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Abstract. This work theoretically tested the possibility of expanding the spectrum of vortex charges generated 
using multi-cascade optical systems based on LiNbO3 crystals twisted around their optical axis. As a result, 
analytical expressions for the electric field parameters of the output optical wave were obtained for the four 
main types of elementary cascades that allow the generation of vortices with charges +1 and –1 and also 
provide the matching of adjacent cascades in the multi-cascade optical system. At the same time, it was shown 
that when using the appropriate number of sequentially located cascades, each of which belongs to a certain 
type from the above, it is possible to generate a vortex beam with arbitrary integer vortex charges, including 
zero. Using the proposed cascade system, one can operate the outgoing beam parameters. This system can be 
used at the vortex beam multiplexing for information transfer. 
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1. Introduction 
Using composite vortex beams increases the data transfer rate to hundreds of Gbit/s [1] and, 
with multiplexing and demultiplexing, to several Tbit/s [2]. Therefore, in the last few years, 
considerable attention has been devoted to searching for opportunities to generate 
composite vortex beams, their modulation and demodulation, and multiplexing and 
demultiplexing. In particular, in the work [3], the possibility of generation and modulation-
demodulation of optical vortex beams with different charges using a spatial light modulator 
with a loaded complex hologram was demonstrated. A liquid crystal spatial light modulator 
was used to form vector-vortex beams, as well as a laser with applied concentric rings on the 
resonator mirror [4-6]. The work [7] was devoted to the problem of generating optical 
vortex beams and their multiplexing and demultiplexing. The obtained results demonstrated 
uninterrupted transmission of information. However, the above generation, modulation, and 
multiplexing methods of composite beams require high-technologies. In addition, most of 
these devices are passive, using pre-made optical elements that cannot change their 
parameters. 

Let us review the main methods of generation of optical vortices. Optical vortices can be 
generated using various experimental methods and media, including the diffraction method 
on computer-synthesized forked holograms [8], spiral phase plates [9], q-plates [10], crystal 
optical method using divergent incident beam [11], nanoscale metasurfaces [12], spatial light 
modulators [13], etc. Today, one of the main methods of generating optical vortices is the use 
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of the so-called q-plate – a linear phase plate retarder with a phase delay of π, where the 
main axis of the retarder repeats q times the azimuthal angle φ [14]. These q-plates are 
characterized by the strength of the topological defect of director orientation q and generate 
an optical vortex with an orbital angular momentum (charge) equal to l=2q [15]. 

Another fairly promising method of generating optical vortices is using anisotropic 
inhomogeneous media under certain external influences [16-18] – particularly, a crystalline 
sample mechanically twisted around a certain crystallographic direction. Thus, in particular, 
in work [19], it was experimentally established and confirmed by theoretical calculations 
that when an initially Gaussian beam propagates in an optical system consisting of a right 
circular polarizer, a uniaxial LiNbO3 crystal twisted around its optical axis and a left circular 
polarizer, an optical vortex with a unitary topological charge appears.  In turn, work [20] 
theoretically demonstrated that the output optical beam emerging from the optical system 
consisting of a right circular polarizer, cubic KAl(SO4)2×12H2O crystals twisted around the 
[111] direction, and a left circular polarizer should bear a single-charged optical vortex. 
However, in the above work, the parameters of the output optical waves were calculated 
using only numerical methods. 

Testing of the assumption that using several devices for generating optical vortices in 
an optical system under certain conditions can lead to a significant expansion of the 
spectrum of charges of generated vortices has been carried out for q-plates in work [14]. 
This work has implemented approaches to add, subtract, or change the sign of commercially 
available q-plates with topological strength of defect equal to 1/2 and 1, which involve 
various combinations of q-plates with half-wave plates in optical systems equivalent to a 
certain single q-plate. As a result, it has been theoretically shown that for these optical 
systems using collimated incident beam and N q-plates with different topological strengths 
of defect, it is possible to obtain 3N different combinations of q values. On the other hand, one 
can assume a similar effect by using torsion-stressed crystalline elements. However, the 
torsion-stressed crystalline rods differ from the q-plates in terms of the linear radial 
distribution of the phase difference, which can be operated by the applied torque moment. 
Such a distribution does not characterize the q-plates, while the phase difference in these 
plates can only be fine-tuned by the applied bias field [21]. Thus, in the presented work, we 
will analyze the overall properties of multi-cascade optical systems with torsion-stressed 
LiNbO3 crystalline elements placed in them and demonstrate their arithmetic properties in 
generating optical vortices and composite vortex beams. 

