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Abstract. This study aims to investigate cubic-quartic optical solitons with Kudryashov’s law of self-phase
modulation. Thus, the combination of third-order dispersion (30D) and fourth-order dispersion (40D) is
assumed in the model to ensure the smooth existence of solitons. The study is implemented with the aid of two
effective integration schemes known as the improved projective Riccati equations method and the soliton
ansatz technique. The soliton solutions are derived based on two physical cases targeting the relation between
30D and 40D. In case 30D is equivalent to fourfold frequency times 40D, only dark and singular soliton
profiles are extracted. However, if the former relation is not achieved, various structures of soliton pulses are
generated, including kink-dark, singular, W-shaped, bright, dark, kink, and anti-kink solitons. The physical
interpretations of retrieved optical solitons are represented by illustrating the wave behaviors with suitable
values of model parameters. The results show that the combination of 30D and 40D has a significant effect on
the dynamics of soliton propagation.
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1. Introduction
The study of data transmission through communication channels has received extensive

attention as it possesses a wide range of applications in the industrial and engineering fields
[1-4]. In the last three decades, soliton pulses have been used as potential carriers of an
information signal in optical telecommunication systems [5-10]. However, soliton
propagation along an optical fiber experiences some challenges, such as dispersion and
attenuation [11-14]. Chromatic dispersion, for example, emerges due to the disparity in
propagation velocity with wavelength, which brings about degraded signal quality and
causes limitations in transmission distances and capacities [15-18]. Several effective
mechanisms have been developed to escape the negative effect of chromatic dispersion,
including the dispersion compensation method. Various dispersion compensation techniques
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are implemented, such as Bragg gratings dispersion, pure-cubic dispersion, pure-quartic
dispersion, cubic-quartic (CQ) dispersion, etc [19-28]. The high intensity of propagating light
leads to the emergence of nonlinear effects. One of these dominant effects in optical fiber
communications systems is known as self-phase modulation (SPM), which occurs due to the
change in the refractive index of the medium. In the literature, many authors worldwide deal
with the effects of dispersion compensation technology on soliton pulses in the presence of
distinct types of nonlinear laws of SPM. For more details, the reader is referred to references
[29-37].

Kudryashov’s law of SPM is a new novel structure arising from the nonlinear refractive
index. The model including this nonlinear effect belongs to the nonlinear Schrédinger’s
equation (NLSE) family, and it can be known as NLSE with Kudryashov’s proposed self-phase
modulation. To diagnose the physical features of NLSE having this type of nonlinearity,
numerous studies have been carried out in different fiber media such as Bragg gratings,
birefringent fibers, and others [38-45]. For example, Zayed et al. [46] investigated chirped
and chirp-free optical solitons in fiber BGs with dispersive reflectivity. Two types of soliton
structures are detected, namely, dark and singular solitons. Recently, Al-Ghafri et al. [47]
scrutinized the NLSE model in fiber BGs to examine the behaviors of chirped gap solitons,
and they found distinct soliton profiles, including bright, dark, singular, W-shaped, kink, anti-
kink, and Kink-dark solitons. Furthermore, the consequence of Kudryashov’s law in
birefringent fibers without four-wave mixing effects is discussed by Zayed et al. [48]. The
results of their study revealed a variety of soliton structures, such as bright, dark, and
singular solitons. Our current work sheds light on cubic-quartic nonlinear Schrodinger’s
equation (CQ-NLSE) with Kudryashov’s proposed self-phase modulation. This means that
both third-order dispersion (30D) and fourth-order dispersion (40D) are present in the
model to compensate for a low count of chromatic dispersion.

