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Abstract. The fundamental mode effective area of photonic crystal fiber (PCF) is calculated numerically using 
the cubic polynomial correction function as the correction factor of Marcuse and Petermann II equations. The 
numerical calculations are implemented using modified Marcuse and Petermann II methods for six different 
PCFs in the 1–2 μm wavelength range. The full-vectorial finite element method-based simulations are utilized 
to determine the effective area and coefficients of the cubic polynomial functions. After using the correction 
functions, by comparing the calculated effective area values with the values from the simulations, residuals of 
correction are obtained in the range of -1.11×10-3 μm2 – +2.66×10-3 μm2 and -1.4×10-3 μm2 – +5.112×10-3 μm2 
respectively. These low residual values indicate that the offered method can be used successfully to calculate 
the wavelength-dependent effective mode area of PCFs in the investigated wavelength range without using 
simulations and complex theory. 
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1. Introduction 
Photonic crystal fibers (PCFs) are an important milestone in developing optical fibers, which 
have been utilized for decades due to their superior transmission properties compared to 
copper lines in communication networks [1, 2]. PCFs, produced from a single material, 
contain holes enclosed in the fiber cladding, arranged periodically/aperiodically, and parallel 
to the fiber axis. Compared to conventional fibers, PCFs have very beneficial properties [3-5] 
depending on changes in their geometry. They can theoretically be designed as single-mode 
with infinite bandwidth [2, 4]. PCFs' dispersion, birefringence, and nonlinearity properties 
can be tuned to required values with appropriate geometric designs [6]. Additionally, PCFs 
have low bending losses [1-7]. 

There are several modeling methods for examining modes and mode properties in PCFs, 
such as the effective index approach [2, 8-12], plane-wave expansion (PWE) method [8, 9], 
localized-function method (LFM) [9, 12], multipole method (MM) [8, 9], beam propagation 
method (BPM) [8, 9], finite-difference method (FDM) [8, 13], finite-difference time-domain 
method (FDTD) [8, 9] and finite-element method (FEM) [8, 9, 14, 15]. As widely recognized 
in various research fields, FEM is also reliably used in PCFs as it has flexible and effective 
features [15].  

The effective mode area, which is one of the significant characteristics of the 
fundamental mode in optical fibers, is essential in terms of dispersion [16], nonlinearity [17], 
splicing and bending losses [18], and confinement loss (an inherent feature of PCFs) [19].  
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If the fundamental mode is restricted in the core region and has a small area, nonlinear 
effects appear because the effective area and non-linear coefficient are inversely 
proportional. Non-linear PCFs are exploited in many optical non-linear processes. 
Supercontinuum generation in PCF has recently become a prominent research field of non-
linear effects [20-22].  

In order to meet the need for very high bit rates in optical communication networks, 
studies are carried out on very high-capacity fibers with wavelength division multiplexed 
and space division multiplexed [23]. In high-capacity fibers of long-haul communication, due 
to the summing of many multiplexed channels, transporting high power density of light 
causes nonlinear effects in fibers [24]. Therefore, the effective area must be large enough. 
Since the non-linearity parameter must be calculated at small wavelengths for addressing 
the non-linearity problem [25], and additionally, the critical radius must be taken into 
consideration for the bend loss problem at both small wavelengths and large wavelengths 
[2], the effective area value depending on the wavelength must be accurately determined in 
optical fibers that carry high power light in transmission fibers of communication networks. 
Again, a large effective area in the fiber optics is favored to avoid these nonlinear effects, 
provided that care is taken not to increase bending losses [26].  

