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Abstract. At present, elimination of eggs with dead embryos in China’s poultry-egg incubation industry mainly 
relies on manual inspection and a lack of relevant automatic-detection equipment restricts seriously the 
development of egg-incubation industry. Accurate identification of dead eggs is a key technical task for solving 
this problem. In this study we design a set of image-acquisition devices for analyzing duck eggs on the stage 
when they are removed from the incubation tray (25 days after incubation beginning). We suggest an 
improved object-detection algorithm based on a YOLOv4 network and identify dead embryos with high 
accuracy during the egg-hatching period. According to the characteristics of collected images of the breeding-
duck eggs, we remove the head subnetwork for detecting small objects in the YOLOv4 network and simplify 
the backbone subnetwork of this network to improve the detection efficiency. The experimental results testify 
that the average recognition accuracy of our YOLO-Lite network is equal to 98.33%, the recall rate amounts to 
94.12% and the single-frame image-recognition time is about 15 ms. These figures are better than the 
corresponding parameters 96.67%, 88.89% and 32 ms, which are typical for the technique before our 
improvement. Therefore our results can provide a basis for the further research and development of 
appropriate intelligent detection equipment. 
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1. Introduction 
During incubation process, the development of embryos in fertilized eggs can cease due to 
either fluctuations in temperature and humidity or bacterial infections, which can be 
conventionally referred to as ‘dead eggs’. The occurrence of dead eggs accompanies the 
entire egg-incubation process. In the hatchery industry, manual removal of dead eggs from 
the incubation tray is traditionally performed. This process is slow and relies heavily on 
human expertise. 

Currently, the hatchery industry is in urgent need of automated detection systems in order to 
replace manual removal of dead eggs [1]. When addressing this issue and detecting dead eggs, the 
researchers have explored various technologies such as acoustic methods [2], infrared 
spectroscopy [3], thermal imaging [4], electrical characteristics [5] and hyperspectral imaging [6]. 
These approaches face a number of challenges associated with their cost, efficiency and stability. 
This makes their practical application in the production setting limited, so that most of the 
approaches still remain in their laboratory phase. 

T. Zhu et al. [7] and Ke Sun et al. [8] have suggested rapid and efficient machine-vision 
techniques for non-destructive inspection of fertilized eggs. J. Zhou et al. [9] have proposed new 
lightweight detection architecture based on a YOLOX-Tiny framework to identify the hatching 
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characteristics of duck eggs during 5 first days of their hatching. In a test set consisting of 326 
duck-egg images, the mean average precision of the method has been equal to 99.74%. Q. Li et al. 
[10] have used YOLO to detect the conditions of embryos in the duck eggs incubated for the 10 
days. The appropriate results demonstrate that a MobileOne-YOLO technique achieves the 
detection accuracy 98.10%, the recall 98.55%, the mean average precision (at the level of 50) 
97.79%, the precision 98.55%, and the frame-per-second parameter amounting to 142.8 for the 
images of test set. The above work serves as a technical reference for the studies presented below. 

Note that the works mentioned above have been mainly focused on the duck eggs hatched for 
only a few days or the chicken eggs. There have been no documented researches addressing the 
non-destructive detection of dead embryos in the duck eggs incubated for a period of 25 days, 
which make use of any optical technologies. Duck eggs are characterized by a high degree of 
surface staining and significant variations in shell thickness, which poses notable detection 
problems if compared to the situation occurring with chicken eggs [11]. Generally speaking, the 
longer the incubation period, the more difficult is detection of the conditions of a duck embryo. 
Therefore, searching for the fast and efficient methods for detecting dead embryos in the duck 
eggs incubated during the period of 25 days has a significant practical importance. A key to a 
successful non-destructive detection of dead embryos in the duck eggs during their incubation lies 
in a rational design of an image-acquisition system, which should grasp efficiently the features of 
dead embryos. In this study, we design an image-acquisition system for diffused-light imaging of 
the duck eggs obtained in a manual-hatching process which is commonly used in the practical 
production. This system can simultaneously capture the images carrying the information on 
embryo activity in an egg for three different duck eggs, which is aligned with real-world 
production processes. 

