHS PO3PAX08AHUX 3HAYEHb
edpekmusHoi niowi 3i 3HAUEHHAMU 3 MOOE/IHBAHHS OMPUMAHO 3AAUWKU KOpekyii 8 diana3oHi
-1,11x103 mkm? — +2,66x103 Mmkm? ma -1,4x10-3 mkm? — +5,112x10-3 mkm?, gidnosioHo. Taki
HU3bKI 3HA4YeHHs 3a/AUWKI8 8KA3yIOMb HA me, WO 3anponoHOo8aHuil Memod Moxce 6ymu
YCniwHO 8UKopucmaHutl 04151 po3paxyHkKy 3a/excHoi 8id dosxcuHu xeui edpekmugHoi naowi
Mo0u KBy docaidcysarHomy dianazoHi 008X4CUH X8UMb 6€3 BUKOPUCMAHHS MOOeNHB8AHHS mda
CKAadHoi meopii.

Kawuoei cnosa: pomoHHo-KpucmasiuHe 8040KHO, epekmusHa naouja, diamemp noast Moodu,
@dyHKYia kopekyii
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