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1. Introduction 
Optoelectronics is one of the most fascinating areas of telecommunications engineering that 
has made its visibility during the past few decades. The science of optical solitons is the one 
that is making a lasting impression in this field. The plethora of relentless impressive results 
visible across various journals has captured the attention of various telecommunication 
engineers, physicists, and mathematicians alike [1–10]. However, a few issues are yet to be 
addressed for the element of perfection to be embedded with the soliton transmission 
technology across intercontinental distances. One such issue is the low chromatic dispersion 
(CD) count that must be compensated and replenished to sustain the delicate balance 
between CD and the self–phase modulation (SPM). There are several mathematical as well as 
down-to-earth measures to achieve this. One such engineering marvel is implementing the 
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grating structure around the internal walls of the core. This grating structure would lead to 
dispersive reflectivity. This would yield the corresponding model with such dispersive 
reflectivity as opposed to CD. The current paper carries out the integration of this tactful 
model by the usage of an extended auxiliary equation approach where the SPM stems from 
parabolic nonlocal nonlinearity. The soliton solutions are retrieved and presented along with 
the parameter constraints that ensure their existence during transmission across 
intercontinental distances. 

The primary objective of the present paper is to introduce and formulate, for the first 
time, a dimensionless representation of the highly dispersive perturbed nonlinear 
Schrödinger's equation (NLSE) that describes the dynamics of fiber Bragg gratings. This 
equation incorporates dispersion effects and perturbations while considering a parabolic 
non-local law governing the nonlinear refractive index within the fiber grating structure. 
This contribution is expected to contribute to a more comprehensive and standardized 
approach to investigating the complex behaviors exhibited by fiber Bragg gratings under 
these combined influences. 

The main difference between the present paper and the previously studied paper [10] lies in 
their respective focuses and contributions within the realm of gap solitons and fiber Bragg 
gratings. While both papers involve the study of gap solitons and their behavior within the 
context of dispersive Bragg grating fibers, they differ in their specific objectives and the aspects 
they emphasize. The paper [10] addresses the characteristics of gap solitons arising from the 
interplay between cubic-quartic dispersive reflectivity terms and a parabolic law of nonlinear 
refractive index. This unique combination introduces new dynamics and behaviors that have not 
been extensively explored before. On the other hand, the present paper emphasizes the 
development of a dimensionless formulation for the highly dispersive perturbed NLSE that 
governs the dynamics of fiber Bragg gratings. This dimensionless equation form enables a more 
general and standardized approach to understanding the system's behavior by removing the 
constraints of specific units or scales. This contribution serves as a foundational framework for 
investigating the collective impact of dispersion effects, perturbations, and the parabolic non-
local law of nonlinear refractive index on the behavior of fiber Bragg gratings. While both papers 
explore the intricate behaviors of gap solitons in dispersive Bragg grating fibers, the paper [10] 
investigates the specific effects of cubic-quartic dispersive reflectivity and the parabolic law of 
nonlinear refractive index, while the present paper is concerned with a more universal and 
standardized formulation of the governing equation. Together, these contributions deepen the 
understanding of the complex phenomena inherent to fiber Bragg gratings and contribute to 
advancing the collective knowledge in the field. 

2. Governing model 
For the first time, the equation representing the highly dispersive perturbed NLSE in fiber 
Bragg gratings with parabolic non–local law of nonlinear refractive index is expressed in 
dimensionless form: 

        
        

     

         
        

1 2 3 4 5 6

2 2 4 2 2 4 2 2
1 1 1 1 1 1 1

2 2 221 1 1 1 1 1 ,

t x xx xxx xxxx xxxxx xxxxxx

xx xx

x x
x x

iq ia r a r ia r a r ia r a r

c q d r q e q f q r g r q l q m r q

i q r q r i q q q q q q

 (1) 