The effective mode area is a critical parameter in many PCF applications. For example, in 
fiber lasers and fiber amplifiers, the power is desired to be delivered with low nonlinearity, so 
the mode area should be calculated accurately. Considering the importance of the PCF effective 
area in various applications, such as communication and supercontinuum generation, research 
is conducted using established fiber theory as a milestone. As is well-known, for the circularly 
symmetric cylindrical step-index fibers (SIF), the fundamental mode's radial electric field 
distribution is considered Gaussian-shaped [27]. In this case, the mode field diameter (MFD) is 
used to calculate the effective mode area in SIFs [17]. Using similar approaches, numerous 
studies have been conducted to define and calculate the V-number, which is an important 
parameter for determining the PCF mode number and the mode area [8, 9, 12, 28]. Many 
studies, in particular, have focused on measuring and calculating the MFD and the effective 
area of the PCF fundamental mode. As one of the experimental studies, in the study of Miyagi et 
al., at a wavelength of 1.55 μm in some PCFs, MFD was measured by far-field scanning 
technique and found by simulations. The effective area values of PCFs have been calculated 
using the attained MFD values and correction factors at various values [17]. In addition, many 
studies were based on simulation, analytical, and numerical calculations. For example, 
Mortensen calculated PCF effective area numerically using a plane-wave basis model [29]. 
Nielsen et al. used numerical modeling to find effective index values and mode field radii in 
PCFs [30, 31]. Saitoh and Koshiba's FEM simulation revealed that MFD increases as the hole 
diameter to spacing ratio decreases in PCFs [9]. Sharma D. K. and Sharma A. employed an 
analytical field model to compare MFD values for various PCFs in the 0.4–0.75 μm wavelength 
range [32]. All these theoretical and experimental efforts in determining effective areas of PCFs 
give researchers insights and approximate calculation opportunities. Although there are well-
developed empirical equations for PCFs [33] and approaches of Marcuse [30] and Petermann II 
[16, 34], it seems that there is still a need for numerical methods for PCFs. It is needed to 
contribute to the development of a numerical method for accurate calculation of PCF effective 
area in a wavelength range.  
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In this study, our work aims to perform numerical calculations using the Marcuse and 
Petermann II methods to calculate the effective area of the fundamental mode in PCFs over a 
broad wavelength range with relatively simple empirical equations. The effective area of the 
fundamental mode is simulated and numerically calculated for a total of six different solid-
core PCFs made of silica glass, including two commercial ones. The calculations and 
simulations covered a wavelength range from 1 to 2 μm, using a package based on full-
vectorial Finite Element Method (FEM). To determine the effective V-number of the PCFs, 
empirical relations Saitoh and Koshiba proposed [33] are employed in the numerical 
calculations. The effective areas of the PCFs are computed using Marcuse [30] and 
Petermann II definitions [16, 34] and a modified correction factor as a multiplier. In the 
numerical calculations for the PCFs, correction factors are established as cubic polynomial 
functions through data fitting. Following the implementation of these corrections using cubic 
polynomial functions, residuals are identified in the modified Marcuse and Petermann II 
methods for the PCFs. The rest of this paper is outlined as follows: Section 2 presents the 
methodology used in this study and the relevant fundamental theory. Section 3 provides the 
results, evaluations, and comparisons with previous studies. The study's conclusion is 
presented in Section 4. 

2. Materials and Methods 
For SIFs, the fundamental mode area can be approximately calculated, assuming that the 
shape of the fundamental mode is Gaussian. The fundamental mode area is calculated as a 
circular area using diameter (MFD of the fiber), the radial width of electric field distribution 
of guided single mode, taking the range between opposite e-1 = 0.37 field amplitude points in 
relation to the value at the fiber axis [27]. MFD can be measured by the spatial filtering 
technique, the transverse offset technique, the near-field scanning technique, and the far-
field scanning technique [17, 18]. However, the electric field distribution of the fundamental 
mode is not exactly Gaussian in PCFs because of holes and the shape of hole rings (mostly 
hexagonal) in the cladding, as shown in Fig. 1. Therefore, the calculation of the mode area in 
PCFs must be different and is called effective mode area. 

 

 
 
 
 
 
 
 
 
 
Fig. 1. Fundamental mode field distribution and 
geometry of the PCFs. 