Our analysis involves simultaneous imaging of three different eggs and solving the 
appropriate object-detection problem. Two approaches are typically used in the field: manual 
extraction of image features and automatic feature extraction based on deep learning. The former 
is time-consuming and labour-intensive and, moreover, it often yields suboptimal detection results. 
The object-detection algorithms based on deep learning are known for their high efficiency and 
speed. They have already found mature applications in the agricultural sector. For example, 
Y. Tian et al. [12] have utilized a “you only look once” (YOLO) method for detecting apples at 
different stages of their growth in orchards, while R. Gai et al. [13] have employed the YOLO 
approach for rapid detection of cherries. C. Yu et al. [14] have applied a mask region-based 
convolutional neural network (Mask R-CNN) for fish-morphology feature segmentation and 
measurements, while Z. Hao et al. [15] have used Mask R-CNN for automated detection of tree 
crowns and heights in young artificial forests. Moreover, Q. Liang et al. [16] have employed a 
single-shot multibox detector (SSD) network for the real-time detection of mango fruits on trees. 

Our present work addresses the issue of removing the duck eggs with dead embryos from the 
incubation tray, thus providing a technical support for the development of relevant automated 
equipment. Therefore both the speed and the accuracy of the analysis of input images of the duck 
eggs are of high importance. To achieve this point, we conduct a comprehensive comparison of 
two of the best-performing single-step object-detection algorithms, SSD-MobileNetV3 [17] and 
YOLOv4 [18], taking into consideration their detection speed and accuracy. Given a superior 
performance of the YOLOv4 network, we choose it for detecting dead embryos in the duck eggs. 
Simultaneously, we plan to remove a head subnetwork responsible for detecting small targets and 
simplify a backbone subnetwork in the YOLOv4 network, thus making it more lightweight. The 



Nondestructive Testing 

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 2 02023 

improvement in the network performance further enhances the speed and the accuracy of dead-
embryo detection, which can aid in developing the corresponding real-life equipment. 

2. Materials and Methods 
2.1. Collection of Activity-Information Images for Duck Eggs 
A total of 606 fertilized eggs from Guoshao No. 1 Muscovy ducks originated from Shangrao, 
Jiangxi, were selected for our study. These eggs were disinfected by wiping the surface with 
alcohol and individually numbered. Subsequently, they were placed in an intelligent 
incubator for incubation. Every 24 hours, 10 randomly selected duck eggs were placed in a 
refrigerator and cold-stored for 12 hours to simulate the preparation of ‘dead embryos.’ 
After cold storage, these eggs were returned to the incubator. 

An image-acquisition system was designed to mimic real-world production processes. The 
system consisted of a CCD camera, a light source, a dark box and a computer, as shown in Fig. 1. 
Images were captured at 24-hour intervals. In total, 202 images of the duck eggs were collected, 
with each image containing three duck eggs. 

 

Fig. 1. Schematic diagram of 
our image-acquisition system: 
1 – light source, 2 – duck eggs, 
3 – dark box, 4 – camera and 
lens, and 5 – computer. 

On the 26th day of incubation, the duck eggs were subjected to shell-cracking treatment in 
order to observe whether the duck embryos had survived. This served as an authentic basis for 
subsequent evaluation of models. 

Fig. 2 shows the original images of duck eggs, which contain the information on embryo 
activity. They are taken after the eggs are removed from the incubation tray on the 25th day. These 
images have the resolution of 1634 pixels × 1234 pixels. Since the deceased embryos have ceased 
their development, such substances as egg white, yolk and blood within an egg deteriorate 
gradually in the high-temperature environment [19]. When these eggs are illuminated from their 
blunt end with a LED light (5 W cold-white), the images appear to be yellow (see Fig. 2b) or dark 
yellow (see Fig. 2a). This colour difference is significant in comparison with the normal embryos 
of which images are green (see Fig. 2c). Moreover, the difference increases with increasing time 
passed since the embryo death. This phenomenon enables machine-vision technologies for non-
destructive detection of dead and normal duck embryos. 

