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Abstract. The current paper focuses on the retrieval of solitons in magneto–optic 
waveguides for the concatenation model having Kerr law of nonlinear refractive 
index. The simplest equation approach as well as the extended simplest equation 
method collectively reveal a full spectrum of soliton solutions to the model. The 
parameter constraints guarantee the existence of such solitons.  
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1. Introduction 
One of the most fascinating and interesting equations in nonlinear optics that was conceived 
during 2014 is the concatenation model [1, 2]. This is a conjunction of three of the pre–existing 
equations that describe the propagation of solitons through an optical fiber. They are the nonlinear 
Schrödinger’s equation (NLSE), Lakshmanan–Porsezian–Daniel (LPD) model and the Sasa–
Satsuma equation (SSE). The proposed concatenation model has recently achieved enormous 
popularity in the field and is relentlessly presenting a lasting impression in optics. A wide variety 
of features has been touched base with this model [3–11]. Some of the salient features that were 
addressed are the Painleve analysis, retrieval of solitons using the methods of undetermined 
coefficients, trial equation approach, Kudryashov’s method, conservation laws, bifurcation 
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analysis, quiescent solitons for nonlinear chromatic dispersion (CD), addressing internet 
bottleneck features. Indeed, this is one of the growing problems of Internet communications across 
the globe. The high demand for wired communications across the entire planet cannot be kept up 
because of the low bandwidth of optical fibers. This leads to slow communications across the 
globe which leads to an unfavorable situation in the telecommunication industry. The model was 
also addressed with the power law of self–phase modulation (SPM) and later it was extended with 
differential group delay whose soliton solutions were also determined by the aid of the method of 
undetermined coefficients.  

The dynamics of solitons in magneto-optic waveguides have been extensively studied using a 
variety of models in the past [16-20]. Several soliton solutions have been recovered using a wide 
range of models. The conservation laws are also recovered for such models and various other 
aspects of such forms of waveguides have been touched base upon. It is now time to turn the page. 
The current paper now studies the concatenation model in magneto–optic waveguides for the first 
time. There are two integration schemes that will be implemented to recover the soliton solutions. 
They are the simplest equation method and the extended simplest equation approach. These 
algorithms would collectively lead to a full spectrum of optical soliton solutions. The model is first 
presented in magneto–optic waveguides. Subsequently, the two integration algorithms are revisited 
and recapitulated. Thereafter, the soliton solutions are derived and the parameter constraints, that 
naturally emerged from the integration schemes, are enlisted. The details are exhibited in the rest 
of the paper. 

2. Mathematical model 
The expression of the concatenation model for polarization-preserving fibers can be summarized 
as follows: 
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In Eq. (1), variable  ,z t  represents the complex wave profile, where z  corresponds to the 

spatial component along the length of the fiber and t  represents the temporal variable. Here, a  
represents the CD, b  and 6  represent the SPM coefficients. Next, 1  and 7  are the 
coefficients of third–order dispersion (3OD) and fourth–order dispersion (4OD), respectively. 
Finally, the coefficients 2 , 3 , 8  and 9  imply the additional nonlinear effects, while the 

coefficients 4  and 5  give the nonlinear dispersive effects.  
Eq. (1) represents the concatenation model derived from the combination of three extensively 

studied models in the field of fiber optics, namely the NLSE, LPD equation, and SSE. It is 
important to highlight that specific parameter values yield each individual model within the 
concatenation model. When 1 2 0c c  , the NLSE is obtained. If only 1 0c  , the SSE is 

recovered, and if only 2 0c  , the LPD model is obtained. Hence, Eq. (1) represents the 

concatenated form that incorporates these three widely studied models from nonlinear fiber optics.  
For magneto–optic waveguides, Eq. (1) is split into two separate components and the coupled 

model reads: 
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The constraints ja , jb , jc , 1jc , jd , je , jf , jg , jh , jk , jl , jm , jn , j , j , 2 jc , j , 

j , j , j , js  and j ,  1,2j   are parameters, while,  ,u z t ,  ,v z t  are the complex wave 

profiles. Then, the coefficients ja , j  and jd  are CD, 3OD and 4OD terms along the two 

components, respectively. Next, jb  and j  are the SPM terms, while jc  and j  are the cross–

phase modulation effect. Also, the coefficients je , jf , jg , , ,j j jh   , j  and js , give the 
nonlinear dispersive effects and the remaining coefficients give the effect of additional dispersions, 
while the coefficients jk , jl , jm  and jn  give the nonlinear dispersive effects. Finally, ,j  