The model of CQ-NLSE in the absence of group velocity dispersion is addressed as

b b n n
Lt byl + 0, ]a] g =0, (1)
la[™ |l

where q(x,t) is a complex-valued function indicating the wave profile, while the variables

iQt + iaquxx + A2 yxxx +

X and ¢ denote the spatial and temporal coordinates, n - represents the power-law. In
Eq. (1), the first term accounts for linear temporal evolution. The terms with real-valued
coefficients g, and a, represent the 30D and 40D effects. The last four terms have the

coefficients by, b,, b;, b, define Kudryashov’s law that arises from nonlinear refractive index

of an optical fiber and reflects essentially the influence of self-phase modulation in the
medium. In the previous studies, for instance, Biswas et al. [49] investigated CQ solitons of
the model (1) using the extended trial function method, and they obtained Jacobi'’s elliptic
functions that degenerate to bright and singular optical solitons when the modulus of
ellipticity reaches unity. By means of Lie symmetry analysis, the same model is discussed by
two authors in [50]. Miscellaneous soliton profiles are secured, including dark, bright,
singular and combo bright-singular solitons. Moreover, a group of scholars [51] utilized
different forms of the F-expansion scheme which created solutions in terms of Weierstrass’
elliptic functions and Jacobi’s elliptic functions.
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In addition to investigating CQ solitons, we examine the existence of pure bright soliton
which is described by a single term of secant hyperbolic function. Two strategies, which are
the improved projective Riccati equations method and the soliton ansatz technique, are
employed to perform this study. The following sections of this paper are arranged as follows.
In Section 2, the model of CQ-NLSE is analyzed and reduced to two integrable forms based
on two assumptions discussing the relation between 30D and 40D. Section 3 describes the
derivation of soliton solutions for the two discussed cases. In Section 4, the behaviors of
optical solitons are displayed along with the physical interpretation. Finally, the conclusion
of the work is given in Section 5.

2. Mathematical analysis of model
In order to derive the soliton solutions of CQ-NLSE defined by Eq. (1), we first attempt to

analyze its complex form and convert it to a possibly integrable equation. Hence, we
introduce the complex transformation of the form

g(xt)=u()e"™), (2)
where u(r,g) accounts for the amplitude of the soliton wave while ¢ is the wave variable
given as ¢ =x-v . The function t//(x,t) stands for the phase component identified as

l//(x,t)z—rcx+a)t+9. The parameters v, w, x and 6 represent the soliton velocity,

frequency, wavevector, and phase constant, respectively.
Substituting Eq. (2) into Eq. (1) results in two equations for real and imaginary parts given,

respectively, as

ayu® +30(a) - 2a,0)u "+(a2w4 —a0’ —K)u

(3)

1-2n 2n+l =0

+bhu' ™" 4 by ™"+ by + byu ,

(v +3a,0° —4a,0° )u '—(al - 4a2a))u "=0. (4)

From Eq. (4), one can discuss two physical cases according to the second term that includes
the relation between 30D and 40D in addition to frequency.
Case L. Considering that g, = 4a, , Eq. (4) yields the velocity of soliton as

v=-8a,0. (5)

To reach closed-form solutions, set
1

u(&)=r" (&), (6)
where P = P(&) is the new dependent variable which reduces Eq. (3) to

b4n4P6 +b3n4P5 —n* (a)+ 3a2a)4)P4 +n’ (bzn + 6a2w2P"+ azP(4) P’
+{b1n4 - a2n2 (n - 1)(6(02P'2+ 4p'P"+3P" )} P? (7)
+ay (n=1)(2n-1)(6nPP™ P'~(3n—1)P"*) = 0.