Highly dispersive gap 

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 1 01035 

and  
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where  ,q x t  and  ,r x t  are complex–valued functions that represent the wave profiles for 

the two components in fiber Bragg gratings, while  * ,q x t  and  * ,r x t  are complex-valued 

conjugate functions,  1i . The first terms in Eqs. (1) and (2) represent the linear-
temporal evolution. The constants 1a  and 1b  are the coefficients of inter–modal dispersion, 

2a  and 2b  are the coefficients of CD, 3a  and 3b  are the coefficients of third–order dispersion, 

4a  and 4b are the coefficients of fourth–order dispersion, 5a  and 5b  are the coefficients of 
fifth–order dispersion and 6a  and 6b  are the coefficients of sixth–order dispersion. The 
constants jc  and je ,  1,2j  are the coefficients of SPM, while jd  and jg ,  1,2j  are the 

coefficients of cross–phase modulation. The constants  , 1,2jf j  are the coefficients of 

nonlinear terms, the constants jl  and  , 1,2jm j  are the coefficients of non-local law 

terms,  j ,  1,2j  are the coefficients of IMD,  j ,  1,2j  are the coefficients of detuning 

parameters  and  j  1,2j  are the coefficients of the four-wave mixing (4WM) 

parameters. Finally,  j ,  1,2j  are the coefficients of self-steeping (SS) terms, while  j  

and  j ,  1,2j  are the coefficients of the nonlinear dispersion terms. The system (1) and 
(2) is a manifested version of the standard models. 

3. Mathematical analysis 
With the goal in mind, we make the assumption that Eqs. (2) and (3) possess a formal 
solution: 
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here     , 1,2jU j  and   ,x t  are real functions, such that 

            0,  , ,x vt x t x t     (4) 

and  ,  ,v  and 0  are real constants. Here     , 1,2jU j  represent the pulse shapes, v  is 

the velocity of the soliton,   is the soliton wave number,   is the soliton frequency and 0  
is a phase constant. Substituting (3) and (4) into Eqs. (1) and (2), one gets the real parts as: 
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and 
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where  
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Set  
    2 1 ,U AU       (9) 

where A  is a constant, provided  0A  or 1.  Consequently, Eqs. (5)–(8) change to: 
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respectively. From Eqs. (12) and (13), one gets: 
 5 6 5 66 6 ,a a b b        (14) 
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      3 2 0,  for 1,2,j j j j     (16) 

and 
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Eqs. (10) and (11) have the same form under the constraint conditions:  
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From Eq. (18), one gets:  
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Eq. (10) can be rewritten in the form: 
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Next, balancing  6
1U  and 5

1U  in Eq. (20) deduces the balance number 3/ 2N . Thus, 
we take the transformation: 

     
3
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where  Z  is a new positive function. Next, Eq. (20) changes to: 
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Here,  
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next section, we will solve Eq. (23) using the extended auxiliary equation approach:  

4. Extended auxiliary equation approach 
Using this method, deduces the formal solution of Eq. (23) as: 
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where  R  satisfies the first order auxiliary equation: 
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Here  Ω 0,1,....,s s N  and   0,1,2,3,4zh z  are constants to be determined such that 

Ω 0N  and 4 0h , where N  is a positive integer. We determine the balance number N  of 

Eq. (24) by using the homogeneous balance method as follows: 
if           , 1, 2D Z N D Z N D Z N  and hence  
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It is well known that Eq. (25) has the following types of solutions: 
Type–1: If   0 1 3 0h h h , then Eq. (25) has the bright soliton solution: 
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provided   2 22 1 0m h  and 4 0h . 

Type–4: If  1 3 0h h ,  
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Type–6: If  0 1 0h h , then Eq. (25) has the combo-bright-dark soliton solution: 
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4.1. Soliton solutions 
In order to achieve this objective, we apply the balancing method (26) to balance  65Z Z  and 

12Z  in Eq. (23). By doing so, we determine that 1N , and the formal solution of Eq. (23) is 
provided as follows: 

      0 1Ω Ω .Z R     (38) 

In this case, 0Ω  and 1Ω  represent constants, where 1Ω  is a non-zero value. 

