Optical solitons in magneto-optic waveguides for the
concatenation model

'Shohib Reham M. A., 2Alngar Mohamed E. M., ****Biswas Anjan,
"Yildirim Yakup, $Triki Houria, "Moraru Luminita, *Iticescu Catalina,
’Georgescu Puiu Lucian & *Asiri Asim

'Basic Science Department, Higher Institute of Foreign Trade & Management
Sciences, New Cairo Academy, Cairo—379, Egypt

*Basic Science Department, Faculty of Computers and Artificial Intelligence, Modern

University for Technology & Information, Cairo—11585, Egypt

*Department of Mathematics and Physics, Grambling State University, Grambling,
LA-71245, USA.

*Mathematical Modeling and Applied Computation (MMAC) Research Group,
Center of Modern Mathematical Sciences and their Applications (CMMSA),
Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia

*Department of Applied Sciences, Cross—Border Faculty of Humanities, Economics
and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati—
800201, Romania

Department of Mathematics and Applied Mathematics, Sefako Makgatho Health
Sciences University, Medunsa—0204, South Africa

"Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey

¥Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji
Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria

’Faculty of Sciences and Environment, Department of Chemistry, Physics and
Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008,
Romania

Received: 08.07.2023

Abstract. The current paper focuses on the retrieval of solitons in magneto—optic
waveguides for the concatenation model having Kerr law of nonlinear refractive
index. The simplest equation approach as well as the extended simplest equation
method collectively reveal a full spectrum of soliton solutions to the model. The
parameter constraints guarantee the existence of such solitons.

Keywords: solitons, concatenation model, magneto-optic waveguide, simplest
equation method

UDC: 535.32

1. Introduction
One of the most fascinating and interesting equations in nonlinear optics that was conceived

during 2014 is the concatenation model [1, 2]. This is a conjunction of three of the pre—existing
equations that describe the propagation of solitons through an optical fiber. They are the nonlinear
Schrodinger’s equation (NLSE), Lakshmanan—Porsezian—Daniel (LPD) model and the Sasa—
Satsuma equation (SSE). The proposed concatenation model has recently achieved enormous
popularity in the field and is relentlessly presenting a lasting impression in optics. A wide variety
of features has been touched base with this model [3—11]. Some of the salient features that were
addressed are the Painleve analysis, retrieval of solitons using the methods of undetermined
coefficients, trial equation approach, Kudryashov’s method, conservation laws, bifurcation
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analysis, quiescent solitons for nonlinear chromatic dispersion (CD), addressing internet
bottleneck features. Indeed, this is one of the growing problems of Internet communications across
the globe. The high demand for wired communications across the entire planet cannot be kept up
because of the low bandwidth of optical fibers. This leads to slow communications across the
globe which leads to an unfavorable situation in the telecommunication industry. The model was
also addressed with the power law of self—phase modulation (SPM) and later it was extended with
differential group delay whose soliton solutions were also determined by the aid of the method of
undetermined coefficients.

The dynamics of solitons in magneto-optic waveguides have been extensively studied using a
variety of models in the past [16-20]. Several soliton solutions have been recovered using a wide
range of models. The conservation laws are also recovered for such models and various other
aspects of such forms of waveguides have been touched base upon. It is now time to turn the page.
The current paper now studies the concatenation model in magneto—optic waveguides for the first
time. There are two integration schemes that will be implemented to recover the soliton solutions.
They are the simplest equation method and the extended simplest equation approach. These
algorithms would collectively lead to a full spectrum of optical soliton solutions. The model is first
presented in magneto—optic waveguides. Subsequently, the two integration algorithms are revisited
and recapitulated. Thereafter, the soliton solutions are derived and the parameter constraints, that
naturally emerged from the integration schemes, are enlisted. The details are exhibited in the rest
of the paper.