2. Method of analysis 
Consider a cylindrical sample with length d and radius R made of a LiNbO3 crystal belonging 
to the point symmetry group 3m. Its axis coincides with the optical axis of this crystal and 
the x3 axis. The basis vectors of coordinate system x1x2x3 coincide with eigenvectors of the 
dielectric impermeability tensor. If the torque moment M is applied to the ends of this 
cylindrical sample, and its side surface is free of loads, the following nonzero components of 
the mechanical stress tensor (second rank polar tensor with internal symmetry [V2]) appear 
as a result [22]: 

32 23 4
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where r and φ represent, respectively, the radial and azimuthal coordinates of the polar 
coordinate system 
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The presence of non-zero components of the mechanical stress tensor leads to the 
appearance of the piezo-optical effect described by the relation: 

Δ ik ikts tsB   ,     (3) 

where Δ ikB  is the piezo-optical contribution to the optical dielectric impermeability (second 

rank polar tensor with internal symmetry [V2]); ikts  is the piezo-optical tensor (fourth rank 

polar tensor with internal symmetry [V2]2). Given that the piezo-optical coefficients tensor 
for the point symmetry group 3m has the form: 
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the equation of the optical indicatrix can be written as: 
2 2 2
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For a cross-section in the plane x3 = 0, Eq. (5) reduces to the form 
2 2

11 0 14 23 11 0 14 23 14 13 1 21 2(( ) ) (( ) ) 2 1B x B x x x          .  (6) 

Given that 2
11 0 0( ) 1 /B n , where n0 is the ordinary refractive index for a non-twisted LiNbO3 

crystal, the main refractive indices for a twisted cylindrical LiNbO3 crystalline sample can be 
found from Eq. (6) 
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Thus, the birefringence of this twisted sample is equal to: 
3
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In turn, the phase delay for this twisted sample can be written as: 
3
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where the quantity 
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  . Finally, the angle of rotation of the optical indicatrix 

around the x3 axis is equal to 
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Therefore, using the relationship for the Jones matrix of an arbitrary phase retarder [23] 
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it is possible to write down the Jones matrix for a certain unit cell with polar coordinates 
(r, φ), where 0 ≤ r ≤ R, 0 ≤ φ ≤ 2π, of the above-mentioned torsion-stressed LiNbO3 
crystalline element: 
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AMr i AMr i AMr
J i AMr AMr i AMr

 
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 
   
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3. Results and discussion 
Optical systems of the elementary (single) cascades: T  , T  , T  and T  , are presented 
in Fig. 1. Here, the first superscript index sign indicates the sign of the outgoing wave's 
orbital angular momentum, while the second superscript index indicates the sign of the 
outgoing optical wave's circular polarization ("+" lefthanded, "-" righthanded). 

 
Fig. 1. Optical systems of single-cascades T   (a), T   (b), T   (c), and T   (d) for the torsion-
stressed LiNbO3 crystalline element T. QWP+ and QWP– are quarter-wave plates, the fast axes (FA) of 
which are located, respectively, at angles of +π/4 and – π/4 with respect to to the X1 axis; P is a linear 
polarizer with a transmission axis (TA) parallel to the X2 axis. 

 
For single cascades T   (Fig. 1a) and T   (Fig. 1b), we choose a left circularly polarized 
optical wave propagating along the optical axis of a twisted cylindrical LiNbO3 crystalline 
sample as an input optical wave. The Jones vector of the electric field of this optical wave is 
determined by the relation 
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In the case under consideration, the Jones vectors of the electric field of the output optical 
waves for a single cascades T   and T   are written, respectively, as 

out P T LQWP QWPE J J J J E 
  ,     (14) 

out P T LQWP QWPE J J J J E 
  ,     (15) 

where the Jones matrices QWP+, QWP– and P are, respectively, 
1 1 0 01 1, , .1 1 0 12 2 PQWP QWP

i i
J J Ji i 

     
              

 (16) 

After the appropriate matrix transformations of relations (14) and (15), we obtain the Jones 
vectors of the electric field of the output optical waves, which are determined, respectively, 
by the relations 

sin( )exp( ( / 2))out RE AMr i E    ,   (17) 
sin( )exp( ( / 2))out LE AMr i E    ,   (18) 

where ER is the Jones vector of the electric field of a right circularly polarized optical wave: 
11

2RE i
 

   
.      (19) 

As can be seen, after passing through single cascades T   and T  , the optical wave remains 
circularly polarized but acquires a radial distribution of intensity 2sin ( )AMr   and a non-

uniform phase delay 0l   , where 1l  . Moreover, for the single cascade T  , the 

phase delay 0 / 2   is introduced by the last quarter wave plate QWP+, and for the single 

cascade T   the phase delay 0 / 2    is introduced by the last quarter wave plate QWP–. 

