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1. Introduction
Optoelectronics is one of the most fascinating areas of telecommunications engineering that

has made its visibility during the past few decades. The science of optical solitons is the one
that is making a lasting impression in this field. The plethora of relentless impressive results
visible across various journals has captured the attention of various telecommunication
engineers, physicists, and mathematicians alike [1-10]. However, a few issues are yet to be
addressed for the element of perfection to be embedded with the soliton transmission
technology across intercontinental distances. One such issue is the low chromatic dispersion
(CD) count that must be compensated and replenished to sustain the delicate balance
between CD and the self-phase modulation (SPM). There are several mathematical as well as
down-to-earth measures to achieve this. One such engineering marvel is implementing the

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 1 01033



Elsayed M. E. Zayed et al

grating structure around the internal walls of the core. This grating structure would lead to
dispersive reflectivity. This would yield the corresponding model with such dispersive
reflectivity as opposed to CD. The current paper carries out the integration of this tactful
model by the usage of an extended auxiliary equation approach where the SPM stems from
parabolic nonlocal nonlinearity. The soliton solutions are retrieved and presented along with
the parameter constraints that ensure their existence during transmission across
intercontinental distances.

The primary objective of the present paper is to introduce and formulate, for the first
time, a dimensionless representation of the highly dispersive perturbed nonlinear
Schrodinger's equation (NLSE) that describes the dynamics of fiber Bragg gratings. This
equation incorporates dispersion effects and perturbations while considering a parabolic
non-local law governing the nonlinear refractive index within the fiber grating structure.
This contribution is expected to contribute to a more comprehensive and standardized
approach to investigating the complex behaviors exhibited by fiber Bragg gratings under
these combined influences.

The main difference between the present paper and the previously studied paper [10] lies in
their respective focuses and contributions within the realm of gap solitons and fiber Bragg
gratings. While both papers involve the study of gap solitons and their behavior within the
context of dispersive Bragg grating fibers, they differ in their specific objectives and the aspects
they emphasize. The paper [10] addresses the characteristics of gap solitons arising from the
interplay between cubic-quartic dispersive reflectivity terms and a parabolic law of nonlinear
refractive index. This unique combination introduces new dynamics and behaviors that have not
been extensively explored before. On the other hand, the present paper emphasizes the
development of a dimensionless formulation for the highly dispersive perturbed NLSE that
governs the dynamics of fiber Bragg gratings. This dimensionless equation form enables a more
general and standardized approach to understanding the system's behavior by removing the
constraints of specific units or scales. This contribution serves as a foundational framework for
investigating the collective impact of dispersion effects, perturbations, and the parabolic non-
local law of nonlinear refractive index on the behavior of fiber Bragg gratings. While both papers
explore the intricate behaviors of gap solitons in dispersive Bragg grating fibers, the paper [10]
investigates the specific effects of cubic-quartic dispersive reflectivity and the parabolic law of
nonlinear refractive index, while the present paper is concerned with a more universal and
standardized formulation of the governing equation. Together, these contributions deepen the
understanding of the complex phenomena inherent to fiber Bragg gratings and contribute to
advancing the collective knowledge in the field.

2. Governing model
For the first time, the equation representing the highly dispersive perturbed NLSE in fiber

Bragg gratings with parabolic non-local law of nonlinear refractive index is expressed in
dimensionless form:

1q, + 1041y, + Ayl T1d3l,,

Herlal +dilrf)a+(erlal* + Alafrf s gr )+ (i) emi(rF) Jo @

+ A4l yxxx +1 A5 yxxxx + el yxxxxx

Hoyqy + ir +o1q*r? = i[y1(|q|2q)x + 91(|Q|2 )X‘I + /11|‘I|2 (Ix}
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and

irt + ibqu + quxx + ib3qxxx + b4qxxxx + ibquxxxx + b6qxxxxxx

+(calr + dyfal? )+ (ealr* + foIrlaf” + g2|q|4)r

+[12(|r|2 )XX +m, (|q|2 )Xx}r (2)