 
(a)                          (b)                       (c) 

Fig. 2. Original images of duck eggs: (a) dark 
yellow (dead embryo), (b) yellow (dead 
embryo), and (c) green (normal embryo). 
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2.2. Dataset Preparation 
Deep learning often requires a substantial amount of image data to achieve satisfactory 
detection results. For this purpose, a dataset of 202 images has been divided into a training 
set (182 images) and a test set (20 images). Data-augmentation techniques such as flipping 
and translation have been applied to the training set for creating an augmented dataset. This 
has resulted in a total of 460 images in the training set, which include 1440 duck-egg images. 

After data augmentation, the images have been re-divided into the training, validation and test 
sets. A new set configuration includes 420 images in the training set, 40 images in the validation set 
and original 20 images in the test set. When employing object-detection algorithms for the duck-egg 
detection, manual labelling of the duck-egg images is necessary. We have employed a LabelImg 
annotation tool to annotate the images of the duck eggs. It marks the positions and the categories of 
the dead and normal duck embryos. Then the annotated data has been stored. 

3. Network for Detecting Duck-Egg Activity Information  
3.1. Structure of SSD-MobileNetV3 Network  
An SSD network is a single-stage object-detection algorithm introduced by W. Liu et al. [20] 
in 2016. It has been widely applied in engineering applications with continuous 
improvements (see Ref. [21]). The SSD network comprises base and auxiliary subnetworks. 
The base network typically consists of a convolutional neural network for automatic feature 
extraction, while the auxiliary network is used to generate fixed-sized and scaled bounding 
boxes. Finally, it combines a non-maximum suppression to predict the target positions and 
categories. The MobileNetV3 network [22] incorporates efficiently the advantages of depth-
wise separable convolutions and an inverse residual structure (IRS) from MobileNetV1 and 
MobileNetV2. It enhances detection speed and accuracy by introducing an ‘attention 
mechanism’, improved IRS modules and an H-Swish activation function. The MobileNetV3 
network has two versions, large and small ones. MobileNetV3_large comprises 19 layers, 
while MobileNetV3_small consists of 15 layers. MobileNetV3_large offers slightly higher 
detection accuracy but slower detection speed if compared to the small version. Since we 
aim to detect reliably the dead and normal embryos in the duck eggs incubated for 25 days, 
with plans for further practical deployment, both the detection speed and the accuracy are 
crucial. Therefore, we choose the MobileNetV3_large network and replace the base network 
in the SSD for detecting and recognizing the dead and normal embryos. 

In the SSD-MobileNetV3 network structure, the base subnetwork of the original SSD 
network is replaced with a MobileNetV3 network with no output and classification layers. 
Additionally, it utilizes an inverse residual structure to replace a standard convolution in the 
original-SSD auxiliary network, thus making the network more lightweight. This results in higher 
detection speed and accuracy for the SSD-MobileNetV3 network. The structure of the SSD-
MobileNetV3 network is illustrated in Fig. 3. The 14th layer of the MobileNetV3 network outputs 
20×20×3 anchor boxes to the detection framework, while the output of the 17th layer is passed to 
the first layer of the SSD auxiliary network (IRS Conv_1) which generates 10×10×6 anchor boxes. 
Similarly, the outputs of the second, third, fourth and fifth layers of the SSD auxiliary network 
(IRS Conv_2, IRS Conv_3, IRS Conv_4 and IRS Conv_5) pass to the detection framework, 
producing 5×5×6, 3×3×6, 2×2×6 and 1×1×6 anchor boxes, with a total of 2034 anchor boxes. By 
computing the Intersection over Union (IoU) between the anchor boxes and the true boxes, one 
removes some redundant anchor boxes to obtain prior boxes. Then, based on the location 
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information of the true boxes, the prior boxes are adjusted to obtain more accurate target-position 
information. A softmax function is used to predict the category information for each prior box. 
Finally, a non-maximum suppression algorithm is applied to obtain the detection results.  

 
Fig. 3. SSD-MobileNet v3 architecture. 