2. Mathematical model

The expression of the concatenation model for polarization-preserving fibers can be summarized
as follows:

ity + g, +bl9f §+ics| o2 + o lof 4. + 09 |

2 % 2 2 2 % 4
+Cl |:O-1¢zzzz +O—2 (¢z) ¢ +O—3 |¢z| ¢+U4 |¢| ¢zz +05¢ ¢zz +O—6 |¢| ¢:| = 0’ (1)
i=J-1,

In Eq. (1), variable ¢(z,t) represents the complex wave profile, where z corresponds to the
spatial component along the length of the fiber and ¢ represents the temporal variable. Here, a
represents the CD, b and oy represent the SPM coefficients. Next, o, and o, are the
coefficients of third—order dispersion (30D) and fourth—order dispersion (40D), respectively.
Finally, the coefficients o,, o3, og and oy imply the additional nonlinear effects, while the
coefficients o, and o5 give the nonlinear dispersive effects.

Eq. (1) represents the concatenation model derived from the combination of three extensively
studied models in the field of fiber optics, namely the NLSE, LPD equation, and SSE. It is
important to highlight that specific parameter values yield each individual model within the
concatenation model. When ¢; =c¢, =0, the NLSE is obtained. If only ¢, =0, the SSE is

recovered, and if only ¢, =0, the LPD model is obtained. Hence, Eq. (1) represents the

concatenated form that incorporates these three widely studied models from nonlinear fiber optics.
For magneto—optic waveguides, Eq. (1) is split into two separate components and the coupled
model reads:
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iu, +ayu,, + (bl |u|2 +¢ |v|2 )u

+cpq {dluzzzz +[el (uz )2 + 1 (vz )Z}u* +(g1 |uz|2 +hy |vz|2 )u + [kl |u|2 +1 |v|2}uzz

2)
+(m1u2 +n1v2 )u; +[al |u|4 + 5 |v|4Ju}
+icy |:)/1uzzz +(§1 |u|2 +¢; |v|2)uz +(glu2 +s1v2)u:] =0V,
and
. 2 2
v, +ayv,, +(b2 |v| +c, |u| )v
+C51 {dzvzzzz +[e2 (vz )2 + /1 (uz )2]1/* +(g2 |vz|2 +hy |uz|2 )v+ [kz |v|2 +1, |u|2}vzz
(3)

+(m2v2 + nzuz)v; +[a2 |v|4 + 0, |u|4}v}
+icy) |:72sz2 +(§2 |V|2 +6 |“|2 )VZ +(82V2 +S2u2 )v;k} =S,

The constraints a;, by, c;, ¢;1, d;j, ¢;, f;5 &5 hjs Ky L my, nys oy, By chs 75
é’j, Sjs €558 and 5j , (j:1,2) are parameters, while, u(z,t), v(z,t) are the complex wave
profiles. Then, the coefficients a N2, and d ; are CD, 30D and 40D terms along the two
components, respectively. Next, b; and «; are the SPM terms, while ¢; and f; are the cross—

phase modulation effect. Also, the coefficients e, f] > &> h j,C_,’ §Gjs &)
nonlinear dispersive effects and the remaining coefficients give the effect of additional dispersions,

while the coefficients k;, /;, m; and n; give the nonlinear dispersive effects. Finally, &;,

and s;, give the

(j=1,2) are the coefficients of magneto—optic effects.

The primary objective of this article is to utilize two methods in order to identify the dark,
bright, and singular soliton solutions, for Eqgs. (2) and (3). The structure of this article can be
outlined as follows: Section—2 provides a preliminary analysis. Sections—3 and 4 present the
solutions of Egs. (2) and (3) utilizing the two methods stated above. Finally, Section—5, pens down
a few conclusive words.