Case II. Considering that g, # 4a,w, Eq. (4) brings, after differentiating once

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 2 02055



Khalil S. Al-Ghafri et al

v ) — a,w’ |u
( +3a,0° —4 3) !

wd= (a, —4a2a)) ’ (8)
from which Eq. (3) becomes
b (a, —4a,0)u+b, (a, - da,0)u"™"
+(ay —4a2w)(a2w4 —a,0° —K)qun
1+4n (9)

+by (@, —4a,0)u'™" + b, (a, —4a,0)u
+[3a12a) +20d2 0’ +a, (V ~15a,0° )J u*'u" = 0.
As our aim is to create closed-form solutions, the transformation of Eq. (6) is applied to
Eq. (9) to arrive at
bn’ (011 - 4a2a)) +byn’ (al - 4a2w)P +n’ (a, - 4a2a))(a2w4 — a0’ - K) P?
+byn° (a —4a2w)P3 +bn’ (a, —451200)P4 (10)
+[3alza)—i-20a§a)3 +a, (v—15a,a)2 )](nP "—(n —1)P'2) =0.

3. Retrieval of optical solitons
The target now is to derive the soliton solutions of CQ-NLSE model through obtaining the

solutions of Egs. (7) and (10) in the above two cases by using the improved projective Riccati
equations method (IPRE). Assuming that these two equations have solutions in the form of a
finite series as

U(§)=ao+Zm:[ajfj(cf)+ﬂjgj(é§)], (11)

where ag,a;, j,(j =1,2,...,m) are constants to be determined. The parameter m is a
positive integer which can be identified by balancing the highest order derivative term with
the nonlinear term in Egs. (7) and (10).
The variables f(é) and g(é) satisfy the following improved projective Riccati
equations
B
11(6)=64g7(8).  g'(6)=—4f(£)2(£)-—2(£)(R-B/(2)),
(12)
1
g’ (¢)= 5[7 (R=Bf(§)* - f? (é‘)}

where 4,B and R are arbitrary constants and 6 ==x1. The set of Egs.(12) admits

hyperbolic function solutions as well as trigonometric function solutions as mentioned in
[52]. Herein, we only concentrate on hyperbolic function solutions from which soliton-type
solutions are induced.

3.1. Solutions for Case I (a; = 4a,0)

Balancing the terms of PYP3 and PO in Eq. (7) leads to m=2. Thus, the general solution
(11) collapses to

P(§)=a0+Ot1f(§)+a2f2(§)+ﬂ1g(§)+ﬁ2g2(§). (13)
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Inserting Eq. (13) together with Egs. (12) into Eq. (7) forms a polynomial having terms with
flgs,(s =0,1; /= 0,1,2,...). Combining terms with the same power of flgs and equating

them to zero, a system of algebraic equations is created. This system gives the following
distinct solutions for the discussed model (1).

Set 1.
20,(A* - B*) a,(A* - B*)?
Qa = OBR O = : BR? ’ﬂIZﬂzzo’
4(n-1)(n-2)3n-2)R*4*a;a,
b = 14 )
B'n
4n-2)(30’n’ —4R*(n" -2n+2) )R Loy,
b, = 2 4 ’
B°n
4(n+2)(30’n’ —4R*(n* +2n+2)) R’ Ba, (14)
S a,A’n* ’
4(n+1)(n+2)3n+2)R*B'a,
b4 == 2 4 4 >
a,A'n
(R* (401> +96) =30’ n’ (K*n* +16R))a,
w = n4 .
From Egs. (14) along with (13), one can find soliton solutions to Eq. (1), given by
1
2 _ 21
q(x, ): oA (B+Atanh[R(x vt)}) ei(—xx+wt+0)’ (15)
B? (A + Btanh [R(x—vt)})2
and
1
2 2
q(x.1)= G (B + Acoth [ R(x—vr)* | grrord) (16)
B*(A+ Bcoth [R(x—vz‘)})2
where 4# B and 4,B#0.
Set 2.
Sa,(A* — B?)
ﬁz =_OTsa1 =a, =ﬂ1 =0,
. 4n-1)(n-2)3n-2)R*A*x}a,
1 n4 )
, 4(n-2)(3K°n* —4R* (* —2n+2)) Reya,
2 n4 s
4(n+2)(37n’ —4R*(* +2n+2))R'a, (17)
S an’ ’
p = At D(+2)Cn+ 2)R*a,
¢ agn’ ’
((40n> +96)R* =3k n’ (k*n* +16R*)) a,
w = 7 .
n
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Making use of Egs. (17) with (13), the soliton solutions to Eq. (1) are generated in the form