The training target-detection networks like SSD-MobileNetV3 differ from those used in image-
classification tasks as they require calculating both the classification and localization losses. The goal 
of the network training is to reduce both the classification and localization losses to a minimal level, 
thus ensuring accurate prediction of the target positions and categories. The loss function for SSD-
MobileNetV3 combines a weighted sum of the localization and classification losses: 
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Here N is the number of matched default boxes, l the predicted bounding-box coordinates, g 
the true bounding-box coordinates, c the confidence scores for each category calculated 
using the Softmax function, x implies the matching flag between the true and predicted 
bounding boxes, SL1 the smooth L1 loss between the predicted and true positions, α the 
weighting coefficient, Lloc the position loss, Lconf the confidence loss, p

ijx  the matching flag for 
the i-th predicted box and the j-th true box of a category p, pos and neg denote respectively the 
numbers of positives and negatives in the sample, box is the collection of the centre 
coordinates and dimensions of the predicted boxes, p

ic  the confidence score of a category p 

for the i-th predicted box, ˆp
ic  denotes the probability that the i-th predicted box contains a 

category p, 0ˆic  the probability that the i-th predicted box does not contain any objects, t
il  is 

the i-th predicted box (with t being the centre coordinates and the dimensions of the 
predicted box), and ˆ t

ig  denotes the position information of the i-th true box. 
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3.2. YOLOv4 Network Architecture 
The YOLO series of algorithms represents mature single-stage object-detection methods. 
Among them, YOLOv3 is known for its higher detection speed and accuracy. It has already 
found wide applications in industrial [23] and agricultural [24] domains. As seen from Fig. 4, 
the network structure of YOLOv3 employs the Darknet53 network [25] for feature 
extracting, which excludes fully connected layers. This feature extractor consists of a single 
convolutional layer (Conv2d) and five residual modules (Res1 to Res5). The detection 
process of YOLOv3 proceeds as follows. The duck-egg images are input into the feature-
extraction network, with three features on different scales fed onto the feature-pyramid 
network. The Res5 residual module produces the features with the dimensions 13×13×1024. 
They are followed by five convolutional layers, resulting in 13×13×1024 features. One 
branch passes through two convolutional layers, leading to 13×13×21 feature maps. Through 
convolution and deconvolution operations, another branch concatenates with the output 
features of the Res4 residual module, thus producing 26×26×768 features. Following five 
convolutional layers, it yields 26×26×256 features. One branch undergoes two convolutional 
layers and results in 26×26×21 feature maps. Another branch, through convolution and 
deconvolution operations, concatenates with the output features of the Res3 residual module 
and yields in 52×52×384 features. Finally, it outputs 52×52×21 feature maps after two 
convolutional layers. The features on three different scales divide the original image into the 
grids with different sizes, e.g., a 13×13×21 feature map partitions the image into 13×13 grids. 
Each grid generates three anchor boxes at a fixed scale. Hence, the final output includes four 

 
Fig. 4. YOLOv3 architecture. 
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coordinate values for each anchor box, one confidence score (indicating whether the anchor 
box contains an object) and two class scores (distinguishing between the dead and normal 
embryos). In total, we have 21 pieces of information. During training, the target location and 
the confidence information are adjusted, while a logistic function is used to predict the class 
information. This ultimately accomplishes the object recognition. 

YOLOv4 is an improved version of YOLOv3, with significant enhancements in the input, the 
feature-extraction networks and the loss functions, which results in improved speed and accuracy. 
It employs a Mosaic algorithm for data augmentation, which selects randomly four images from 
the input image set and performs the operations like scaling, cropping and distortion before 
concatenating them. Here Fig. 5 shows four images randomly selected by YOLOv4. This enhances 
a generalization capability of the model. Additionally, YOLOv4 replaces the Darknet53 network 
used in YOLOv3 with the CSPDarknet53 network as a feature-extraction network. The 
CSPDarknet53 network optimizes the residual modules in the Darknet53 network, using a cross-
stage partial network (CSP), and so enhances the learning capacity of the convolutional neural 
network while keeping it lightweight (see Fig. 6). Furthermore, YOLOv4 replaces a leaky ReLU 
activation function in Darknet53 with a Mish activation function:  

    Mish * tanh ln 1 xx x e  .    (5) 

Smoothness and non-monotonicity of the Mish function update efficiently the parameters of 
most of neurons and still preserve all of its optimization capabilities. 