3. Preliminary analysis
In this section, we will suppose that Egs. (2) and (3) possess the following solutions:

u(z,t)=Fy (& )exp[iH (z,1)],

v(z,t)=F, (Q’)exp[iH(z,t)} 4)

and
§=z—ct,
(6))
H(z,t)=—Kkz+Qi +g.
Assuming that ¢, x, Q and ¢ are all non-zero parameters, where ¢ represents the soliton’s
velocity, x denotes its wave number, Q represents its frequency, and g, is the phase constant,

we have real functions f;({),F,({) and H(zt) that represent the amplitude and phase

components of the soliton, respectively. Eqgs. (2) and (3) may be changed to Egs. (4) and (5) by
isolating their real R; and imaginary 3; portions. From this, we can conclude that:
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R, :epydyF Y +(“1 +3C1z71’<—6011d1’<2)F1” +011[(k1 +my )FEE +(h +"1)F22F1”]
+ep |:(el +g) i F+ (i +h1)F£2F1J—(Q+a1K2 — ¢y +01271’<3)F1 —6if ©
+|:b1 ey (g =k —my -+ (& —EI)KJFE
+|:Cl_Cll(ﬁ_hl+ll+nl)K2+clz (gl_sl)K:|F1F22+alcllF15 +ep Bkl s =0,
Ry endyF P +(ay +3epyaK — 60y dy® |y
+c21[(k2+m2)F22F£+(12+n2)F12F”
+0 [(62 + @)+ (/s +h2)F{2F2J
~(Q+ @y —eydorct ey )1y - 81 ()
+[bz tor (g —ky—my =)k’ +ep (& —52)"]53
+[c2 —eoi (o =y + 1 +1y) k% + e (5, —SZ)K:|F2F12

5 4
+02C’21F2 +021ﬁ2F2F1 =0,
and

31 (cion —Aepdie) Fy +[2¢), (my —ey —ky ) + ¢ (&) +51):|F12F{
“2ep ik f +[ 201 (m =4k +epp (s +6) )]Flez 3
~(e+2ax — ey dy +3e,7167 ) 1 =0,

3, (7 _4021d2K)F;

+[2021 (my—ey —ky )k +¢25 (&5 +52)]F22F£ —2¢y, fokF ok Fy
+[ 26 (my — by )k +x (55 +62) | Fof

—(c +2a,x —4021d27c3 + 3022;/21(2 )F2 =0.

)

Set

F2($)=4F($), (10)
provided 4 =0, 1. Now, Egs. (6)—(9) become

R, :epydy Y +(“1 +3C1271’<—6011d1’<2)F1”

+op [kl +my + A% (L +my )JFle{'

+Cll|:el +g1+A2(f1+h1)]F1,2F1

—(Q+ar® —endic® +epn +5,4)Fy (11)
+(by +epy [g1 —ly =y — e — A7 (fi-m+] +”1)]K2

+cpy [gl —g + A2 (gl—sl)}c+A2cl)F13

+epy (0‘1 +p 4t )F15 =0,
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"

Ry : cpndy AF( + A(ay +3c3y7y6 —6eydy1 )y
+Acy, [Az (ky +my)+1, +n2}F12F1”

+Acy; [Az (e2+22)+ /o +h2]F£2F1

[ A(@+ ay® —epdyx® +epyan )+ 6 |1, (12)
FA(cy + by ey fy=hy + byt my = A4 (g —ky =y e ) [ 2

ey [Gz —sy+ 4% (¢, —32)]K)F13

reyd(aydt+By)r7 =0,

and

3y (e —4epdix ) Fy
H2an[m—a—k+ 42 (=t = f) [ ran[& v+ 42 (s +a) )P (3)
~(e+2ayk ~ de; dixc® + 3¢ ) ) =0,

3, 1(exnys —dendyk ) Fy

+(2021 [”2 ~L = fy+ A (my —ey —ky )}c+c22 [52 +5+ A% (Cy+ e, )})FEF{ (14)
~(e+2ayc ~deydy” +303y7y6” | Fy =0,

By equating the coefficients of the linearly independent functions in Eqs. (13,14) to zero, we
obtain:

C- .
=21, (1s)

