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Abstract. We use a one-dimensional U(2) Lie algebraic model to study fundamental
and first-overtone vibrational frequencies, as well as their combination bands for
cyclobutane-d8, C4Dg. The model preserves the point symmetry group D,q, with the
symmetry species A;, A,, By, B, and E, and involves 23 normal vibrational modes.
A comparison of the calculated vibrational frequencies and the available reference
data results in the root-mean-square deviation as small as 1.557 cm ™.
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1. Introduction

The field of molecular spectroscopy addresses the problems of how light interacts with molecules.
It involves various techniques, including infrared and Raman spectroscopy, in order to determine
the vibrational modes of molecules and analyze their structure. By analyzing the vibrational-
energy levels and the frequencies of molecules, one can determine their structure and gain insights
into their properties and behaviour. In order to successfully develop novel methods of
experimentation that enable deriving higher-order vibrational excitations in polyatomic molecules,
one must first develop robust theoretical approaches for interpreting those excitations.

The experimental data for the rovibrational spectra of polyatomic molecules can be
interpreted using two well-known theoretical frameworks. The first approach is a Dunham
expansion, which studies the spectra of polyatomic molecules with some success, even though the
number of coefficients required increases rapidly with increasing complexity of a molecule. One
of the limitations of this expansion is that Dunham coefficients can be difficult to calculate,
especially for higher-order terms, and may require sophisticated computational methods or
extensive experimental data. The second approach, a Schrodinger equation with potentials, can be
solved analytically for only a few simple cases, and so numerical methods are required for most
systems. Nonetheless, a solution of the Schrédinger equation results in insights into allowed
energy levels and associated wave functions in a quantum system. A critical drawback of this
approach is that its computational complexity may represent a significant challenge in the case of
large enough systems.

In order to address the challenges encountered in the traditional approaches, Iachello et al. [1, 2]
have used Lie algebraic models to analyze the vibrational spectra of polyatomic molecules. This
technique has been notably improved in subsequent studies to investigate the rotation-vibration
spectra of different polyatomic molecules [3—8]. The Lie algebraic models are now used in molecular

Ukr. J. Phys. Opt. 2023, Volume 24, Issue 3 193



Vijayasekhar J. et al

spectroscopy to describe the symmetry properties of molecules and analyze their spectra. In
particular, these approaches have been already employed to determine analytically the vibrational
spectra, the gas-phase Raman spectra and the infrared spectra of cyclobutane-d8 [9-11].

It is worthwhile that the earlier studies have been performed with either ab initio theory or
semi-empirical methods and have addressed mainly the fundamental vibrational frequencies. On
the contrary, in the present work we model the vibrational Hamiltonian of cyclobutane-d8, using
one-dimensional dynamical U(2) Lie algebras and calculate the fundamental vibrational
frequencies more accurately than the previous works. Moreover, we predict the first-overtone
frequencies and the frequencies of combination bands at a significantly lower computational cost.

2. Symmetry-adapted one-dimensional Lie algebraic framework for cyclobutane-d8

Our framework is based on the idea that the vibrational Hamiltonian of a molecule can be
expressed in terms of the generators of the U(2) Lie algebra, and their eigenvalues correspond to
the allowed vibrational frequencies of this molecule [12, 13, 14]. Here we assign the C—D and C—C

bonds respectively to the U(2) Lie algebras U;(2) to Ug(2) and Ul* 2) to U Z (2), as represented in

Fig. 1. Note that cyclobutane-d8 belongs to the point group D,4 with the symmetry species A;, A,,
B,, B,, E. It is characterized by 23 normal vibrational modes.

Fig. 1. Structure of cyclobutane-d8.