s, poa-rra = (1), +6,(rF) o sl

X X

where q(x,t) and r(x,t) are complex-valued functions that represent the wave profiles for
the two components in fiber Bragg gratings, while ¢*(x,t) and r*(x,t) are complex-valued

conjugate functions, i=+~/-1. The first terms in Eqgs. (1) and (2) represent the linear-
temporal evolution. The constants a; and b; are the coefficients of inter-modal dispersion,

a, and b, are the coefficients of CD, a; and b; are the coefficients of third-order dispersion,
a, and b, are the coefficients of fourth-order dispersion, a; and by are the coefficients of
fiftth-order dispersion and a4 and by are the coefficients of sixth-order dispersion. The

constants ¢; and e;, (j=1,2) are the coefficients of SPM, while d;and g;, (j=1,2) are the
coefficients of cross-phase modulation. The constants fj,( j=1,2) are the coefficients of
nonlinear terms, the constants 1]- and mj,(j=1,2) are the coefficients of non-local law
terms, o, (j=1,2) are the coefficients of IMD, B;, (j=1,2) are the coefficients of detuning
parameters and o; (j=12) are the coefficients of the four-wave mixing (4WM)
parameters. Finally, y;, (j=1,2) are the coefficients of self-steeping (SS) terms, while 6,
and M) (j= 1,2) are the coefficients of the nonlinear dispersion terms. The system (1) and
(2) is a manifested version of the standard models.

3. Mathematical analysis
With the goal in mind, we make the assumption that Eqgs. (2) and (3) possess a formal

solution:
q(x,t)=U;(z)ev(xt), @)
r(x,t)=U,(7)eiv(xt),

here Uj(‘r),(jzl,Z) and y(x,t) are real functions, such that
T=x-vt,y(xt)=—kx+ot+0, (4)

and v, x,® and 6, are real constants. Here U; (r),(j = 1,2) represent the pulse shapes, v is
the velocity of the soliton, x is the soliton wave number, o is the soliton frequency and 6
is a phase constant. Substituting (3) and (4) into Egs. (1) and (2), one gets the real parts as:
06U£6) +(a, —5asx — 15061<2)U£4)
+Ha, +3azx — 6a,k2 —10agk3 + 15agk4)U; + 2L,UZUL + 21U, U
+2my U UyUy +2m,U U2 +(aqgk — )Uy (5)
+(B1 + a1k — ayx2 — azx3 + aykt + agkS —agx©)U,
+[ o1 = (yy + ) JUF +(dy +01)U,U3 +eqUF + UGS + 91U, U7 =0,

and
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where U§4) =

and

Set

where A isa

and

respectively.

and

=2 and Ugé) =

bgU'®) + (b, — Shei — 15bx2)ULH

+(b; +3bsk —6byk2 —10bsk3 + 15bgk4)U7 + 21L,U3UY + 21,U,U72

+2myU U4 U7 + 2myU U7 + (o — ) U,

+(B, + bix — byx2 — k3 + by + b5 — b ©)U;

+ea =k (ry+ 1) JUF +(dy + 02)UpUF + U3 + fU3UF + g,U,U =0,
d*U deu,

T4 dr

(a5 — 6agi ) +(as — 4ayx —10ask2 +20agx3)Uy — 3y, + 20, + uy U,

+ag —v)U; +(ay — 2a,x —3azx2 + 4a,x3 + 5agkt —6agx>5)U; =0,

while, the imaginary parts as:

(bs — 6bgi )L + (by — 4byk —10bsic2 + 20b5x3)U;" —[3y, + 20, + 11, |UZUS
+(ay —v)U, +(by — 2byk —3b3k2 + 4b,y k3 + 5beic4 — 6bgicS5)U; = 0.

