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Abstract. We use the wave theory of light to study the brightness and the 
geometrical characteristics of bright stripes appearing on the bottom of a pool. The 
brightness of those stripes is linked to the distribution of refracted-light intensity in 
the vicinity of a caustics where the ray-optics approximation is inapplicable. The 
caustics arises whenever light is refracted on a wavy water surface. The relationships 
among the parameters of the surface waves and the width of the bright stripes (i.e., 
the caustic zone) are obtained. The correctness of our relationships is verified by the 
experiment carried out in a water pool. Our formulae can be used to develop the 
optical systems for determining the wave parameters (in particular, the sea-surface 
curvature on large scales) by recording the bright-stripes characteristics. 
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1. Introduction  
When waves appear on a surface of a water pool, a set of moving bright stripes can be observed at 
its bottom. The shape and the texture of these stripes depend on the regularity of surface waves. 
The clearer the water and the more regular the waves, the clearer and more ordered the movements 
of these bright stripes are. The reason for formation of the bright stripes is the refraction of a parallel 
beam of Sun rays on a rough (curved) water surface. The bright stripes are formed in the caustic 
directions, where the intensity of the refracted-light beam calculated in the geometrical-optics 
approximation goes to infinity. In this study we will apply the method for calculating the light 
intensity in the vicinity of a caustics for the reflected rays, which has been described in Ref. [1], to 
solve a similar problem for the refracted rays. 

The caustics arising from the reflection and refraction are of the same nature. They are 
associated with infinitely large solutions arising along the direction of rainbows when one 
calculates the light scattering by a sphere [2] with the geometrical-optics approximation. 
Moreover, the latter singularities disappear whenever the wave nature of the light (i.e., the phase 
effects) is taken into account.  

In optics, the caustic curve (or surface) is generally defined as an envelope of the rays 
reflected or refracted by a curved surface of a material medium. In other words, the reflected or 
refracted light rays are tangent lines at every point of the caustic curve. Then the envelope of the 
light rays is a curve where the rays are concentrated. 

A wide variety of optical phenomena related to the caustics have been studied in a new 
branch of mathematics called a catastrophe theory [3]. Note also that the caustics are used in 
caustic engineering which describes the process of solving the inverse problems in computer 
graphics. The latter problems imply determining the surface which refracts or reflects light and 
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thus forms a given image from the image characteristics [4]. The methods based upon neural 
networks are usually applied in this case, which creates an aesthetic picture of a caustics instead of 
a strict restoration of the surface that refracts the rays.  

Although underwater caustics are frequently observed at the bottom of different water bodies 
(e.g., shallow waters of lakes or seas), still there are no strict and explicit mathematical expressions 
that relate the parameters of the waves and those of the caustics. The aim of the present work is to 
derive the above relationships. For simplicity, we will consider a two-dimensional case, when the 
appropriate formulae are relatively simple and a visual representation of the effect is evident.  

2. Basic formulae  
Let a curved cylindrical surface described by the equation  z x  in the Cartesian coordinate 

system xOz  be irradiated by a parallel beam of light incident along the direction of the unit vector 

 0 0 0,x zs s s
  (see Fig. 1). Then the unit vector of the refracted ray  1 1 1,x zs s s

  determined by 

the law of refraction is expressed by the formula 
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Here 0  and 1  are the local angles of respectively incidence and refraction,  n  denotes the 

normal at the point   , M x x  of refraction, and mw is the refractive index of water. For the 

incident-beam geometry and the coordinate system chosen in Fig. 1 we have the formulae 
         0 1 1 0 0 1 1,  ,    arctan , ,    n nconst x x x x x                , (2) 

     
 

0 1 1 2

 
,    ,     

1 '

x i k
s const s s x n n x

x





 
  







     ,   (3) 

with    d x
x

dx


  . Here  i


and k


 are the unit vectors of the xOz  and xOz  axes, respectively. 

 

Fig. 1. Geometry of bright refraction at a rough 2D 
surface. 

Let us find the divergence of the ray bundle after refraction occurring at the surface. Assume that 
the elementary section of the front of the incident plane light wave is given by 0M N  at the moment 

0t   and it transforms into 0Q Q  after the time t  has passed (see Fig. 2). If we introduce the notation 
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 NM x  and  l x MQ  and the speed of light in air and water are given respectively by с  and 

v , the relation 
   x l x

t
с v


   should take place. By denoting  0 0 0 0l l x M Q  , we obtain 

        0 0 0 0 x zx s x x s x x      ,   (4) 

   
0

w

x
l x l

m


  ,     (5) 

where the refractive index of water is given by 1.34w
cm
v

  .  

 
Fig. 2. Determination of the front of a 
refracted bright wave. 