In addition, in the case of a single cascade T  , the optical wave changes the sign of circular 
polarization from left to right. Finally, when the incident optical wave has a left-handed 
circular polarization, the cascades  T   and T   generate a vortex beam with a charge equal 
to +1. 
Instead, for single cascades T   (Fig. 1c) and T   (Fig. 1d) we choose a right circularly 
polarized optical wave that propagates along the optical axis of a twisted cylindrical LiNbO3 
crystalline sample as an input optical wave. As indicated above, the Jones vector of the 
electric field of this optical wave RE  is determined by relation (19).  

In turn, the Jones vectors of the electric field of the output optical waves for single cascades 
T   and T   are equal, respectively, to 

out P T RQWP QWPE J J J J E 
  .    (20) 

out P T RQWP QWPE J J J J E   .    (21) 
After the appropriate matrix transformations of relations (20) and (21), we obtain the Jones 
vectors of the electric field of the output optical waves, which are determined, respectively, 
by the relations 

sin( )exp( ( / 2))out LE AMr i E     .   (22) 
sin( )exp( ( / 2))out RE AMr i E     .   (23) 
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Thus, after passing through single cascades T   and T  , the optical wave remains 
circularly polarized, but acquires a radial distribution of intensity 2sin ( )AMr   and a non-

uniform phase delay 0l   , where 1l   . Wherein for the single cascade T  , the 

phase delay 0 / 2   is introduced by the last quarter wave plate QWP– and for the single 

cascade T   the phase delay 0 / 2    is introduced by the last quarter wave plate QWP+. 

In addition, in the case of a single cascade T  , the optical wave changes the sign of circular 
polarization from right to left. Finally, a single cascades T   and T   generates a vortex 
beams with a charges equal to –1. 
Taking into account the structure of relations (17), (18), (22), and (23), for N sequentially 
arranged single cascades of the above types, which use twisted cylindrical LiNbO3 crystalline 
samples with the corresponding constants A1, ..., АN and the torque moments М1, ..., МN, at the 
output, a circularly polarized optical wave with a radial distribution of intensity 

2

1
sin ( )

N

k k
k

A M r


   is obtained.  

Let us consider the sequence of the different single cascades. It should be noted that when 
building such a multi-cascade optical system, the matching between adjacent single cascades 
must be ensured: the sign of the circular polarization of the output optical wave of the 
previous single cascade must coincide with the sign of the circular polarization of the input 
optical wave of the next single cascade. In this regard, we recall that after passing through 
single cascades T   and T  , the optical wave remains, respectively, left and right circularly 
polarized. In contrast, after passing through single cascades T   and T  , the sign of 
circular polarization changes, respectively, from left to right and from right to left. 

(1) The sequence of cascades T T   lead to the transformation of the quantum 
state ,l  (    is the spin angular momentum) as ,0 ,2  .  

(2) The sequence of cascades T T   lead to the transformation of the quantum state as 
,0 , 2     . 

(3) The sequence of cascades T T   lead to the transformation of the quantum state as 
,0 ,0  . 

(4) The sequence of cascades T T   lead to the transformation of the quantum state as 
,0 ,0    . 

(5) The sequence of cascades T T   lead to the transformation of the quantum state as 
,0 ,0   . 

(6) The sequence of cascades T T   lead to the transformation of the quantum state as 
,0 ,0   . 

In cases (1) and (2), using the multi-cascade optical system results in the multiplication of 
the orbital angular momentum. It is obvious that utilizing N cascades in these cases will lead 
to the generation of optical vortices with a charge equal to ±N. In the third and fourth cases, 
the quantum state of the incident beam does not change. In the fifth and sixth cases, the 
quantum state changes, such as the spin angular momentum changes its sign, but an optical 
vortex is not generated. 