The effective mode area Aeff of the fundamental mode in PCFs can be calculated as 
  2 eff effA k   ,     (1) 

where λ is the operating wavelength in vacuum, k(λ) is the wavelength-dependent correction 
function, and ωeff is mode field radius of the fundamental mode in the fibers, also called 
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effective modal spot size [35]. Petermann II and Marcuse approaches have been empirically 
developed for step index fibers. Although several effective parameters can be applied to 
calculate PCF with step index approaches, these parameters do not give the correct results for 
the Aeff  because of the complex structure of the PCFs. Since the fundamental mode electric field 
distribution in conventional fibers (considering circular symmetry) is accepted as Gaussian, the 

effective mode field can be calculated as 2
eff  [17].  Due to the complex geometric structure of 

the claddings of the PCFs used in this study, the fundamental mode electric field distribution is 
not properly Gaussian, so a correction factor should be used to correct the calculations of the 
effective areas. In this study, instead of a constant of k, a correction function k(λ) is used as 
differently from the previous study, where Aeff  is calculated at a single wavelength [17]. Due to 
a correction constant not providing enough matching for every wavelength in a range of 
wavelengths, utilizing a correction function k(λ) was preferred. 

Marcuse and Petermann II empirical approaches are the most widely used methods for 
calculating the mode field radius in step-index fibers. Since core and cladding structures are 
different in PCFs from step-index fibers, several modifications must be adapted to use these 
methods. In general, instead of V-number, effective V-number [9], and instead of core radius, 
effective core radius is used to calculate the mode field radius with the Marcuse and 
Petermann II approaches for PCFs. 

For PCF structure, as mentioned before, by using effective V-number [9], the effective 
mode field radius ωeff can be calculated by the empirical Marcuse formula [30] for Gaussian 
field distribution as 

3/2 6
1.619 2.8790.65

effeffe

eff

eff ffa VV


   ,   (2) 

where aeff is effective core radius in the fiber, and Veff  is effective V-number.  
A different method for calculating the radius of the fundamental mode that has a Gaussian 

field distribution is the Petermann II approach [16, 34]. In the study of Hussey et al [34], by 
combining Eqs. (1) and (2) and using Veff instead of V, the formula for PCFs can be expressed as 

3/2 6 7
1.619 2.879 1.5610.65 0.016eff

eff eff effeffa V VV

  
      

 
.   (3) 

In these Eqs. (2) and (3), the effective core radius of PCFs is calculated as [9] 
Λ 
3effa  ,     (4) 

where Λ is the distance between the centers of two neighboring holes in the PCF cladding, as 
shown in Fig. 1. 

In order to calculate Veff included in Eqs. (2) and (3), effective indices of PCF modes 
must be determined. Finding the effective indices of core and cladding modes in PCF requires 
numerical modeling methods. Instead of finding the effective indices of PCF modes with 
enormous and time-consuming numerical calculations, a calculation method has been 
developed by Saitoh and Koshiba using some empirical relations [33]. By using this method, 
the V-number of PCF namely Veff, can be calculated as [33] 

   
2

1
3 4

,
Λ Λ 1 exp / Λeff

AdV A
A A




 


.   (5) 
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The coefficients Ai in Eq. (5) are calculated as [33]  

     1 2 3

0 1 2 3   
Λ Λ Λ

i i ib b b

i i i i i
d d dA a a a a    .   (6) 

In Eqs. (5) and (6), d is the diameter of holes, which is in the PCF cladding as shown in 
Fig. 1. In this study, the coefficients aij and bij in Eq. (6) are taken from the study of Saitoh and 
Koshiba [33]. 

The Veff calculated in Eq. (5) is used in the Marcuse formula (Eq. (2)) and Petermann II 
definition (Eq.  (3)) to calculate ωeff. The Aeff values calculated with Eq. (1) and the Aeff values 
from the simulation are used to determine the k(λ) correction function in Eq. (1).  