Now let us write out the parametric equation of the wave front at the distance 0l  from a fixed 

point   0 0 0, M x x  at the surface. The equation of the wave front passing through the point 

0Q  acquires the form 

     
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where  X x  and  Z x  are the coordinates of the point Q . Then the divergence of the bundle of 

rays after refraction at the point 0M  reads as 
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Using Eqs. (6) and (8)–(16), one gets 
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Basing on these relations, we obtain 
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follows immediately. As a result, we arrive at the formula 
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The divergence 1Г  of the beam refracted at the point 0M  at the distance  0 0l l x  reads as 

0 01
1

0 1 0 1

coscos
 1  1

cos  cos cosw

l
Г

m


   
 

    
 
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with 0 0( )x  . 
In agreement with the law of energy conservation under condition of no dissipation, the sum 

of the energies of the reflected and transmitted light waves must be equal to that of the incident 
one. Then the intensity  1 0I Q  of the refracted beam at the point 0Q  is determined from the 

relation    0 0 0 1 0 1 T I d I Q d   : 
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where 0I  implies the intensity of the incident beam at the point 0M  and  0T   is the Fresnel 

transmission coefficient [5]. If the modulus of the radius of curvature is equal to 0 0l  , 
Eqs. (18) and (19) result in 
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As follows from Eq. (20), we have the divergence 1 0Г   at the refraction point *M  where the 

radius of curvature is equal to  * *x    . Therefore the intensity of the refracted beam  0I Q  

becomes infinite at the infinitely distant point 0Q  given by Eq. (21). It is seen from Eq. (16) that the 

radius of curvature amounts to *    at the inflection point *M  where  * 0x   . In this case, 

the inclination of the surface n  and the deflection of the refracted ray 1  take their extreme values, 

 '
* 0n x   and  '

1 * 0x  . In other words, the refracted rays are concentrated around the ray 

refracted at the inflection point, which leads to infinite intensity (i.e., a caustics). Note that the 
symbol * is used to indicate the caustic point and the quantities related to it.  

To find the intensity distribution  1 1I  =  1I Q  in the vicinity of the caustics, we use the 

Fresnel–Kirchhoff formula for the plane problem [6]: 
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Here  1U Q  and  FU P  are the field values of the light waves respectively at the observation 

point Q  and the point P  of the surface  F , i.e. the wave front passes through the point 

  * * * , M x x . As for the rest of the notation, 1 wk m k  is the wave number of the light wave 

in water (with 2k 


  being the wave number of the light wave in air) and r PQ  denotes the 

distance between the points P  and Q  (see Fig. 3). 
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The light intensity  1I Q  can be expressed in terms of  1U Q  according to the formula 

     *
1 1 1I Q U Q U Q  , where  *

1U Q  is a conjugate of  1U Q . Under the condition when the 

part of the wave front essential for the integration does not contain the inflection point, the 
calculation of the integral given by Eq. (22) by the stationary-phase method leads to a usual 
expression given by Eq. (21), which corresponds to the geometrical optics. In case when the 
observation point Q  is located in the vicinity of the caustics, i.e. when the angle 1  between the 
caustic direction and the direction of observation is small, the part of the wave front that makes a 
significant contribution to the integral would contain the inflection point.  

To simplify the calculation of the integral, we choose a new coordinate system *xM z   as 

shown in Fig. 3, so that the axis *M z  is directed along the caustic direction 1
*s . Then the equation 

of the wave front  F  in the coordinate system *xM z   can be written as 
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In the neighbourhood of 0X  , the Taylor expansion of  F  is given by  
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Taking into account the relations  0 0Z  ,  ' 0 0Z   and  '' 0 0Z  , we arrive at the result  
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The parameter b  defines the behaviour of the refracted light-wave front in the 
neighbourhood of the point *M . Performing these calculations for the intensity distribution 

 1 1I  =  1I Q  in the vicinity of the caustics, we finally obtain 

 
 

1/31/3 2
20 1 1

1 1 12/3
0

2  
  

 33

TI k kI Ai
l bb


 

           

,   (27) 

where  
3

0

1  cos  
3
xAi t tx dx



  
   

 
  is the Airy function [7] and 

2
13

1  
3
kt
b

   .    (28) 



Relationships among  

Ukr. J. Phys. Opt. 2023, Volume 24, Issue 3 241 

 

Fig. 3. Definition of a new coordinate 
system *xM z   (see the text). 