 Fig. 5. Four images randomly selected by YOLOv4. 

 Fig. 6. CSP structure. 
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YOLOv4 increases significantly the receptive field of an image by introducing a spatial-
pyramid pooling structure, which improves the feature-extraction capability of the network [26]. It 
utilizes a known path-aggregation network instead of a feature-pyramid network for feature fusion 
and extraction. After implementing the feature extraction from top to bottom, it proceeds with a 
bottom-up feature up-sampling to prevent the information loss. Moreover, YOLOv4 utilizes a 
complete-IoU (CIoU) procedure when computing regression localization loss. CIoU calculates the 
similarity between the centre distance, the overlapping area and the aspect ratio of the real box and 
the predicted box: 
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Here  denotes the intersection-over-union between the real and predicted boxes, ρ the 
Euclidean distance between the centres of the predicted and real boxes, b the central point of 
the predicted box, gtb  the central point of the real box, d the Euclidean distance between the 
diagonal of the predicted and real boxes, v the similarity in the aspect ratio between the 
predicted bounding box and the ground-truth box, α the weighting coefficient, wgt the width 
of the ground-truth box, hgt the height of the ground-truth box, and w and h are respectively 
the width and the height of the predicted bounding box. 

The YOLOv4 architecture is illustrated in Fig. 7. The duck-egg image passes through a CBM 
layer (convolution + batch normalization + Mish activation function) and then goes to a CSP1 
layer consisting of CBM and one residual component (see Fig. 8). Subsequently, it enters a CSP2 
layer comprising CBM and two residual components, two CSP8 layers comprising CBM and eight 
residual components, a CSP4 layer comprising CBM and four residual components, and a CBL 
layer (convolution + vatch normalization + leaky ReLU activation function). Afterward, the input 
passes through a spatial-pyramid pooling structure and a path-aggregation network, thus outputting 
the features on the three different scales (52×52×21, 26×26×21 and 13×13×21) to a YOLO head. 
Recognition and detection of the information concerned with the duck-egg condition in YOLOv4 
is performed similar to YOLOv3. 

Training YOLOv4 involves an iterative process of correcting the network predictions for the 
position, the confidence and the class information, which makes the predictions of the true values. 
Consequently, YOLOv4 training requires simultaneous computation of the position loss, the 
confidence loss and the classification loss: 

CIoU conf classLoss L L L   ,      (9) 
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Fig. 7. YOLOv4 netw
ork architecture. 
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Fig. 8. CSP1 layer architecture. 

In Eqs. (9)–(12), LCIoU means the regression loss, Lclass the classification loss, the CIoU 
parameter is given by Eq. (6), K is the number of grid divisions, M the number of prior boxes 
generated per grid, obj

ijI  signifies whether the j-th prior box in the i-th grid is responsible for 

predicting the target (with 1 if it is responsible and 0 otherwise), noobj
ijI  implies that the j-th 

prior box in the i-th grid is not responsible for predicting the target, ˆ
iC  is the confidence 

score of the predicted bounding box, Ci the confidence score of the ground-truth bounding 
box,  denotes the set of categories for classification, pi(c) the ground-truth category of 
the target, and ˆ ( )ip c  the predicted category of the target-bounding box. 
3.3. Improved YOLOv4 Network Architecture 
Although YOLOv4 demonstrates significant advantages in detecting small targets, we remind 
that the primary objective of our study is to achieve faster and more accurate detection of 
dead and normal embryos in the duck eggs during their incubation. It is noteworthy that, in 
their original images, the duck eggs can hardly be categorized as small targets. Since the 
52×52×21 YOLO head in the YOLOv4 network is designed primarily for detecting small-scale 
targets, it has been removed in this study. Although the spatial-pyramid pooling structure 
enhances the feature-extraction capabilities of the network, it also increases the number of 
the parameters and so affects the network speed to some extent. In order to enhance the 
network speed in distinguishing dead and normal embryos, we eliminate the spatial-pyramid 
pooling structure. 