4epd;
c=dc;d k> =2a,Kx -3¢y K7, j=12, (16)

chl[ml —el—kl-f-Az(nl _Zl _f‘l):|K+Cl2|:é/1+gl +A2(S1 +g1):|:O,

2C21 |:}’l2 —12 —f2 +A2 (m2 _ez _kz):IK+C22 |:S2 +g2 +A2 (42 +82):|:O

Eqgs. (11,12) exhibit identical forms, under the following constraint conditions:

(17)

c11d; = epndy Ay @) +3epyi — 6eydii® | = A ay +3ep7aK ~ 60y dyr? ),

o [kl +my+ A (I +my )]:Ac21 [AZ (ky +my)+1, +n2],

e (o + Bt ) = ey d(ard’ + By ),

€1 [31 +g+ 42 (4 +h1)} = dey [Az (e +&)+/fa +h2], (18)

Q+ ale _011d1K4 +clzylx3 +6,4= A(Q+a21<2 —021d2K4 +02272K3)+52,

fo=hy+h+n,

bl +C11|:g1 _kl —ml —el _Az(ﬁ _hl +ll +n1)j|K2
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From Egs. (15-18), one derives the following:
yl _ C22}/2A d2 _ 2a1 +3C227/2AK a a) d _ 261] +3022}/2AK

>

s 2 =" > 1 Y

o 4AC'2]K2 A 4C11K2
. 2011[‘31 +h -4 (”1 - _fl):|’<_clz [41 +& + 47 (Sl +§1)}
ml - 20]1 ’
~ 2¢y, [12 + /15 — 4% (mz —e —kz):IK—sz [sz +65 + A% (4’2 +52)}
£ 2¢y ’
2¢3 |:(k1 +A211)(1+K)+(el +A2f1)K+A2n1 (I—K)] (19)
—2Ac21[(12 +hyd?) (14 k) v (£ +e2A2)+m2(1—K)A2]
¢ =
12
2 _ 2 4 B
+A022 [32+€2+A (&yter )J Ci2 [51+A (it )J 5 = c21A(a2A +ﬁ2) €
Ci2 ’ ! C]1A4 ’
Aczl[Az(ez+g2)+f2+h2J_Cn[g1+A2(f1+h1)} 5, -0, A
e = . Q= 2 1 .
C“ 1—A
We can express Eq. (11) in an alternative form as follows:
FO Ay £ 0 2 F 4 I 2+ Ay + AT + Al =0, 20)
where
(al +3012y1K_6C11d1K2) C]l |:el +g1 +A2 (fl +h1 )i|
}‘l = B 2'2 = ’
od, ond,
_ Cll |:k1 +m1 +A2 (ll +n1 )] —Q_a]Kz +C11d1K4 —C12y1K3 —6114
- B 4 ’
ond, ond
bl +C11 |:g1 _kl —ml —el —A2 (fl _hl +11 +7’l1)j|K'2
15 = (21)
ond,
Clz |:Cl —51 +A2 (GI _Sl ):|K+A2C1
+ 5
ond,
1 (al +ﬁ1A4)
6 -

cnd
In the upcoming sections, we will employ the following approaches to solve Eq. (20).

4. Simplest equation method
Eq. (20) permits the exact solution:

F($)=dy+AZ(S), 4 =0, (22)
where 4, and 4, are constants to be detected, while the function Z(¢) satisfies Bernoulli’s
equation

Z'(¢)=0Z($)+122%(£), (23)

or the Riccati equation
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7'(¢)=0+2%($), (24)

where 7;, 7, and o are constants to be determined later. Eq. (23) has the following solutions:

B TleXP[T1(§+§o)]
Z(C - l—rzexp[rl (C+§O)]’

if 7,50, 7,<0, (25)

and

_ TleXP[Tl (C*‘CO)J .
Z(¢)= 1+75exp[ 1) ($ +&o) ] st n o

where ¢, is a constant of integration, while Eq. (24) has the following three types of solutions:

Type—1: 0 <0,

Z(g)z—ﬁcoth(ﬁg), 27)
or

Z(¢)=—J-otanh(v-0¢). (28)
Type—2: 0 >0,

2(¢)=otan(Jo¢), (29)
or

Z(g)z—JEcot(JEg). (30)
Type—3: 0 =0,

1
z(g):-(;”(, 31)

where K is a constant of integration.