 

Thus, now we are in a position to identify the angle 1
c  determining the angular width of the 

caustic zone. Its meaning is that the calculations of  1I Q  should be based on either Eq. (27) or 

Eq. (21) when we deal with the angles 1 1
c     or 1 1

c    , respectively. In the caustic 

direction, the two rays appearing during refraction at the points located on the left and right of the 
caustic point are merged. Therefore, equating the doubled intensity in Eq. (21) with the intensity 
entering in Eq. (27) leads to the equality  
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The behaviours of the functions entering in the left- and right-hand sides of Eq. (29) are 
shown in Fig. 4. One can see that Eq. (29) has a number of roots. The first root, at which the signs 
of the slopes of the functions are the same, is given by 1.79ct  . It lies in between the principal 

maximum and the first zero of the Airy function. Then the value 1.79ct   would determine the 

width of the caustic zone. This value agrees well with the estimations of the caustic zone found 
earlier for the analogical problems [2, 8, 9]. Moreover, the correctness of the value 1.79ct   
chosen by us is confirmed by the equality for the energy flows: 
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The inaccuracy of the equality given by Eq. (30) is about 11% . 
Hence, we obtain the formula 
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for the angular width of the caustic zone 1
c . Note that a more accurate calculation with the 
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Fresnel–Kirchhoff formula (22) gives a transition from the wave optics to the geometrical optics in 
the vicinity of 1.79ct  , as shown in Fig. 4 by the green line. 

 
Fig. 4. Matching of wave-theory and geometrical-optics approaches (see the text). 

We emphasize that Eq. (31) has been obtained for the parallel light beams. When the light 
source is the Sun, of which rays manifest a small angular divergence (about 0

0 0.5  ), the 

corresponding angular increment of the caustic zone 0
1  can be evaluated from the relation 

1 0 1 0        .     (32) 

Assuming that the increments of the parameters 1   , 0    and 1  at the caustic point 0 *x x  are 

caused by the increment 0 , we have 
0 * *
1 0 1 0           .    (33) 

From the relation * *
0 0 n     and Eq. (8) taken at the caustic point, we obtain  

   * * * * *
0 0 0 0 1 1    ,   cos  cos  wm           .  (34) 

Taking into account the equality 0 *
1 1    , one gets 

*
0 0
1 0*

1

cos
 coswm


 


   .    (35) 

Some angular increment 1
d  of the caustic zone can also occur due to the dispersion of 

light, i.e. due to the corresponding change in the refractive index wm . It can be estimated from 

Eqs. (8) and (32) at the caustic point, while putting 0 const  , 0 const   and 1 1
d d    . In 

this case we obtain 
*
0

1 * 2
1

sin
 cos

d w

w

m
m







   .    (36) 

Finally, we have the formula 
* 0
1 1 1 1

c d              (37) 

for the angular width *
1  of the caustic zone. Consequently, the linear ‘size’ (or width) L  of 
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the bright strip can be evaluated as follows: 

*
1*

1
 

cos 
hL 


   .     (38) 

3.  Model calculations  
To reveal the essence of the caustic effect, we consider the refraction of a parallel light beam on 

the surface   cosz x a Kx  , where a  is the amplitude and 2K 



 the wave number of the 

surface wave. Fig. 5 shows the paths of the light beams for the case of 1a   and 1K   at the 

incidence angle 0
0 0  . At the inflection points with the negative and positive slopes, the caustics 

appear in the directions given respectively by *
1s 
  and *

1s 
 . 

 

Fig. 5. Paths of the rays refracted at the surface cosz x , as calculated for the case of vertical incidence of a 
parallel light beam. 

  

4.  Natural experiment 
Below we test experimentally the possibilities for retrieving the parameters of water-surface waves 
from the parameters of bright underwater stripes. A pool with the length, the width and the depth 
amounting respectively to 8, 4 and 1 m, has been filled with clean water (0.8 m thick). Almost 
sinusoidal waves with the amplitude a = 0.045 m and the wavelength Λ = 0.52 m have been 
generated mechanically, under practically no-wind condition. 

At the time of our experiment, the zenith angle 0  of the Sun has been equal to 018  and the 

rays have fallen parallel to the side walls of the pool, i.e. perpendicular to the ridge of the 
generated surface wave (see Fig. 6). An instantaneous image of the bright underwater stripes has 
been captured by a camera with high spatial and temporal resolutions, from the height of 2 m 
above a calm water surface with a vertical sighting. Consequently, the waves can be considered as 
‘frozen’ and the water environment under the waves can be taken as a part of a ‘lens of complex 
shape’. 
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With this formulation of the experiment, the problem under consideration is reduced to a 
two-dimensional one, so that utilization of the formulae obtained above is fully justified. The 

calculations yield in 0 0 0 0
1 1 10.0066  ,    0.31   ,     0.28c d        and * 0

1 0.59  . Therefore 

we obtain 0.82 cmL   for the width of the bright strip. A comparison with the experimental 
width of the bright stripe seen from the photo in Fig. 6 testifies a good agreement, especially when 
considering that the side of the square of the checkerboard cell is 4 cm. 