The feature-extraction network in YOLOv4 is based on CSPDarknet53, which has deep-
network architecture and results in a slower detection speed. To address this issue, we have 
conducted a number of repeated experiments and their validation. As a consequence, we have 
constructed a convolutional neural network optimized due to the CSP structure and the Mish 
activation function in order to extract automatically the vital information features from the duck eggs. 

As illustrated in Fig. 9, the improved YOLOv4 network structure employs a mosaic 
algorithm to implement the data augmentation for the duck-egg images. These images are then fed 
into the backbone network, which comprises a CBM layer, a maxpool layer and CSPM (i.e., a 
convolutional multi-layer neural network formed by combining a CSP structure with CBM). The 
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backbone network generates the features on the two scales, 13×13 and 26×26, for detecting the 
medium and large-sized targets. The path-aggregation network is used to extract and fuse the 
features from both the lower and upper layers. This results in 13×13×21 and 26×26×21 feature 
maps which are fed into the YOLO head network for predicting the position and the category 
information for the dead and normal embryos. 

4. Model Training and Analysis of Results  
4.1. Experimental Platform 
A hardware platform for the network training is as follows: AMD Ryzen Threadripper 2920X 
CPU, NVIDIA GeForce RTX 2080Ti GPU, 128 GB of RAM. Our software platform is given by 
Windows 10 operating system, CUDA 9.2 parallel computing framework + CUDNN v7.6 deep 
neural network acceleration library, open-source deep learning framework darknet based on 
C language and CUDA + VS2017 + Cmake 3.18, and Tensorflow-GPU 1.13.1 + Python 3.6. 
4.2. Model Training 
A transfer learning allows the model to converge quickly on a small dataset and so it 
addresses, to some extent, the issue of a limited number of samples. In this study, we have 

 
Fig. 9. Architecture of our improved YOLOv4 model. 
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trained the classification task for the dead and normal embryos, using pre-trained weights 
from a Microsoft Common Objects in Context (COCO) dataset. The initial learning rate has 
been set to 0.001, the batch size for the training images to 8, and the maximum number of 
training iterations to 8000. Fig. 10 illustrates the changes occurring with the loss function 
during training with the improved YOLOv4 version. It is evident that the average loss 
decreases rapidly well before 1000 training epochs. After 1000 epochs, it becomes stabilized 
at a low enough level, thus indicating that the model has already converged. 

 
Fig. 10. Loss curve obtained for our improved YOLOv4 model used in the experimental studies during 
training.  
4.3. Analysis of Results  
4.3.1. Evaluation Metrics 
To assess the performance of our object-detection algorithms, first we have evaluated the 
mean average precision of the model, the detection speed and the miss rate on the test dataset. 
A higher mean average precision indicates better predictive performance of the model. The 
detection speed measures the number of images the model can process per unit time, while the 
miss rate is a crucial metric to assess the reliability of a model, mainly reflecting the number of 
undetected objects. The precision and the recall can be calculated as follows: 

.

TPR
TP FN

TPP
TP FP














     (13) 

In Eqs. (13), R denotes the recall, P the precision, TP is the number of correctly classified 
normal embryos as positive samples, FN the number of normal embryos misclassified as negative 
samples, and FP represents the number of dead embryos misclassified as positive samples. 
4.3.2. Data Analysis 
We have analyzed statistically the test results for 20 images of duck eggs taken after 25 days 
of their incubation, which includes a total of 60 duck eggs. The evaluation criteria consist of 
the accuracy, the recall and the detection speed. The main results are shown in Table 1. Both 
SSD-MobileNetV3 and YOLOv3 misclassify 3 duck eggs, YOLOv4 misclassify 2 eggs, and the 
improved YOLOv4 misclassify only 1 egg. When compared to YOLOv3 and SSD-MobileNetV3, 
YOLOv4 demonstrates a superior performance in terms of both the detection speed and the 
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accuracy. Therefore, one can choose YOLOv4 as a basis for further detection improvements. 
Note that the detection speed is the number of images which the model can detect per 
second when run on a CPU. 