In the FEM-based simulations, parameters related to the geometry of the PCFs (d, Λ, 
and fiber cladding diameter D) and the refractive index of silica glass, the material of which 
the PCFs are made, are used as input parameters. Both calculations and simulations use six 
different d/Λ ratios in the PCFs. The d/Λ ratios are 0.30, 0.40, ~0.44,~ 0.46, 0.50, and 0.60, 
respectively, and the PCFs are named based on this order as PCF-i (i = 1 to 6). PCF-3 and 
PCF-4 at ratios of 0.4374 and 0.46154 here belong to commercial products ESM-12B and 
LMA-10, respectively. There are 126 holes in the cladding of the PCFs, and they are 
arranged as six concentric hexagonal rings. The cladding diameter D is 125 μm in all the 
PCFs. The distance between two holes in the claddings is 8 μm in all PCFs except PCF-4, 
where this value is 6.5 μm. In the simulations, a perfectly matched layer (PML) is used as 
the outermost layer of the PCFs. FEM-based methods have been applied to PCF structures 
in many studies due to their advantages in terms of accuracy [15]. However, they require 
numerous and complex numerical calculations or access to high-cost programming 
platforms. With the help of FEM-based simulations, the final results of the study are 
straightforward and can be used to calculate the effective area of several PCFs using 
relatively simple analytical equations. 

3. Results and Discussion 
Effective V-number (Veff) values for six different solid-core PCFs are calculated at various 
wavelengths within the 1–2 μm of wavelength range using the Eqs. (5) and (6). The effective 
area Aeff of the fundamental mode is determined by finding the effective mode field radius, 
which is obtained through the Marcuse and Petermann II relations given by Eqs. (2) and (3). 
Additionally, in the Aeff calculations from Marcuse and Petermann II, at first the correction 
factor k(λ) is taken as 1 (k(λ)=1). Additionally, with the simulation based on full-vector FEM, 
the effective area of the fundamental mode in these PCFs was found for various wavelengths. 

The wavelength-dependent variations of the Aeff values obtained through three different 
methods for six different PCFs are shown in Fig. 2. Aeff values are plotted against wavelengths 
in Fig. 2 while keeping the k(λ) constant at 1 to show the importance of the correction 
function. Obviously, both of the results for the Marcuse and Petermann II approaches differ 
from the results found with FEM, as shown in Fig. 2.  

While it is possible to use a constant instead of a correction function at a single wavelength, 
as seen in the study of Miyagi et al. [17], it is not sufficient for the entire wavelength range 
investigated in this study. The required correction functions for Aeff values calculated at some 
wavelengths with Marcuse and Petermann II approaches for each PCF are determined as relative 
values for the FEM results. The relative effective area values (k(λ) values) are obtained by 
dividing the Marcuse and Petermann II values by the simulation values. 
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Fig. 2. Variations of the effective area found in the six PCFs with 3 methods as a function of wavelength. 
k(λ)= 1.0. M - Marcuse method, P - Petermann II method.  

Similar to conventional fibers, Aeff in PCFs varies with wavelength. Additionally, as seen 
in Fig. 2, the wavelength dependence of the Aeff values varies with d/Λ values. Apparently, 
due to the complex geometry of PCFs, the correction function is expected to also depend on 
wavelength. The correction functions are chosen as cubic polynomials due to being simple 
while fitting significantly well to the relative Aeff values with minimum residuals. If the linear 
functions are used for the correction, very large residuals reaching 70% are obtained. 
Quadratic functions could also be considered, but it is observed that cubic functions resulted 
in lower residuals. The graphs of the wavelength-dependent k(λ) values found with the two 
methods for PCF-2 are shown in Fig. 3. The General expression of the wavelength-dependent 
correction function is as follows 

3 2( )k A B C D       .       (7) 

The coefficients in the cubic polynomial functions (A, B, C, D) given in Eq. (7) are 
determined and provided in Table 1 for all PCFs and the methods employed in the study. 
Fig. 3 and 4 present the results only for PCF-2 (d/Λ = 0.4) for the purpose of clarity and 
simplicity. From Fig. 3, the k(λ) values fall within the range of 0.916 to 0.935 for the Marcuse 
method and 0.923 to 0.949 for the Petermann II method within the studied wavelength 
range. 

The effective area calculated with the presented method and, previously, Mortensen’s 
numerical calculation [29] with the plane wave basis model can be compared. For example 
for 1550 nm wavelength and (d/Λ=0.46, Λ=6.5 μm) our method gives 57 μm2 but 
Mortensen’s are around ~55 μm2. When the results obtained in two different studies are 
compared, they are found to be compatible. After applying corrections to the values obtained 
with Marcuse and Petermann II methods, wavelength dependent effective area values are 
plotted for PCF-2 as shown in Fig. 4. In Fig. 4, it is apparent that the three curves for Aeff, 
calculated using three different methods completely overlap.  
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Fig. 3. Wavelength-dependent changes of the k(λ) obtained by the Marcuse and Petermann II methods 
for PCF-2.  