 

Fig. 6. Image of bright underwater stripes caused by an almost sinusoidal surface wave with the amplitude 
0.045 ma   and the wavelength 0.52 m  . The stripes 1, 2 and 3 correspond to the points 1, 2 and 3 in 

Fig. 7.  

 

Fig. 7. Paths of the rays refracted at the surface 0.045 cos12.8z x , as calculated for the case of incidence of 

a parallel light beam at the angle 0
0 18  .  
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The paths of the refracted rays corresponding to our experiment (see Fig. 6) are indicated in 
Fig. 7. As seen from Fig. 7, there is an interval of depths (in the vicinity of the point 3) where the 
bright stripes are formed due to focusing of the refracted rays on the surface convexity. At the point 
3, the divergence of the refracted beam determined by Eq. (18) is equal to zero, i.e. the equality 

0 0

1 0 1

cos
1  1 0

cos cosw

l
m


  

 
    
 

    (39) 

holds true. Eq. (39) links the ‘reduced focal length of the convex 2D lens’ 0l  with the radius of 

curvature of the lens surface 0  at the point   0 0,x x . It is easily seen that the distance 

between the bright stripes 1 and 3 equals approximately to the wavelength 0.52   m.  
Notice that we consider the aquatic environment to be transparent, i.e. the scattering and the 

absorption of light in an aqueous medium is neglected. The theory of image formation through a 
wavy-sea surface, which is based on the optical-transfer function, is described in detail in the 
monograph [10], where the attenuations of the light beam caused by the scattering and the 
absorption are taken into account. However, the approach developed in Ref. [10] is applicable to 
accumulated images, in contrast to the instantaneous images we consider above. Despite the 
majority of problems concerned with the atmosphere–ocean surface interactions, common 
maritime works and navigation rules require the knowledge of only statistical characteristics of the 
waved-sea surface. On the other hand, the solution of some problems (e.g., recovering the 
instantaneous images of underwater objects distorted by surface waves [11]) demands the 
knowledge of the instantaneous state of the waved-sea surface. As shown in Ref. [11], the 
instantaneous relief of the sea surface can be constructed using the characteristics of glints of the 
Sun (or the other light sources). Then the glints as ‘thumbprints’ can identify uniquely the relief of 
the waved-sea surface. Using the statistical characteristics of the glints, one can also determine the 
statistical characteristics of the reflected-light intensity [12, 13]. Issuing from our results, a method 
based on recording a network of the bright underwater stripes can also be developed in order to 
determine both the instantaneous relief of the waved-sea surface and its characteristics.  

5. Conclusion 
In this work, we have derived the relationships among the parameters of harmonic water-surface 
waves and the width of the bright stripes on the surface (i.e., the underwater caustics). The 
correctness of our relationships has been verified by the experiments carried out with the real pool. 
The width of the bright stripes calculated with Eq. (38) and that measured in the experiment are in 
good agreement. 

When carefully observing in-situ the bright stripes of the types 1 and 2 (see Fig. 6), one can 
see an iridescent colour. This fact points to the caustics caused by the most deflected beams, which 
corresponds to refraction at the inflection point. For the bright stripe of the type 3, the 
concentration of the refracted beams occurs due to a focusing effect of the surface convexity (see 
Eq. (39)). Because of mixing of the multi-coloured rays, the iridescent colour is not observed and 
only the white stripe is visible. This represents another indirect proof that the relationships 
obtained by us are correct.  

In principle, the relationships among the parameters of the harmonic waves at the water 
surface and the underwater caustics can enable solving the inverse problem, i.e. determining the 
amplitude a  and the wavelength Λ of the sinusoidal surface wave following from the measured 
widths of the bright underwater stripes. 
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Our relationships can also be used to develop new optical systems for determining the 
surface-wave parameters and, especially, the sea-surface curvatures on large scales by recording 
the bright-stripes characteristics. Finally, our approach can be improved to determine the statistical 
characteristics of complex surface waves on the basis of caustic-network images.  
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Анотація. Використано хвильову теорію світла для вивчення яскравості та геометричних 
характеристик яскравих смуг, що з’являються на дні басейну. Яскравість цих смуг 
пов’язана з розподілом інтенсивності заломленого світла в околі каустики, де наближення 
променевої оптики незастосовне. Каустика виникає щоразу, коли світло заломлюється на 
хвилястій поверхні води. Одержано залежності між параметрами хвиль на поверхні та 
шириною яскравих смуг (тобто зони каустики). Правильність одержаних виразів 
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перевірено дослідом, проведеним у водному басейні. Наші формули можна використати для 
розробки оптичних систем для визначення параметрів хвиль (зокрема, кривизни морської 
поверхні на великих масштабах) шляхом реєстрації характеристик яскравих смуг. 

Ключові слова: поверхневі хвилі, яскраві смуги, підводна каустика, ширина каустичної 
зони, кривизна поверхні. 