1
2 p2 2 n
a, (A -B )sech [R(x—vt)} (orerarso)
q(x,1)=q0 - 5 , (18)
(A + Btanh [R (x - vt)})
and
1
2 p2 2 n
a, (A -B )csch [R(x—vt)} (orerarso)
q(x,t) =<ay+ > , (19)
(A + Bcoth [R (x - vt)})
where 4 # B,
Set 3.
o, (47 - B%) S[at, BR - 2a,(A* — B*)]
a, = Py = B, =0,
? P 2R h
(n—1)(n—2)(3n—2)(2Ba, + Ra,)* R*a,
b, = B’ )
, 2(n-2)(30’n’ —4R*(n* ~2n+2))(2Ba, + Ra,)R’a,
* Bn* ’
, 8(n+2)(30°n" —4R*(n* +2n+2)) BRa, (20)
o n*(2Ba, + Ra,) ’
P 16(n+1)(n+2)(3n+2)B’R*a,
! n*(2Ba, + Ra,)’ ’
((40n* +96)R* —30’n’ (k°n* +16R*)) a,
o= .
n4
Applying Egs. (20) to (13), this process is conducive to soliton solutions to Eq. (1)
1
20yB+0yR)(B+ Atanh| R(x—vt) > |"
q (x,t) _ ( 0 1 )( I: ( : )]) el(—Kx+a)l‘+0)’ (21)
2B(A+Btanh[ R(x-vt)])
and
1
( ) (205()B+051R)(B+Acoth[]i’(x—vt)])2 " i(krroreo) (22)
q\x,l)= e >
2B(A+ Beoth[ R(x-vt)])’

where B#0, A# B and 2¢,B #-o,R .
3.2. Solutions for Case Il (a; # 4a,0 )

The soliton solutions of Eq. (1) when g, # 4a,0 are derived by two schemes, which are the
[PRE method and the soliton ansatz technique.

3.2.1. Solution by IPRE method

The balance between the terms with PP" and P* in Eq. (10) induces m =1. Accordingly, the
general solution (11) becomes

P(f):ao+a1f(§)+ﬂlg(f)- (23)
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Similarly, the substitution of Eq.(23) in company with (12) into Eq.(10) produces a
polynomial in flgs,(s =0,1; /=0, 1,2,...). Collecting the coefficients of terms with the same

order of flgs and equating them to zero yields a set of algebraic equations. By solving these

equations simultaneously, one can produce the following results.

Set 1.
A =B (b,(n+1)+2a,b,(n+2
o BB 2ap )
2BRb,(n+2)
2
(n —1)[(20:0/1[)4(11 +2)+ Ab,(n+1))’ = B} (n+ 1)2}
e 168D} (n+2) (n+1) :
by(n— 2)[(2a0Ab4(n +2)+ Aby(n+1)) = B (n+ 1)2J
b = — . , (24)
4B°b(n+2)
204, 20,4~ B0 (n+2)(a,~a,0) b (n+1)(4*~3B")
B (n+1) B (n+2) 2B%,(n+2)’
L[4 @~4a,0)b,(n D+ 20,0 +2)) | k(20030 ~15a,a,c +3a7)
4B°R*a,b,(n+1)(n+2) a, '

Employing these findings to Eq. (23), one can secure soliton solutions to Eq. (1) presented as
1

3|

aOA(B—i- Atanh[R(x—vt)]) N b, (A2 - B? )(n +1)tanh [R(x—vt):|
B(A+Btanh[ R(x—vt)]) ~ 2Bb,(n+2)(4+Btanh[ R(x—vt)])

q(x.1)= (25)

i(—KerwHQ)

xe ,

and

S| —

agA(B+ Acoth[ R(x=vt)])  by(4” =B )(n+1)coth[ R(x—vr)]
B(A+Booth[ R(x—vt)])  2Bb, (n+2)( 4+ Beoth[ R(x-vt)])

q(x.1)= (26)