Uy(z) =AU, (),
constant, provided A#0 or 1. Consequently, Egs. (5)—(8) change to:
agAUS® + (a, —5agk —15a,x2)AULY
+(a, +3azx —6a,x2 —10asx3 + 15a,x4)AUY
+2(my A2 + 1, )URUY +2(my A2 + 1, )U, U
+ayk — o+ (B + a1k —ayk? — azx3 + ayct + askS —ag6)A|U,
+[ ey —x(yy + py )+ (dy + 01 ) A2 U3 + ey + f1A2 + g, A%)U3 =0,
beU®) + (b, —5bg — 15b5xc2)U(Y
+(b, +3bzk —6b, k2 —10bsk3 + 15bgk 4)U1 + 2A(m, +1,A2)UFUY
+2A(my +L,A2)U, U
+[ (o — @) A+ By + by — by — byic3 + byich + b5 — b6 Uy

+A[ €242 — (7, + 11y ) A2 + dy + 0, U3 + A(e,4% + fA2 + g, )UF =0,

(a5 —6agi)AU + (az — 4a,x —10agk2 + 20agx3) AU’
~[3y1+20, + 1 JUFU;
+[ay —v+(ay —2ayx —3a3Kx2 + 4a,x3 + Sagk+ —6agk5)AU; =0,
(bs — 6bgr ) + (by — 4byx —10bg2 +20bg3 ) Uy
~[37 +26, + 11, ] A3UFU;
+[(ay —=V)A+ by — 2byk —3bsic2 + 4b,ic3 + Shgk 4 — 6bgk5 |U; =0,
From Egs. (12) and (13), one gets:

K =das/6ag = bs [6by,

az —4a,x —10asx2 +20a,x3 =0,

by —4b,x —10bsx2 +20bgx3 =0,

3y;+20,+u;=0, forj=12,

(6)

(7)

(8)

9)

(10)

(11

(12)

(13)

(14)
(15)

(16)
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V=0 +(a; —2a,x —3a;3x2 + 4a, k3 + Sagk 4 —6agk5)A,
= Aty + by = 2byxc —3bysc? + 4byxc3 + Sborct — 6bxcS (17)
A
Egs. (10) and (11) have the same form under the constraint conditions:
agA = bg, (a, —5ask —15a¢x2)A=b, —5bsk —15byx2,
(ay +3a5x —6a,x2 —10ask3 + 15a4x4)A = b, + 3bsic —6by k2 — 10bsk3 + 15bg k4,
L +mA2 = A(LAZ +my),

ok —o+( By + a1k — ayk2 — azk3 + akt + agkS —agk©) A (18)

=(ayk —®)A+ By + bk — byk? — bsi3 + bykc* + bgic5 — bgk6,
oy =k (y1+ )+ (dy+01) A2 = Al ¢, A2 =k (1, + 1y ) A2 +dy + 05 ],
From Eq. (18), one gets:

(ﬂz—ﬁ1A+(Aa2—a1 +b —a,A)k — (b, — a,A)Kk? J
oo —(b; —azA)k3 +(b, —a4A)rf44 +1(b5 —asA) K5 —(bg —agA) k6 a9

Eq. (10) can be rewritten in the form:
0l + 0,08 1+ 0,5 + AU + AU UR +0,U; +O5U3 +0U5 =0, (20)

where
—5ask —15a,K2
0, a, —5ask 6<%
3

0, % +3azx —6a,k2 —10agx3 +15ax*

2 a6 )
A =2(Il+m1AZ)’A =2(m1A2+11)’ @1

0 A ! A

6 6

o — ak— o+ () +ak —ak? —azk3 +a,xt +askS —agr©)A

! agA

e =K (11 + ) +(dy +07) A2 e+ f142+g,A*
@3 = ) @5 = .
agA agA

Next, balancing U§6) and U7 in Eq. (20) deduces the balance number N=3/2. Thus,

we take the transformation:

3
Uy(t)=Z2(7), (22)
where Z(7) is a new positive function. Next, Eq. (20) changes to:

32 75760+ 32747:76)+ L0747 7 8 z3z2zm 4 32 7472
105 35 7 7 21

~ % P— % 73737 _ % 73773136 73 72703 _ 37_0 7747

7
+26 + 32 A 787" + 2O A 2722 1 1O\ 77724+ 32 0, 257 (23)
105 105 35 105
+ 5% 9,20277 +180,20272 180 ,73727" + 20,7224 + 32 0,757"
105 35 35 35 105