4.1. Bernoulli’s equation
Inserting (22) along with the Bernoulli Eq. (23) into Eq. (20), gathering all the coefficients of each

power Z° (4’ ),(s = 0,1,..,5), and setting these coefficients to zero, one procures the results as

307, 30z,

- 4= , 32
& 15020 +34) F15(20, +3%) 2
and
b=t dg = ey s = o (B 43h), A =500 (2 +34) (4 4 1), (39
provided
(24, +323)<0.
O If 7, >0, 7, <0, we have
u(z)= 307, —1+ ryexp 7 (z-ct+&y)] —ei(—Kz+Qt+gn), 34
J15(20 +325) | 1=mpexp[ 7 (z=ct+&p)] |
and
(o) =04 . ryexp| 7y (z—ct+&y) ] Joxerue) 35)
J-15(22, +345) | 1-mexp[ 7 (z-ct+¢y)] |
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D If 7; <0, 7, >0, we have

u(z0)= 307, - fzexp[rl (z=ct+&p )] Kz Qr,) (36)
’ —15(222 +3j,3)_ 1+12exp[fl(z—ct+§0)]_ ’
and
v(z t) _ 304z, - TL€Xp |:Tl (Z —ct+Gy )} ei(—Kz+Qt+gu) 37)
> \/_15(2&2+323)_ 1+T2exp[r1(z—ct+g’0)]_
In particular if 7; =1, 7, =1 or 7; =—1, 7, =1, we have the dark soliton solutions
u(z,)= & 1-tanh [wj Jrre) (38)
—15(224, +324) L 2
and
v(z,t)= 4 tanh (wj Qe iee,) (39)
J-15(24, +34) L 2 ]
also
u(z,t)=— = 1+ tanh (wj (Irer e (40)
J-15(22, +343) L 2]
and
v(z,t) =— 154 1+ tanh [ﬂj (oKt 41
J-15(224, +34) L 2 J

4.2. Riccati’s equation
Plugging Eq. (22) along with the Riccati Eq. (24) into Eq. (20), gathering the coefficients of each

power Z° ((; ), (s:0,1,2,..,5) , and setting each of these coefficients to zero, one gets the

following results:

AI(AQ+VA,22+57616) +4J A2 +576),
Ay =4|- , A= AtV I (42)
1204 6 20
and
2(122 + Ay A} +576 A +180&6)
3(/12+«/z§+576,16)
4 2
Ay =—AF, 43
4= 55 M (43)
X (23 + Ay A2 +5762 +360/16)
2./5: 5
15(22+«/ﬂ,22+576l6)
provided

(/122 +576/16) >0, A (/12 +\MQZ +5762 ) >0 and 4 <0.
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Now, one derives the following exact solutions to Egs. (2) and (3):
(1) If 4; <0, we have the singular soliton solutions:

i (AQ +\/m) M i(—kz+Qi+g,)
u(z’t): - 1—coth _—(Z—CZ‘) e So , (44)
20

1202

and

v(z,t): Ay|—

21(124—JA§-+57626) 7 '
1=coth| [~ 2L (z—cr) |[F5709)  (45)
1207 20

and the dark soliton solutions:

24(124—JA§~+57626) ) (xetros,)
u(z,t)=4|- 1-tanh| ,[-L(z—ct) ||e S (46)
20

120/,

and

2|25 ++J23 +576, '
v(z,t) = Ay|— 1( ’ 6){l—tanh(,/—%(z—ct)]Zle’(_K”Q”gu)_ 47)

120
Finally, there are several other Type—2 and Type—3 solutions to Eqgs. (2) and (3) that are

excluded here for convenience.