><ei(—zoc+cat+t9) ’

where 4,B#0, A#*B and n i{—l,—Z}.
Set 2.
1
2b,(n+2)
, b (* =D 4Bb; R (n+2)* =5b; (4* = B*)(n+1)" |
b 165b} (4> - B*)(n+2)*
, by(n—2)[ 2B R* (n+2)* =5b3 (A = B*)(n+1)’ |
: 45D (4 - B*)(n+2)’
_ BIRD, 3b2(n+1)
(4> = B*)(n+1) 2b,(n+2)*’
_ on’Blb,(a, —4a,w) _ k(20a;w” —15a,a,0 +3a;)
a,(A> = B*)(n+1) a, ’

>

B

) (27)

o’ (a,— a,0)—
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Inserting Egs. (27) into (23) yields soliton solutions to Eq. (1) in the form
1

q(x,t) :{ ﬂleech[R(x—vt)] by (n+1))}" ei(flcherG)’ (28)

A+ Btanh [R(x—vt)} 2b,(n+2

and
1
q(x,t): ﬂlRCSChI:R(x_Vt)] _ by (ﬂ+1) nei(—Kx+a)t+0)’ (29)
A+Bcoth[R(x—vt)J 2b4(n+2)
where 4# B and ni{—l,—Z}.
Set 3.
2 2
a0=—b3(A —fb)(n;rl)—22a1b4BR(n+2),ﬂ] .y 2—5 N
(42— B*)(n+2) A -B

(n=D[402b} 4R (n+2)" b} (£ =BV (n+1)* |
e 166} (4 = B*) (n+1)(n +2)*
, by(n—2)[ 4o ’b; AR’ (n+2)" =b; (4* = B*) (n+1)’ |

>

, 30
g 4b} (A* - B*)’ (n+2)° (30)
200 4°R°p, 5 3bi(n+])
LByl (& —a,®) 2b,(n+2)*"
b 4n* Aa’b,(a, —da,0) . k(20a:w* —15a,a,0+3a])
| a, (A =B (n+1) a, '
Using these outcomes with Eq. (23) provides soliton solutions to Eq. (1) as
alAR(B + Atanh [R(x—vt)} +VB* - Azsech[R(x—vt)J) by (n+1) "
q xX,t)= -
(x1) (42 - B*)( 4+ Branh[ R (x-vi)]) 2b, (n+2) (1)
Xei(—l(x+wt+9)’
and
1
alAR(B + Acoth [R (x —vt)} + 4% —B*csch [R(x —vt)]) b, (n +1)
q xat = -
( ) (Az —Bz)(A+Bcoth[R(x—vt)}) 2b, (”"‘2) (32)

Xei(—Kx+wt+9) i

where 4#0, A#+B and ni{—l,—Z}.

3.2.2. Solution by soliton ansatz
The soliton ansatz technique is implemented in Eq. (10) to extract optical solitons of Eq. (1).
Suppose that Eq. (10) has a solution given by

2 4
()=, + msech” (pg) ,_ Tscch (PS) _ (33)

4_[1—tanh(p§)]2 (4—[1—tanh(p§)]2)
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where 7,,7,,5, and p are constants to be determined. Upon substituting ansatz (33) into
Eg. (10), an equation in Sech( pé)tanh( pé) of different orders is obtained. Equating all

coefficients having the same order of sech(pé)tanh(pé) to zero creates a system of

algebraic equations that gives the following solutions.