+ 10 @,74724 8% @ 761 6% g 794 0% g 712 -,
105 315 315 315
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Here, 2(6) =9%2  7(5) 82 (o) _d*Z i _d32  pu_d?Z 4 7 4Z oo

dr6 drs’ dr4’ de3’ dr? dr
next section, we will solve Eq. (23) using the extended auxiliary equation approach:

4. Extended auxiliary equation approach
Using this method, deduces the formal solution of Eq. (23) as:

N
Z(T)= ZQSRS(T), (24)
s=0
where R(7) satisfies the first order auxiliary equation:
4
R2(7)= h,R%(7). (25)
z=0

Here Q(s=0,1,..,N) and h,(z=0,1,2,3,4) are constants to be determined such that

Qy#0 and hy #0, where N is a positive integer. We determine the balance number N of

Eg. (24) by using the homogeneous balance method as follows:
if D(Z)=N, D(Z')=N+1, D(Z")=N+2 and hence

D[ ZmZ()]=N(m+1)+n. (26)

It is well known that Eq. (25) has the following types of solutions:
Type-1:If hy =h; =h; =0, then Eq. (25) has the bright soliton solution:

R(r)=% /—:—zsech(\/gr), (27)
4

provided h, >0 and h, <0, and the singular soliton solution:

R(r)zi\/zzcsch(\/gr), (28)
4

provided h, >0 and h, >0.

h2
Type-2:1f hy =h; =0 and h, :ﬁ, then Eq. (25) has the dark soliton solution:
7

R(r)=% /—%tanh( —%r), (29)
R(r)=% ’—%coth[‘/—};—zfj, (30)

provided h, <0 and h, >0.

2(1—m2)h2
Type-3: If hy=h; =0, h, :_T(—m)z)z and 0<m<1, then Eq. (25) has the following
2m2—-1)"h,
Jacobi elliptic solution (JES):
2
R(r)=+ M2y o \/ b, (31)
(2m2-1)h, 2m2 -1
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provided (2m2—-1)h, >0 and h, <0.

1-m2)h2
Type-4:1f hy =h; =0, hy =% and 0<m<1, then Eq. (25) has the following JES:
(2-m2)"h,
R(r)=% L dn \/ L 7|, (32)
(2-m2)h, 2-m2
provided h, >0 and h, <0.
m2h3
Type-5:1f hy =h; =0, hy =—22 and 0<m<1, then Eq. (25) has the following JES:
(m2+1)"h,

.| m?h _h
R(T)_i\/ (1+m2)h, sn[\/ 1+m21j' (33)

Type-6: If hy =h; =0, then Eq. (25) has the combo-bright-dark soliton solution:

hzsechz(%\/gr)

provided h, <0 and h, >0.

R(T) = 1 ) (34)
2 h2h4tanh(5\/@)—h3
and the combo-singular soliton solution:
hy cschz(l\/Er)
R(z 2 (35)

2 h2h4coth(%\/@)+h3
provided h, >0 and h, >0.
Type-7:1f hy=h; =0 and h; =2,/hh, , then Eq. (25) has the dark soliton solution:

R@):—%J%[utanh(%@rﬂ, (36)

and the singular soliton solution:

R(r):—%\/%[l+coth(%\/grﬂ, (37)

provided h, >0 and h, >0.

4.1. Soliton solutions
In order to achieve this objective, we apply the balancing method (26) to balance Z5Z(6) and
Z12 in Eq. (23). By doing so, we determine that N =1, and the formal solution of Eq. (23) is
provided as follows:

Z(7) =909+ QR(7). (38)
In this case, (), and {; represent constants, where (), is a non-zero value.