5. Extended simples equation
Eq. (20) assumes the explicit solution:

N

where y,,x; and B, are constants, )(12 +B§ #0 and the function ©(¢) presumes the auxiliary

equation
0"(£)+80(¢) =y, (49)
where & and v, are constants and ©'({), ©"({) are the first and second order derivatives

respectively with respect to their corresponding independent variables. Now, we have the following
three sorts:
Type —1I: 6 <0. In this case, we substitute Eq. (48) into Eq. (20) and use Eq. (49) together with

where L; =0 ( plz - p22 ) —U?O ,while p; and p, are constants, gives way to the results:

X0 :07 X1 :07 BO = _6()—1'1’ ]’l :567 }“4 :4529
22, +35

5(44, +34; )Ly +302 (24, +3
oI ORI g (2 35) 45,

the relation

Result —1:

(51)
2’5
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provided (22.2 +34 )Ll <0.
Consequently, we obtain the following straddled bright—singular soliton solutions of Egs. (2) and
(3) as follows:

u(zt)= |20
20, + 375
(52)
« 1 ei(—Kz+Qt+gD)’
P1COSh[\/3(z - ct)} + p,sinh |:\/3(z - ct)} + ‘i?o
and
v(z,t)=4 __ 0L
27, +37
(53)

1 i(—kz+Qt+g,)

e .
picosh| v=6 (z—ct) |+ pysinh| V=5 (z —ct ]
1 2 5

In particular, if we set p; =0, p, #0 and v, =0 in Eq. (52) and (53), the singular solitons are as

X

follows:

u(z’t):J%CSCh[ﬁ(Z—Ct)]ei(KHQH;")’ (54)
and

V()= % esch[[ V=5 (2 —cr) |5, (55)

provided (212 +313) <0, while if we set p; #0, p, =0 and vy =0 in Eq. (52) and (53), the

bright solitons are as follows:

u(z,t)= —% sech[ﬁ(z—ct)} ei(_KZJrQHgo), (56)
and

v(z,t)=4 —% sech [ﬁ(z—ct)} ei(_'{z+9t+g°), (57)
provided (24, +343)>0
Result — 2:

P +308 5 :_303(/% —2/13)(4qu5+30§)

oo 0 SL%(wzaz) ’
(% ~243) (2146 +3uo)
As = 1()L1 e =25 2,3+212)(22_213), (58)

301,
wzzq (s+2y) M7 Itk

provided L, (43 +24,) <0
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Consequently, we obtain the following straddled bright—singular soliton solutions of Egs. (2)
and (3) as follows:

/ 30,
u(z,t) = —M

(59
x U_0+ 1 ei(—Kz+Qt+gO)’
24 picosh [ﬁ(z—ct)}+ p,sinh [x/s(z—ctﬂ+%)
and
_ 4304
R Py
(60)

Ly 1 ei(—KZ+Qt+g0)

2L pcosh [\/3(2 —ct)} + p,sinh [ﬁ(z _Ct)] + 05—0

In particular, if we set p; =0, p, #0 and v, =0 in (59) and (60), we see the singular soliton

solutions:
u(z,t): &CSCh[x/s(z—ct)Je"(*’f”Q”g“), 61)
(A +24,)
and
v(z,t) =4 % csch [ﬁ(z —ct):| ei(—KZJerJrgo)’ ©2)

provided (43 +24,)<0, while if we set .p; #0, p, =0 and v, =0 in Eq. (59) and (60), we

recover bright soliton solutions:

u(z,t)= _(2,334?—;2) sech[x/s(z —ct)]ei(_KHQHg"), (63)
and
v(z,t)=4 —%;2) sech| /=5 (z—ct) [/ ), (64)

provided (4; + 24, )> 0.
Result — 3:

o0 - 25(pi - p3)(105-4,)
Fo =B 4 =0 5 (At 2)— 4

[6(A+4) A ][26 (A — 44 ) + 4 (4, +22,) - 124 |
2(105 -2, )’ ’

provided (7 - p3 ) (106 = 2)[ 8(% +45) =45 | >0.
Consequently, we obtain the following straddled bright-singular soliton solutions of Egs. (2)