Set 1.
n =0, b =M (=D 0 A (1= 2@, + )0, + 1)
’ T "27712 (a, —4a,x) o "27712 (@, —4a,x) ’
8up* (n+2)(4n, + 2
b, = SHP (n+2)(41, +1,) by = - 1opp™(n+1) (34)

’12’712 (al _4a2K) n27712 (al _4a2K) ’

o = 0" 2Ang +12ngm, +17) = n*ni K () — a)(a —4a,1)

n2’712 (a] - 4a2K)
where
u=20a0° —15a,a,0° +3a; 0+ a,v. (35)

By virtue of Egs. (34) together with (33), Eq. (1) possesses the optical soliton of the form
1

n,sech? [p(x—vt)} ’ Ji(-rxror+0)

q(x.)=1my + . (36)
4—[1—tanh[p(x—vt)ﬂ
Set 2.
—on . p AP (=B, +n) - Aunyp®(n=2)12n, +1,)
le - Tlla 1 2 s Uy == >
nn,(a, —4a,0) n'n,(a, —4a,0) (37)
_ 16up* (n+2) _ _ 4,Up2(24770 +1,) —n2771603 (g, —a,0)(a, —4a,0)
by=—tP D 0, w= :

T n27h (@, —4a,0) ’ 712771 (@, —4a,0)
where p is the same as in Eq. (35). Employing Egs. (37) along with (33), one can reach an

optical soliton to Eq. (1) as

=

nlsechz[p(x—vt)] - 2nlsech4|:p(x—vt)]
4—[1—tanh[p(x—vl)ﬂ2 (4—[1—tanh[p(x—vt)ﬂ2)

Xei(—lcxﬂoHG) .

q(x.t)=4m + T (38)

4. Results and discussion
The section above discussed the optical solitons of CQ-NLSE defined by Eq.(1) by

considering two assumptions, which are @, =4a,0 and q, # 4a, . Upon exploiting the IPRE

method and soliton ansatz technique, various wave structures are constructed, including
bright, dark, singular, W-shaped, kink, and kink-dark solitons. In comparison, the types of
extracted solutions are distinct from the ones obtained in the previous studies [49-51]. To
give a clear view of the behavior of optical solitons, the derived solutions are illustrated
graphically by plotting the intensity profiles of solitons by choosing suitable values for the
physical parameters. The undermined powers in Kudryashov’s law of refractive index are
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examined with the values n={—2,—1,1,2} to give thorough insight into the dynamic

evolutions of optical solitons.

Figs. 1-3 describes the intensity profiles of three types of dark and singular solitons for
solutions of the Egs. (15), (18) and (21) with the values of parameters given as @ =R =0.5,

a, =—-0.5where a, =0.5; a, =1; oy =, =1, respectively. The changes in the values of #n, 4
and B result in the two mentioned wave structures where 4 =2, B=1 leads to the dark soli-

ton when n =1, 2 and singular soliton when n = -1, —2 as shown in Figs. 1-3 (a) & (c) while

4

4

3 3

lq

—_
(=]
= o
—_
(=]

2
|q] lq]

x X

©] (d)
Fig. 1. Soliton intensity for solution of Eq. (15) with parameter values ¢, =@ =R =0.5,a, =-0.5: (a),
(d) - dark soliton; (b), (c) - singular soliton.

1 SOr=1 il —n=1
0.8 40{B=2 M ——n=2
|
, 0.6 5 30 |I
lgl” 0.4 lgl” 204 ’ |
0.2 101 ) \\
o o
- -10 0 10
(@
S07=2 [T —n=-1 !
40{B=1 ] ——n=- 0.8
, 304 ||| s 0.61
lal 20l | lal 0.4
10{ /’ | 0.2
of \ 01
-10 0 10 -
X X
(o) (d)

Fig.2. Soliton intensity for the solution of Eq.(18) with parameter values
a,=1, ®=R=0.5, a, =-0.5:(a), (d) - dark soliton; (b), (c) - singular soliton.
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A=1, B=2 yields the singular soliton when n=1,2 and dark soliton when n=-1,-2 as

exhibited in Figs. 1-3 (b,d). Fig. 4 displays the intensity profiles of kink-dark and singular
solitons for the solution of Eq.(25) with the values of parameters given as
ay,=0=05,a =a,=-05R=b=2,b;=1,n=1,2. The values 4=2 and B=1 brings

about the kink-dark wave, as demonstrated in Fig. 4 (a,b), whereas 4=1 and B=2 induce