Set-1: In order to derive the solution, we can insert Egs. (38) and (25) into Eq. (23) and
make the assumption that hy = h; = h; =0. By solving the resulting set of algebraic equations

using Maple, we obtain the following outcome:
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1
135135 h3 |6 4
0 =0,0, =| — S0P p=-—*9, 39
0 1 ( 64 O 27 179 * (39)
and
53361 7459 18 3
= 29901 g3 g _ 02, 0, == A.0,, Ay=-2A, 40
175735339 % 72732041 ¥ 3 ggs L4 70T g1 (40)

provided h,05 <0. By substituting Eq. (39) into Eq. (38), along with Egs. (27) and (28), we
can obtain the bright soliton solution for Egs. (1) and (2) as:

2

1
3 )6 {
q(x,t): _ 135135 O3 Sech[z _L@At (X_Vt)j ei(-xx+ot+,), (41)
5735339 0 179
1
36 [ .
r(x,t):A _%% Sech(z _L@Al (X_Vt)j el(-xx+ot+,), (42)
5735339 04 179

provided 0, <0 and ©g >0, and the singular soliton solution as:

N [w

2

1
36 [ .
q(x,t): we_‘* CSCh(Z _L@‘l (X_Vt)j gi(-xx+ot+6,) (43)
5735339 04 179

1 2
3\ )
r(xt)=A 135135 O3 csch| 2 /—LGL} (x—vt)j el(-kx+ot+6,), (44)
5735339 0g 179

provided ©, <0 and Oz <0. The conditions specified in Eq. (40) ensure that the solutions
(41)-(44) satisfy the given Egs. (1) and (2).
Set-2: In order to derive the solution, we can insert Egs. (38) and (25) into Eq. (23) and

h2
make the assumption that by =h;=0 and A, :ﬁ. By solving the resulting set of algebraic
4
equations using Maple, we obtain the following outcome:
2

1
3 3\g 2
Y (_5005] ,le(_135135h_4j6 ho 143 8

Q= - ‘
°" 10080 6 64 O 1088640 O
and
__ 2924207 AY o 38669059 Af
17 936190547066880 @' © 4740548198400 02’ (46)
4147 A3 11869 A, 4
3% »O3= »Ag=—7A,
19595520 Oy 2177280 Oy 3

provided h, >0 and Og <0. By substituting Eq. (45) into Eq. (38), along with Egs. (29) and
(30), we can obtain the dark soliton solution for Eq. (1) and (2) as:
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2 2
Ay [ 5005 3 A, [ 15015
t)=y———| —— tanh| —— [-———=(x-vt) |-1
a(x.t) 10080( 0s ] { (15120 0; ( )J } (47)
Xei(—;cx+cot+0“)’
3
2 2
3
F(xt)=A] —1 | 5005 Pl A1 | 15015 eyl g (48)
10080 O 15120\ O

xel(-xx+at+0,)

and the singular soliton solution as:

2 2
Ay 5005 |3 Aq 15015
Xt)=y——| —— coth| —— |- x—-vt)|-1
alxt) 10080( 05 ] { [15120 05 ( )J } (49)
Xei(—zcx+wt+00),
2 2
3
r(x,t)=A4 A1 [ 5005 P ol b1 —15015(x—vt) -1 (50)
10080 O 15120\ O

xel(—kx+ot+6))

provided Oz <0. The conditions specified in Eq. (46) ensure that the solutions (47)-(50)
satisfy the given Egs. (1) and (2).

Set-3: In order to derive the solution, we can insert Eq. (38) and (25) into Eq. (23) and make
the assumption that hy =h; =0. By solving the resulting set of algebraic equations using
Maple, we obtain the following outcome:

1

135135 h3 |6 4

—=29290 4 1 h =—Z0, hy=h,, 51
6t o 2= g3y BT (51)

A 1920, +4980h, [ 1501505
0 11869 hy

A __ 3200, +4648h, [ 150150
! 11869 h,

_ 11025 gy
571787 *
_1891g,
6889 *

o. 49800, +11520% ~55112h; [ 1501505
3 985127 h,

provided h,05 <0. By substituting Eq. (51) into Eq. (38), along with Egs. (34) and (35), we

and

1 (52)

2

can obtain the combo-bright-dark soliton solution for Egs. (1) and (2) as:

Ukr. ]J. Phys. Opt. 2024, Volume 25, Issue 1 01041
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3
1 1 2
( 5005H} ]6 2x/§®4sech2(§./—83®4 (x —vt))

q(xt)=9| —g 1 (53)
5 ) 4,/-830,h, tanh(g\/mb(—vt))mm
Xei(—l(x+wt+0“)’
()= 5005”2Jé 230 secti g B0 xw) | 54)
©s ) 4/-830,h, tanh(é%(x—vt))+83h4
Xei(—xx+a>t+00),
and the combo-singular soliton solution as:
3
q(x.t)= { 5005h‘3§f 2ﬁ®4CSCh2(éM(X_Vt)) 2 (55)
©s ) 4/-830,h, coth(é@(x—vt))—83h4
ei(-xx+ot+6,),
3
®5