Set–1: In order to derive the solution, we can insert Eqs. (38) and (25) into Eq. (23) and 
make the assumption that   0 1 3 0h h h . By solving the resulting set of algebraic equations 

using Maple, we obtain the following outcome: 
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provided 4Θ 0  and 5Θ 0.  The conditions specified in Eq. (40) ensure that the solutions 

(41)-(44) satisfy the given Eqs. (1) and (2). 
Set–2: In order to derive the solution, we can insert Eqs. (38) and (25) into Eq. (23) and 
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provided 4 0h  and 5Θ 0 . By substituting Eq. (45) into Eq. (38), along with Eqs. (29) and 

(30), we can obtain the dark soliton solution for Eq. (1) and (2) as: 
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and the singular soliton solution as: 

    

 0

3
2 2
31 1

5 5

Δ Δ5005 15015,   coth  1
10080 Θ 15120 Θ

,i x t

q x t x vt

e     

              
       



  (49) 

    

 0

3
2 2
31 1

5 5

Δ Δ5005 15015,   coth  1
10080 Θ 15120 Θ

,i x t

r x t A x vt

e     

              
      




 (50) 

provided 5Θ 0.  The conditions specified in Eq. (46) ensure that the solutions (47)-(50) 

satisfy the given Eqs. (1) and (2). 
Set–3: In order to derive the solution, we can insert Eq. (38) and (25) into Eq. (23) and make 
the assumption that  0 1 0h h . By solving the resulting set of algebraic equations using 

Maple, we obtain the following outcome: 
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provided 4 5Θ 0h . By substituting Eq. (51) into Eq. (38), along with Eqs. (34) and (35), we 

can obtain the combo-bright-dark soliton solution for Eqs.  (1) and (2) as:  
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(53)-(56) satisfy the given Eqs. (1) and (2). 
Set–4: In order to derive the solution, we can insert Eqs. (38) and (25) into Eq. (23) and 
make the assumption that  0 1 0h h  and 3 2 42h h h . By solving the resulting set of 

algebraic equations using Maple, we obtain the following outcome: 
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 (58) 

provided 4 5Θ 0h  and 5 4Θ Θ 0 . By substituting Eq. (57) into Eq. (38), along with Eqs. (36) 

and (37), we can obtain the dark soliton solution for Eqs. (1) and (2) as: 
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  (60) 

and the singular soliton solution as: 
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provided 5Θ 0  and 4Θ 0.  The conditions specified in (58) ensure that the solutions (59)-

(62) satisfy the given equations (1) and (2). 
Remark: If we insert Eqs. (38) and (25) into Eq. (23) and use the assumptions on 

 , 0,1,3jh j  of Jacobi elliptic solutions (31)-(33) and solving the algebraic equations using 

the Maple, we get 1m , which gives the hyperbolic solutions considered before. Therefore, 
the original equations do have not Jacobi elliptic solutions.. 

5. Conclusions 
The current paper retrieved highly dispersive gap optical solitons that emerged from Bragg 
gratings. The SPM structure of the fibers is in parabolic–nonlocal nonlinear form. The 
extended auxiliary equation integration algorithm has made this retrieval possible. The 
results are thus indeed promising to look further ahead with this work. One immediate 
thought would be to search for the conserved quantities with this model. Subsequently, the 
quasi-monochromatic solitons from the Bragg gratings structure can be recovered. The 
Laplace–Adomian decomposition scheme would lead to the numerical simulation of the 
bright and dark solitons, which would render a visual perspective of such solitons. The 
results would subsequently be disseminated elsewhere. 
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Анотація. У цій статті досліджуються щілинні солітони з параболічно-нелокальною формою 
самофазової модуляції. Солітонні розв'язки для цієї моделі виявляються за допомогою успішного 
застосування розширеного підходу з допоміжним рівнянням. Обмеження параметрів 
забезпечують існування таких щілинних солітонів. 

Ключові слова: солітони, ґратки, розширене допоміжне рівняння, обмеження параметрів 