5

A=1 WL —_—n=
40{B=2 [ ——n=2
|
, 30 l|
gl 20f ’I
10/ ) \\
o
-10 0 10 -10 0 10
X X
(a)
) [ — =1
40B=1 ] ——n=-2
301 I
? |
gl 20 ,||
10{
ZBA\
-10 0 10
X X
() (d)

Fig.3. Soliton intensity for the solution of Eq.(21) with parameter values
oy=0;=1, w=R=0.5, a, =-0.5:(a), (d) - dark soliton; (b), (c) - singular soliton.

Fig. 4. Soliton intensity for the solution of Eq.(25) with parameter values o, =w=0.5,
a,=a, =—0.5, R=5b, =2, by =1:(a), (b) - kink-dark soliton; (c), (d) - singular soliton.
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the singular soliton as presented in Fig. 4 (c,d). Fig. 5 illustrates the intensity profiles of a W-
shaped, and a bright solitons for the solution of Eq. (28) with the values of parameters given

as =05, gy =a,=-0.5, A=R=2, B=by =1, by =—1. Herein, the variation of parameter

B, affects the wave behavior, which generates a W-shaped soliton for 5, =—-0.5, as shown in

Fig. 5 (a,b), and a bright soliton for S, =0.5 as exhibited in Fig. 5 (c,d). Fig. 6 characterizes

the intensity profiles of Kink and anti-Kink waves for the solution of Eq. (36) with the values
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Fig. 5. Soliton intensity for the solution of Eq. (28) with parameter values w = 0.5, a; =a, =-0.5,
A=R=2,B=b;=1, b, =—1:(a), (b) - W-shaped soliton; (c), (d) - bright soliton.

()

Fig. 6. Soliton intensity for the solution of Eq.(36) with parameter values 7, =5b; =5, =1,
o=v=p=a =0.5,a, =-0.5:(a), (c) - kink soliton; (b), (d) - anti-kink soliton.
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of parameters given as n,=b;=b, =1, ®=v=p=4,=0.54a, =-0.5. The kink soliton is
shown in Fig. 6 (a) & (c) when 7, =-1.5,n=12 and 5 =1.5, n=-1,-2, respectively, while
the anti-kink soliton is plotted in Fig.6 (b) & (d) when n, =15, n=1,2 and
n, =-1.5, n=-1,-2, respectively. Finally, Fig. 7 represents the intensity profiles of bright

and dark solitons for solution of the Eq.(38) with the values of parameters given as
ny=1L o=v=p=a =05, a, =-0.5. The bright soliton is delineated in Fig.7 (a) & (d)

when 7, =15, n=1,2 and 75 =-1.5, n=-1,-2 respectively, while the dark soliton is

plotted in Fig. 7 (b) & (c) when n, =-1.5, n=1,2 and 5, =1.5, n=-1, -2 respectively.

1
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Fig.7. Soliton intensity for the solution of Eq.(38) with parameter values 17,=1,
o=v=p=a =0.5,a,=-0.5:(a), (d) - bright soliton; (b), (c) - dark soliton.

According to the derived solutions and their physical interpretations, assumption
a; =4a,0 has provided two wave solutions only, namely, dark and singular solitons to the

model of CQ-NLSE using IPRE method while soliton ansatz technique could not generate any
solution. Contrarily, in the case of «, # 4a, the IPRE scheme has given rise to four types of

soliton structures, including kink-dark, singular, W-shaped, and bright solitons. Additionally,
the implementation of the soliton ansatz technique, in the latter case, has created attractive
soliton profiles containing kink, anti-kink, bright and dark solitons.