 1,2j   are the coefficients of magneto–optic effects. 
The primary objective of this article is to utilize two methods in order to identify the dark, 

bright, and singular soliton solutions, for Eqs. (2) and (3). The structure of this article can be 
outlined as follows: Section–2 provides a preliminary analysis. Sections–3 and 4 present the 
solutions of Eqs. (2) and (3) utilizing the two methods stated above. Finally, Section–5, pens down 
a few conclusive words. 

3. Preliminary analysis 
In this section, we will suppose that Eqs. (2) and (3) possess the following solutions: 
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Assuming that , , Ωc   and 0  are all non-zero parameters, where c  represents the soliton’s 

velocity,   denotes its wave number, Ω  represents its frequency, and 0  is the phase constant, 

we have real functions    1 2,    and  ,H z t  that represent the amplitude and phase 

components of the soliton, respectively. Eqs. (2) and (3) may be changed to Eqs. (4) and (5) by 
isolating their real j  and imaginary j  portions. From this, we can conclude that: 
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Set 
   2 1 ,A       (10) 

provided 0, 1.A   Now, Eqs. (6)–(9) become 

 
 

 

 
  

  
 

(4) 2
1 11 1 1 12 1 11 1 11

2 2
11 1 1 1 1 1 1

2 2
11 1 1 1 1 1 1

2 4 3
1 11 1 12 1 1 1

2 2
1 11 1 1 1 1 1 1 1 1

2 2 3
12 1 1 1 1 1 1

4
11 1 1

: 3 6c d a c c d

c k m A l n

c e g A f h

a c d c A

b c g k m e A f h l n

c A s A c

c A

  

    



   

 







   

     
     

     

          
      

 

 

 

 





5
1 0,

  (11) 



Shohib Reham M. A. et al  

Ukr. J. Phys. Opt. 2023, Volume 24, Issue 3 252 

 
 

 

 
  

  

(4) 2
2 21 2 2 22 2 21 2 11

2 2
21 2 2 2 2 1 1

2 2
21 2 2 2 2 1 1

2 4 3
2 21 2 22 2 2 1

2 2 2
2 2 21 2 2 2 2 2 2 2 2

2 3
22 2 2 2 2 1

: 3 6c d A A a c c d

Ac A k m l n

Ac A e g f h

A a c d c

A c A b c f h l n A g k m e

c s A

c

  

    



   







   

     
     

      
           

     



 

 

 





 4 5
21 2 2 1 0,A A  

  (12) 

and 
 

    
 

1 12 1 11 1 1

2 2 2
11 1 1 1 1 1 1 12 1 1 1 1 1 1

3 2
1 11 1 12 1 1

: 4

2

2 4 3 0,

c c d

c m e k A n l f c A s

c a c d c

 

   

   







 

               

    



 



 (13) 

 

    
 

2 22 2 21 2 1

2 2 2
21 2 2 2 2 2 2 22 2 2 2 2 1 1

3 2
2 21 2 22 2 1

: 4

2

2 4 3 0,

c c d

c n l f A m e k c s A

c a c d c

 

   

   







 

               

    



 



 (14) 

By equating the coefficients of the linearly independent functions in Eqs. (13,14) to zero, we 
obtain: 
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Eqs. (11,12) exhibit identical forms, under the following constraint conditions: 
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From Eqs. (15–18), one derives the following: 
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We can express Eq. (11) in an alternative form as follows: 
 4 '' ' 2 2 '' 3 5
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In the upcoming sections, we will employ the following approaches to solve Eq. (20). 