In Fig. 4 inset, the difference between the results found after applying corrections with 
the Marcuse and Petermann II methods and the results obtained with FEM is presented as 
the residuals of correction. In the inset of Fig. 4, for the Marcuse and Petermann II methods, 
effective area residuals vary between -1.11×10-3 to +2.66×10-3 μm2 and -1.4×10-3 to 
+5.112×10-3 μm2, respectively. 

 
Fig. 4. Effective area versus wavelength after correction for PCF-2 for the 3 methods. Inset: correction 
residuals for both methods. 

For six PCFs and the two methods, coefficients and the norm of residuals of the k(λ) are 
given in Table 1. As seen in Table 1, for cubic polynomial correction functions selected for 
the PCFs, the norm of residuals take values in the range of 2.77×10-5–15.87×10-5. In their 
study, Sharma D. K. and Sharma A. used various MFD calculation methods for some PCFs 
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[32]. When Aeff is calculated, it was seen that there is a difference of 55.2×10-3 μm2 in two 
different methods with the closest values in a PCF [32]. At the same time, the difference 
between numerical and experimental results in the study of Miyagi et al. has been given at a 
single wavelength of 10×10-3 μm2 [17]. In our study, we have chosen the correction function 
cubic polynomial to have much smaller residuals in the wavelength range. 

Table 1. Coefficients of cubic polynomial correction functions.  

PCF Method A B C D NRCP*,  
10-5 

Marcuse 0.0002137 -0.01039 -0.007027 0.7317 7.867 PCF-1 
Petermann II -0.0004662 -0.008695 -0.01927 0.7295 9.362 
Marcuse -0.0004274 -0.003555 -0.005848 0.9449 7.57 PCF-2 
Petermann II -0.001263 -0.0007984 -0.01477 0.9658 5.943 
Marcuse -0.001238 0.001211 -0.00997 1.012 2.77 PCF-3 
Petermann II -0.001344 0.0008467 -0.01319 1.037 2.82 
Marcuse 0.00003885 -0.008275 0.004074 1.043 14.91 PCF-4 
Petermann II -0.0008159 -0.005594 -0.003992 1.073 15.87 
Marcuse -0.001632 0.004569 -0.01107 1.106 7.6 PCF-5 
Petermann II -0.001865 0.005221 -0.0148 1.141 7.82 
Marcuse -0.001554 0.006235 -0.01026 1.222 10.8 PCF-6 
Petermann II -0.001437 0.006107 -0.008718 1.266 11.18 

NRCP* - Norm of residuals for cubic polynomial. 

Table 2. The optimal correction constants of the PCFs used to concur Aeff values calculated with 
the 3 methods at the wavelength of 1500 nm. 