Theoretical calculations of radial distributions of parameters 2

1
sin ( )

N

k k
k

A M r


   (Fig. 2) and 
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0 l     (Fig. 3) for the output optical wave were carried out on the example of single-

cascade and two-cascade optical systems (e.g. case (1) or (2)) according to the following 
data: R = 3×10–3 m, d = 13×10–3 m, М = 63.77×10–3 m×N [18], n0 = 2.28647 [24], 
π14 = 8.87×10–13 m2×N–1 [25], λ = 632.8×10–9 m. 
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Fig. 2. Radial distribution of parameter I for the output optical wave in single-cascade optical systems 
(open circles) and two-cascade optical systems with 1 2,  M M M M   (diamonds); 1 ,M M  

2 2M M  (triangles); 1 2,  3M M M M   (crosses); 1 2,  4M M M M   (squares); 1 ,M M  

2 5M M  (full circles). 

  
Fig. 3. Coordinate dependence of phase 0  for the output optical wave in single-cascade optical 
systems with 1l    (1), 1l    (2) and two-cascade optical systems with 0l   (3), 2l    (4), 

2l    (5). 
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It is seen (Fig. 2) that at the chosen parameters, the single-cascade system does not produce 
a well-definite doughnut mode with a dark center and bright ring barrier. For this, increasing 
the torsion moment or the sample length is necessary. Nonetheless, the single-cascade 
configuration produces the single-charged optical vortex (Fig. 3). The two-cascade system 
can lead to the appearance of an optical beam, as Gaussian, as well as those that bear a 
double-charged vortex (Fig. 3). At the appropriate choice of torsion moment applied to 
different samples, e.g., 1 2,  3M M M M  , one can generate a perfect, well-defined doughnut 

double-charged vortex beam with a bright single-ring barrier (Fig. 2). The cascade system 
presented in this work differs from the cascaded q-plates [14] by the existence in the 
Eqs. (17), (18), (22), and (23) and in the equation for the N-cascade system of the type 
multiplier 2sin ( )AMr , which permits one to operate by the parameters of the output beam 

by applying torsion moments (Figs. 2,3). 
It should be noted that, with the aim of multiplexing, the generated vortex beams with 

defined charges can be deviated from the system using splitting optical elements for 
modulation and then mixed into one composite vortex beam for delivery at the receiver's side. 

4. Conclusions 
This work theoretically analyzed the possibility of generating vortices with different charges 
using multi-cascade optical systems that use torsion-stressed cylindrical LiNbO3 crystalline 
elements. Thus, analytical relations were obtained for the Jones vectors of the electric field of 
the output optical wave in the case of four main types of elementary cascades. These allow 
for generating vortices with charges +1 and –1. It has been shown that with the help of only 
these four types of single cascades, when using the appropriate number of sequentially 
located cascades of one type, the generation of vortices with arbitrary integer charges can be 
realized. So, in particular, a two-cascade optical system allows the generating of optical 
vortices with charges –2, 0, and +2 depending on the number of cascades of a certain type. 
This approach can be easily implemented experimentally since it only combines torsion-
stressed LiNbO3 crystalline elements with quarter-wave plates and polarizers.  
Moreover, to change the type of a certain defined single cascade, it is enough only to switch 
to the opposite diagonal orientation of the fast axes of the quarter-wave plates of this 
cascade. The cascade system presented in this work differs from the cascaded q-plates in 
terms of the possibility of operation by the outgoing beam parameters. This system can be 
used at the vortex beam multiplexing for information transfer. 
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Анотація. У цій роботі теоретично перевірена можливість розширення спектру 
зарядів оптичних вихорів, створених за допомогою багатокаскадних оптичних систем 
на основі скручених навколо оптичної осі кристалів LiNbO3. У результаті отримано 
аналітичні вирази для параметрів електричного поля вихідної оптичної хвилі для 
чотирьох основних типів елементарних каскадів, що дозволяють генерувати вихори із 
зарядами +1 та –1, а також забезпечують узгодження суміжних каскадів у 
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мультикаскадній оптичній системі. При цьому було показано, що при використанні 
відповідної кількості послідовно розташованих каскадів, кожен з яких належить до 
певного типу з перерахованих вище, можна генерувати вихровий пучок з довільними 
цілими зарядами вихору, включаючи нуль. Використовуючи запропоновану каскадну 
систему, можна керувати параметрами вихідного променя. Цю систему можна 
використовувати при мультиплексуванні вихрового пучка для передачі інформації. 

Ключові слова: оптичний вихор, гелікоїдальний хвильовий фронт, заряд вихора, 
багатокаскадна оптична система, крутильні напруження, кристали LiNbO3. 