4. Simplest equation method 
Eq. (20) permits the exact solution:  

   1 0 1 1,        0,A A Z A        (22) 

where 0A  and 1A  are constants to be detected, while the function  Z   satisfies Bernoulli’s 

equation 

     2
1 2 ,Z Z Z          (23) 

or the Riccati equation 
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   2 ,Z Z         (24) 

where 1 , 2  and   are constants to be determined later. Eq. (23) has the following solutions: 
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where 0  is a constant of integration, while Eq. (24) has the following three types of solutions: 

Type – 1: 0,    
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where K  is a constant of integration. 

4.1. Bernoulli’s equation 
Inserting (22) along with the Bernoulli Eq. (23) into Eq. (20), gathering all the coefficients of each 

power    , 0,1,..,5 ,sZ s   and setting these coefficients to zero, one procures the results as  
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(II) If 1 0,   2 0,   we have 
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In particular if 1 21, 1     or 1 21, 1,     we have the dark soliton solutions 
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4.2. Riccati’s equation 
Plugging Eq. (22) along with the Riccati Eq. (24) into Eq. (20), gathering the coefficients of each 

power  sZ  ,  0,1, 2,..,5s  , and setting each of these coefficients to zero, one gets the 

following results:  
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Now, one derives the following exact solutions to Eqs. (2) and (3): 
(i) If 1 0  , we have the singular soliton solutions: 
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and the dark soliton solutions: 
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Finally, there are several other Type–2 and Type–3 solutions to Eqs. (2) and (3) that are 
excluded here for convenience. 

5. Extended simples equation 
Eq. (20) assumes the explicit solution: 
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provided  2 3 12 3 0.L    

Consequently, we obtain the following straddled bright–singular soliton solutions of Eqs. (2) and 
(3) as follows: 
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In particular, if we set 1 20, 0    and 0 0   in Eq. (52) and (53), the singular solitons are as 
follows: 
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Consequently, we obtain the following straddled bright–singular soliton solutions of Eqs. (2) 
and (3) as follows: 
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In particular, if we set 1 20, 0    and 0 0   in (59) and (60), we see the singular soliton 
solutions: 
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provided  3 22 0,    while if we set . 1 20, 0   . and 0 0   in Eq. (59) and (60), we 

recover bright soliton solutions: 
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provided  3 22 0 .    

Result – 3: 
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provided     2 2
1 2 1 2 3 510 0.               

Consequently, we obtain the following straddled bright-singular soliton solutions of Eqs. (2) 
and (3) as follows: 
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and 
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In particular, if we set 1 20, 0    in (66) and (67), we arrive at the singular soliton solutions: 
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provided    1 2 3 510 0,            

while if we set 1 20, 0    in Eq. (66) and (67), we have the bright soliton solutions: 
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provided    1 2 3 510 0.            

Finally, there are several other Type – II and Type – III solutions to Eqs. (2) and (3) that are 
excluded here for convenience. 

6. Conclusions 
The paper recovered optical soliton solutions for the concatenation model with Kerr's law of 
nonlinear refractive index. Two integration schemes, namely the simplest equation method and the 
extended version of the simplest equation method, gave way to the soliton solutions. A full 
spectrum of solitons, including the bright–singular straddled solitons are recovered. The results are 
thus interesting and complete the chapter on solitons retrieval for magneto–optic waveguides. The 
parameter restrictions, that are also known as constraint conditions, are also enumerated in the 
paper and these conditions guarantee the existence of such enlisted solitons. 

The results pave the way for a number of avenues to venture in the future. One immediate 
thought would be to recover the conservation laws for the model in magneto–optic waveguides. 
The usage of the multiplier approach would lead to success since the vector-coupled equations are 
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truly non–trivial. Later, the model would be addressed with different forms of SPM which would 
give an extended or perhaps a generalized perspective of the current results in this paper. Those 
upcoming results would be then aligned would the pre–existing results [12–15]. 
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Анотація. У цій статті приділяється увага відновленню солітонів у магніто-оптичних 
хвилеводах для моделі конкатенації з нелінійним показником заломлення за законом Керра. 
Підхід з найпростішим рівнянням, а також розширений метод найпростіших рівнянь 
спільно розкривають повний спектр розв'язків солітонів для цієї моделі. Обмеження 
параметрів гарантують існування таких солітонів. 

Ключові слова: солітони, конкатенаційна модель, магнітооптичний хвилевід, метод 
найпростіших рівнянь 