 k correction 
constants Minimum and maximum values of Aeff Maximum residuals 

PC
F 

M* P** Marcuse Petermann II FEM Marcuse Petermann II 

97,00127512 96,14559868 99,239 -2,237724877 -3,093401323 

PC
F-

1 

0,582 0,566 
112,4803548 113,6407346 109,17 3,310354839 4,470734635 

88,05766188 87,77969626 88,872 -0,814338121 -1,092303735 

PC
F-

2 

0,7721 0,7811 
97,14504516 97,49000786 95,996 1,149045164 1,494007855 

84,50092387 84,31888404 85,036 -0,535076133 -0,717115964 

PC
F-

3 

0,9956 1,0145 
92,29072226 92,52667697 91,484 0,806722257 1,04267697 

54,9580718 54,8218744 55,385 -0,426928205 -0,563125599 

PC
F-

4 

1,0304 1,052 
61,22389904 61,39672475 60,48 0,743899038 0,916724754 

78,47096261 78,39742486 78,753 -0,282037386 -0,35557514 

PC
F-

5 

1,0942 1,124 
84,70776909 84,86599923 84,331 0,376769089 0,534999226 

69,04895646 68,99342111 69,053 -0,004043535 -0,059578888 

PC
F-

6 

1,21734 1,25882 
73,68283458 73,73958432 73,66 0,02283458 0,079584322 

*M - Marcuse, P** - Petermann II 
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In order to examine the situation where the correction factor is taken as a constant, the 
Aeff (λ) values found by the Marcuse and Petermann II methods in each PCF were multiplied 
by optimum constants. These graphs coincided at the wavelength of 1500 nm, which is the 
middle of the spectrum, with the graphs found by FEM. 

Aeff values found with these calculations are given in Table 2. Additionally, the residuals 
at the extreme points of the spectrum are also given in the table. As seen in the Table 2, if the 
correction factor is taken as an optimum constant, the residuals decreases as the d/Λ value 
increases.  

In comparison of the cubic polynomial correction function and correction constant, as 
seen in Table 1 and Table 2, the function residuals appear to be at least 1000 times smaller 
than those of the constants. 

4. Conclusion 
In this study, the effective area values in 6 different PCFs that have non-Gaussian 
fundamental mode fields have been calculated as a function of wavelength using the Marcuse 
and the Petermann II methods within a wavelength range of 1–2 μm. In these calculations 
carried out with Eq. (1), it is shown that it is more appropriate to use the correction function 
instead of the correction constant for more quantitatively accurate calculations in a 
wavelength range. Cubic polynomials are selected as the correction functions for Aeff 
calculations of the PCFs. 

It is shown that, instead of enormous numerical calculations of numerical PCF modeling 
methods, the fundamental mode area in PCF is calculated numerically using the modified 
Marcuse and Petermann II methods along with a cubic polynomial correction function. When 
this correction function is used, the norm of residuals falls within the range of  
2.77×10-5–15.87×10-5 for all PCFs and both methods. After the corrections are implemented, 
residuals of corrections are found in Marcuse and Petermann II methods for the PCF-2 as 
varying between -1.11×10-3 to +2.66×10-3 μm2 and -1.4×10-3 to +5.112×10-3 μm2, 
respectively. Based on these results, it is found that the designation of a cubic polynomial 
function of wavelength as a correction factor is highly suitable for calculating the Aeff. It is not 
only simple but also demonstrates a remarkable fit to the relative Aeff values, resulting in 
minimal residuals.  

Optimizing Aeff in fiber optics, particularly in the context of endlessly single-mode 
bandwidth PCFs, is expected to be a critical issue in the future of communication networks. 
As a direct and simple method, our calculation approach on PCF fundamental mode area, 
which works in a wavelength range, can serve as a valuable tool for studies in future PCF 
research. 
Disclosures. The authors declare no conflict of interest. 
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Анотація. Чисельно розрахована ефективна площа основної моди фотонного 
кристалічного волокна (ФКВ) за допомогою кубічної поліноміальної корекційної функції, 
як поправочного коефіцієнта рівнянь Маркузе та Петермана II. Чисельні розрахунки 
виконані з використанням модифікованих методів Маркузе та Петермана II для шести 
різних ФКВ в діапазоні довжин хвиль 1–2 мкм. Моделювання на основі повного 
векторного методу скінченних елементів використовуються для визначення 
ефективної площі та коефіцієнтів кубічних поліноміальних функцій. Після 
використання корекційних функцій шляхом порівняння розрахованих значень 
ефективної площі зі значеннями з моделювання отримано залишки корекції в діапазоні 
-1,11×10-3 мкм2 – +2,66×10-3 мкм2 та -1,4×10-3 мкм2 – +5,112×10-3 мкм2, відповідно. Такі 
низькі значення залишків вказують на те, що запропонований метод може бути 
успішно використаний для розрахунку залежної від довжини хвилі ефективної площі 
моди ФКВ у досліджуваному діапазоні довжин хвиль без використання моделювання та 
складної теорії. 

Ключові слова: фотонно-кристалічне волокно, ефективна площа, діаметр поля моди, 
функція корекції 