It is worth mentioning that although the mathematical tools applied in the current and
previous studies have yielded distinct types of bright solitons, they couldn’t extract the pure

bright soliton, which is presented by a single term in sech(é) .

5. Conclusion
In this study, we have dealt with the dynamics of solitons in polarization-preserving fibers

dominated by Kudryashov’s refractive index law. The cubic-quartic optical solitons are
discussed based on a relation combining the effects of 30D, 40D, and frequency. Using the

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 2 02065



Khalil S. Al-Ghafri et al

IPRE scheme, only two types of solitons are secured, including dark and singular solitons,
when considering 30D is proportional to fourfold 40D frequency. If the former relation is
unrealized, miscellaneous soliton waves are created, such as kink-dark, singular, W-shaped,
bright, dark, kink, and anti-kink solitons. The behaviors of optical solitons undergo
remarkable evolutions due to the variations of model parameters. The current results are
significant and can contribute to improving the field of optoelectronics.

In future work, the discussed model can be extended to include perturbation terms of
Hamiltonian type. Various physical features can be revealed due to the presence of self-
steepening terms, higher-order dispersion, and nonlinear dispersion. Soliton propagation
will be investigated by means of effective integration schemes. Further to this, the
modulation instability (MI) of the model can be examined in addition to deriving the
expression of the MI gain spectrum.
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AHomayis. Memow ybozo 0docaidxiceHHss € BUBYEHHs KYOIYHO-K8APMUYHUX ONMUYHUX
CO/NIMOHIB 3 BUKOPUCMAHHAM 3aKoHy Kydpawosa uwodo camomodyaayii ¢asu. /Jas
3a6e3neyeHHs1 HenepepeHoz20 ICHY8AHHA CO/AiMOHIE 6 Modeai nepedbayeHo KoMOIHAYi
ducnepcii mpemvozo (30D) i vemeepmozo (40D) nopsidkis. JocaidxceHHsa npogsodumbcs 3a
donomozor 0dgox egekmusHux memodie iHMez2py8aHHs, 8I00OMUX K Memod NOKPAWeHUX
npoekmueHux pigHsiHb Pikkami ma mexHiKu aH3ayy coaimoHa. PiwenHs1 conimoHie, ompumai
Ha o0cHO8I 080X i3uuHUX 8UNAJKI8, CNPSAMOBAHUX HA 8CMAHOB/IEHHS chigidHOWeHHs mixc 30D
i 40D. Y eunadky, koau 30D dopigHO€ YOMUPUKPAMHOMY 3HAYEHHIO X8U/Ab0B020 8EKMOpda
40D, ompumyrombsca auwle meMmHi ma cuHeyasipHi npogini conimonis. O0Hak, AKWO ye
cniggiOHOWEHHSI He BUKOHYEMbCS,modi 2eHepylombCsi  pI3HI  cmpykmypu  COAIMOHHUX
iMnyavcie, ekaw4aw4u KiHk-meMmHi, cuHeyaapHi, W-nodi6Hi, sckpasi, memHi, KiHK ma
aGHMUKIHK ~ conimoHu. @i3uyHi iHmepnpemayii omMpuMAaHux ONMUYHUX  COJIMOHIB
npedcmas/ieHi WaAsXoM iarocmpayii Xeu1b080i no8ediHKU Npu NEGHUX 3HAYEHHSIX napamempis
Mmodesi. Pesysismamu nokasyroms, wo noedHavus 30D i 40D mae 3Ha4yHUtl naus Ha OUHAMIKY
NOWUPEHHS CONMIMOHIB.

Kawuoei caoea: onmuuHi coaimoHu, Ky6iuHo-keapmosa ducnepcis, 3akoH Kydpsiwosa,
800CcKOHa/1EHUU Memod npoeKmu8HUX pieHsIHb Pikkami, conimoHHUll aH3ay.
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