4./-830,h, coth(é1 [~830, (x —Vt)) - 83h,

Xei(—lcx+a)t+60),
provided ©, <0 and h,05 <0. The conditions specified in Eq. (52) ensure that the solutions
(53)-(56) satisfy the given Egs. (1) and (2).
Set-4: In order to derive the solution, we can insert Egs. (38) and (25) into Eq. (23) and
make the assumption that hy=h; =0 and h3:2m. By solving the resulting set of

algebraic equations using Maple, we obtain the following outcome:

1
135135 h3 |6
$2 83

4
5

and
192,/12462450:0, A= 144,/12462450:;0, O 11025 .3

o 11869 P 11869 " 17571787 ¥ (58)
_ 1891, o _4640,/12462450:0,
2 4 3~ )
6889 985127

provided h,0; <0 and 0:0, >0. By substituting Eq. (57) into Eq. (38), along with Egs. (36)
and (37), we can obtain the dark soliton solution for Egs. (1) and (2) as:

1 2
q(x,t)= % —%94(_58_(5)5j6{tanh( /—é@dx—vt)j—l} (59)

Xei(—lcx+a)t+00),

01042 Ukr. J. Phys. Opt. 2024, Volume 25, Issue 1



Highly dispersive gap

1 2
1 3 5005 |6 [ 1
r(x,t):A E —gGL} (-@—SJ {tanh( —g&} (X—Vt)j—1:| (60)

xel(-kx+at+6,)

and the singular soliton solution as:

q(x,t)= % —%®4£_5825j6{coth[ {—éﬁ)‘t(x—vt)]—l} (61)

xel(-kx+ot+6,)

r(xt)=A % /—%@)4 [_53(5)5j6 {coth( /—é&} (x—vt)j—l} (62)

xel(—kx+ot+6,)

-
N W

provided ©; <0 and ©, <0. The conditions specified in (58) ensure that the solutions (59)-
(62) satisfy the given equations (1) and (2).

Remark: If we insert Egs.(38) and (25) into Eq.(23) and use the assumptions on
hj,(j:0,1,3) of Jacobi elliptic solutions (31)-(33) and solving the algebraic equations using

the Maple, we get m=1, which gives the hyperbolic solutions considered before. Therefore,
the original equations do have not Jacobi elliptic solutions..

5. Conclusions
The current paper retrieved highly dispersive gap optical solitons that emerged from Bragg

gratings. The SPM structure of the fibers is in parabolic-nonlocal nonlinear form. The
extended auxiliary equation integration algorithm has made this retrieval possible. The
results are thus indeed promising to look further ahead with this work. One immediate
thought would be to search for the conserved quantities with this model. Subsequently, the
quasi-monochromatic solitons from the Bragg gratings structure can be recovered. The
Laplace-Adomian decomposition scheme would lead to the numerical simulation of the
bright and dark solitons, which would render a visual perspective of such solitons. The
results would subsequently be disseminated elsewhere.
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Anomayis. Y yiii cmammi docaidxicyromsbcst WiAUHHI COAIMOHU 3 NApa60AiYHO-HE/I0KAAbHOI0 HOPMOI0
camopazoeoi modyasyii. ConimoHHI po3s’si3ku 045 yiei modei 8us18.4510mucsi 3a donoMo2010 ychiuiHo20
3aCMOCy8aHHs  po3WUpeHo20 nidxody 3 00NOMINCHUM pIGHAHHAM. O6MedceHHs nhapamempis
3a6e3nevyoms iCHy8AHH MAKUX WIAUHHUX CO/IIMOHI8.

Kawuosi cioea: conimonu, rpamku, po3wupeHne 0onomixcHe pi@HAHHS, 06MelceHHs1 napamempie
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