The vibrational Hamiltonian for the stretching C—D vibrations in cyclobutene-dS8 is as follows
[1, 2,13, 14]:

i
i<j i<j

n=8 n=8 n=8

C-D C-D C-D C-D 1 2 3 4\ ,C-D

HEP = By P+ Y ACPC+ 3 a5 0Cy + 3y + g+ + e ) A0 My (1)
i=1

where the symmetry-adapted 1%, 2™, 3™ and 4™ neighbour couplings coefficients are given by
il :{1,(1',]') =(1,2),(2,3),(3,4).(4.5).(5.6).(6,7).(7.8).(1,8)
Y 0, otherwise
L(i,j .(2,4),(3,5).(4,6).(5,7).(6,8),(1,7),(2,8)
0, otherwise

k; :{ (l ]):(1 3) (
K :{1’(%1) =(1,4),(2,5),(3,6),(4,7),(5.8),(1,6),(2,7),(3.8)
=031

0, otherwise
(/) = (1,5).(2.6).(3.6).(3.7),(4.8)

0, otherwise

k
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The vibrational Hamiltonian for the stretching C—C vibrations of cyclobutene-d8 can be
represented as [1, 2, 13, 14]

n=4 n=4 n=4
c-C c-C c-C c-C 1 2 c-C
HOC =B+ Y 45760+ 5 4§ q,+§:(zy+1,.j)zy M, @)
i=1 i<j i<j

Here the symmetry-adapted 1* and 2™ neighbour couplings coefficients read as

’ 2{1’(1'»1) =(1.2),(2.3),(3.4).(1.4)

Y 0,otherwise

2 L(i,/)=(13).(2,4)
Y 0,otherwise
In Egs. (1) and (2), the first terms, EOC_D and EOC_C, are the electronic ground-state

energies of respectively the C—D and C—C single bonds. They will be taken as a reference for all
the vibrational excitations. The second term is associated with the independent local oscillators
represented in terms of the invariant Casimir operators C;. The third term describes the cross
anharmonicities between the pairs of distinct local oscillators in terms of the coupled Casimir

operators C;; . Finally, the last term implies the anharmonic non-diagonal interactions involving

the pairs of local oscillators in terms of the coupled Majorana operators M/, .

Concerning the other notation, the terms Aich,Aicfc,Af’D ,Af’c,l”c*D and AUC ~© are the
algebraic parameters, while C; and Cj; represent the (invariant) Casimir operators of the
associated Lie algebras. The Majorana (invariant) operators M; are related to the coupling

schemes involving the Lie algebras of » interacting one-dimensional Morse oscillators. The
spectroscopic data can be used for determining the algebraic parameters, whereas the expressions
for determining the algebraic operators are as follows [1, 2]:

<Ci> :_4(N5Vi _Viz) > 3)

(Vi N o |y N N vy ) = 43 v, ) 340y =N = ) @

[ERSERAN AR | ij i°Vi»

<N- vi; N v|M N v<'Nj,vj>:v[Nj+vjNi—2v,-vj

<Nl~,vl-+l;Nj,vj—1|Mij N,-,vi;Nj,vj>=—[vj(vi+1)(Ni—vl~)(Nj_vj+1)T/2 ®)

<N,-,vi—l;Nj,vj+1|M” N,-,v,-;Nj,vj>=—[vi (vj+1)(Nj—vj)(Ni_vl_+1)T/2
Here v;andv; are the vibrational quantum numbers respectively of the bondsi and j,
and N; andN; are the vibron numbers linked to the numbers of bound states of the one-
dimensional Morse oscillators.

1 1

The following mathematical expressions for the matrix elements <C~>,<C~> and <My>

describe the fundamental vibrations:
=N(i#j)

(C)y=-4(N-1), <C[,->:—4(2N—1), <Mg/>:{N(,-=j)

The (dimensionless) vibron number N corresponding to the maximum number of bound states of

(6)

the Morse potential in each vibrating bond species is given by
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Pe 1, (7

weZe
where @, is equal to 2101.05193 and 1855.06630 respectively for the C-D and C—C bonds, and

,), amounts to 34.72785 for the C—D bonds, and 13.6007 for the C—C bonds. They represent

N =

the spectroscopic constants of the bonds determined from the experimental data obtained for
diatomic molecules [15].

The initial values for Al-CfD and Aicfc can be obtained from the energy expression for the
single-oscillator fundamental mode:

EC-D _ _4A[C—D (NC—D _1)’

ECC =440 (NC 1) ®

Here N Pand N©C are the vibron numbers corresponding to the numbers of bound states
of the one-dimensional Morse oscillators, which describe the vibrations in the C-D and C-H
single bonds.