Table 1. Results of performance tests for detection based on different models. 

Model Accuracy, % Recall rate, % Detection speed, f/s 
SSD-MobileNetV3 95 84.21 20 

YOLOv3 95 84.21 28.57 
YOLOv4 96.67 88 31.25 

Improved YOLOv4 98.33 94.12 66.7 

As seen from Table 1, the improved YOLOv4 network achieves very high detection accuracy 
and recall rates (98.33% and 94.12%, respectively) in the detection of vitality information for the 
duck embryos. This represents a significant improvement when compared with SSD-
MobileNetV3, YOLOv3 and YOLOv4. Furthermore, our improved model achieves the detection 
speed 66.7 f/s, which is significantly higher than the next-to-highest result, 31.25 f/s. Hence, our 
approach is suitable for the real-time detection. All of the four models under test do not exhibit any 
instances of missed detection, which indicates their high reliability. Finally, Fig. 11 illustrates the 
recognition results of the improved YOLOv4 network obtained for the dead and normal duck 
embryos in incubated duck eggs. 

 
               (a)          (b)     (c) 
Fig. 11. Test results for the duck eggs derived from our improved YOLOv4 model: panels (a) and (b) 
correspond to normal embryos, and panel (c) to dead embryo.  

5.  Conclusions  
Let us summarize the main results obtained in the present study. 

We have simplified the YOLOv4 backbone network, used the CSP structure and the Mish 
activation function, and have removed the YOLO head designed for detecting small objects. In this 
manner we have reached the recognition accuracy 98.33% and the recall rate 94.12% for 
distinguishing between the dead and normal duck embryos in the incubated duck eggs. When the 
model is run on a CPU, the detection speed is equal to 66.7 f/s. This demonstrates high robustness 
of our model and its suitability for practical production requirements. 

By comparing the three object-detection algorithms, SSD-MobileNetV3, YOLOv3 and 
YOLOv4, we have found that YOLOv4 exhibits better performance in classifying the dead and 
normal duck embryos in the incubated duck eggs. This has led us to taking YOLOv4 as a basic 
model for further improvement. 
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We have designed an image-capture system suitable for detecting the information on duck-
embryo vitality, which is suitable for the real production process. By leveraging end-to-end 
convolutional neural networks, we are able to distinguish between the dead and normal duck 
embryos, using a single duck-egg image. This provides a technical reference for using machines 
instead of manual labour for detecting the condition of duck embryos and offers a technical 
support for the development of appropriate automation equipment in the future. 
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Анотація. Наразі усунення яєць із мертвими зародками в інкубаційній промисловості 
птахівництва в Китаї в основному покладається на ручну перевірку, а відсутність 
відповідного обладнання автоматичного виявлення серйозно обмежує розвиток цієї 
галузі. Точна ідентифікація мертвих яєць є ключовим технічним завданням для 
вирішення проблеми. У цьому дослідженні розроблено установку для одержання 
зображень для аналізу качиних яєць на стадії, коли їх виймають з інкубаційного лотка 
(25 днів після початку інкубації). Ми пропонуємо вдосконалений алгоритм виявлення 
об’єктів на основі мережі YOLOv4 та ідентифікуємо мертві ембріони з високою 
точністю під час періоду висиджування яєць. Відповідно до характеристик зображень 
яєць племінних качок, ми видалили головну підмережу для виявлення малих об’єктів у 
мережі YOLOv4 і спростили магістральну підмережу цієї мережі, щоб підвищити 
ефективність виявлення. Експериментальні результати засвідчують, що середня 
точність розпізнавання нашої мережі YOLO-Lite дорівнює 98,33%, показник повноти 
складає 94,12%, а час розпізнавання одного кадру зображення – близько 15 мс. Ці 
показники кращі за відповідні параметри 96,67%, 88,89% і 32 мс, притаманні 
аналогічній методиці без наших удосконалень. Тому наші результати можуть стати 
основою для подальших досліджень і розробки відповідного інтелектуального 
обладнання. 

Ключові слова: мережа YOLOv4, розпізнавання зображень, глибоке навчання, качині 
яйця, безконтактний контроль  