U, =0, 4, :_5(5_)‘1)’
(65)

ﬂ,:

6

and (3) as follows:
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i \/_ 25(p? ~ 2 )(105 - 1)

5 (7 +A5)~ 7

(66)

y 1 ei(—Kz+Qt+gO)

plcosh[ﬁ(z—ct)]+p2sinh[\/§(z—ct)] '

and
28(p? - p3 (108 — A,
v(z,t)zA\/— (P1 Pz)( 1)
) (12 +5 ) —As

(67)

o 1 i(~xz+Qt+g))
picosh [\/3(2 - ct)} + p,sinh [\/3(2 - ct)}

In particular, if we set p; =0, p, #0 in (66) and (67), we arrive at the singular soliton solutions:

25 105— i(—kz+Qt+
”(Z”):\/ﬁm[ﬁ (2-et) Jer), (68)

N 26(106-4,)
v(z, )—A —5(22+13)—15

provided (105-4)[ 8(4 +4)—4 |<0,

while if we set p; #0, p, =0 in Eq. (66) and (67), we have the bright soliton solutions:

u(z,t)= \/—M sech [\/E(z—ct)} QK=+ ireo) (70)

and

esch| V=5 (z—er) |5, (69)

5(12 +A’3)_;LS
and
_ _ 25(105_11) — _ i(—Kz+Qit+g)
v(z,1)=4 —5(/12+/13)—15 sech[ﬁ(z ct)}e o) (71)

provided (106—4 )| 8(4 +4) 4 |>0.
Finally, there are several other Type —II and Type — III solutions to Egs. (2) and (3) that are
excluded here for convenience.

6. Conclusions
The paper recovered optical soliton solutions for the concatenation model with Kerr's law of

nonlinear refractive index. Two integration schemes, namely the simplest equation method and the
extended version of the simplest equation method, gave way to the soliton solutions. A full
spectrum of solitons, including the bright—singular straddled solitons are recovered. The results are
thus interesting and complete the chapter on solitons retrieval for magneto—optic waveguides. The
parameter restrictions, that are also known as constraint conditions, are also enumerated in the
paper and these conditions guarantee the existence of such enlisted solitons.

The results pave the way for a number of avenues to venture in the future. One immediate
thought would be to recover the conservation laws for the model in magneto—optic waveguides.
The usage of the multiplier approach would lead to success since the vector-coupled equations are
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truly non—trivial. Later, the model would be addressed with different forms of SPM which would

give an extended or perhaps a generalized perspective of the current results in this paper. Those

upcoming results would be then aligned would the pre—existing results [12—15].
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Anomayia. YV yiii cmammi npudinaemscs y8aza 6IiOHOBNIEHHIO CONIMOHIE Y MACHIMO-ONMUYHUX
X6ULE800aX 01 MOOeNi KOHKAMeHAYii 3 HeiHIUHUM NOKA3HUKOM 3A7I0MIeHHs 3a 3akoHom Keppa.
Iioxio 3 waninpocmiwium pIGHAHHAM, 4 MAKOJC POWUPEHUN Memo0 HAUNPOCMIUX DIGHAHb
CRIbHO PO3KPUBAIOMb NOBHULL CHEKMp pPO38'A3Kié conimonie oasa yiei moodeni. ObmedrceHHA
napamempis 2apaHmyioms iCHY8aHHA MAKUX CONIMOHIE.

Knwuoei cnosa: conimownu, KOHKAMEHAYIUHA MOOeIb, MASHIMOONMUYHUL X6Ue6i0, Memoo
HAUNPOCMIUUX Pi6HAHD
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