The initial values for li/-C_D and AUC ~C canbe guessed using the relations

Cc-D C-D c-C c-C
Es _Eas ‘ Es _Eas

C-D _
)“ij - > My

9
6 NC -D 2 NC -C
Here E; and E, are the energies corresponding to symmetric and antisymmetric combinations

of the two local modes. The parameter values can be optimized by a least-square fitting, starting

from the initial values given by Egs. (8) and (9). Finally, we take zero initial values for AUC_D .and
c-C
47 .

3. Results

Table 1 lists the optimized values of the algebraic parameters and vibron numbers involved in our
model. Tables 24 display the calculated frequencies corresponding respectively to the
fundamental, first-overtone and combination bands. It is noteworthy that the calculated vibrational
frequencies are very close to the experimental data taken from Ref. [16]. In particular, the root-
mean-square deviation is as small as 1.5566 cm ™.

Table 1. Optimized parameters found for our Lie algebraic framework.

Parameter Value
NP N“C (stretching) 60, 136
AIC—D,AiC—C (stretching) -9.2076,-1.2807

Al-/C_D ,Ailc_c (stretching)

Aif’D ,].Ucfc (stretching)
N (bending)

A; (bending)
Aj (bending)
A;; (bending)

1.0112, 0.1542
0.3277, 0.8848
36
—6.4142
0.4952
1.3449
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Table 2. Fundamental vibrational frequencies calculated for C4Dg.

Vibrational mode Symmetry species fre(ifel:lecl;,nz::_tfl 1[1 6] freizlec;cl;,ti(:n"
v; (CD; s-str) Ay 2124 2124.4224
v, (CD; scis) Ay 1160 1160.2816
v3 (CD, scis) A 882 882.6176
v, (CD; a-str) Ay 2224 2223.7912
vs (CD; rock) Ay 632 633.5910
vs (ring puck) Ay 158 156.2691
v;(CD, wag) A, 1010 1008.9803
vs (CD; twist) A, 889 891.2123
vo (CD, wag) B, 1078 1077.0012

Vi (ring deform) B 746 745.6011
vi1 (CD; twist) B, 864 865.9003
v12(CD; s-str) B, 2115 2115.8925
v;3 (CD; scis) B, 1040 1038.4426

V14 (ring deform) B, 938 939.6622
v;5 (CD; a-str) B, 2242 2241.7001
vi5(CD; rock) B, 483 482.0208
v;7(CD; a-str) E 2230 2231.4450
v1s (CD; twist) E 938 939.9182
v19(CD; rock) E 556 553.5000
Va9 (CD; s-str) E 2103 2102.3219
V1 (CD; scis) E 1078 1075.6621
v, (CD; wag) E 1048 1045.4372

V3 (ring deform) E 734 732.2029

Notation: s-str = symmetric stretch, a-str = asymmetric stretch, scis = scissor, rock = rocking,
ring deform = ring deformation, ring puck = ring puckering, twist = twisting and wag = wagging.

Table 3. First-overtone vibrational frequencies calculated for C4Dg.

Calculated Calculate
Vibrational Symmetry " Vibrational Symmetry d
. frequency, .
mode species em- mode species frequency,
cm-

1 2 3 4 5 6
2v,(CD;, s-str) A, 4123.0290 2v;3(CD; scis) B, 1949.3104
2v, (CD;, scis) A, 2240.4700 | 2v,(ring deform) B, 1812.1618
2v; (CD; scis) Ay 1683.1616 2v;5(CD; a-str) B, 4279.3026
2v4(CD; a-str) Ay 4259.2293 2v15(CD; rock) B, 904.3229
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2vs (i CDIQ rock) 151 1 132?4631 2v;7 ( ng a-str) 1§: 4350?7692
2vg (ring puck) A 305.1328 2v5 (CD; twist) E 1807.3180
2v;(CD; wag) A, 1933.0454 2v,9(CD; rock) E 1024.5521
2vg (CD; twist) A, 1641.2831 2vy9 (CDj s-str) E 4112.0219
2vy (CD; wag) B, 2021.0015 2vy; (CD, scis) E 2043.6419
2vy9 (ring B 1413.2005 2vy, (CD, wag) E 1886.4504
2v;;1 (CD; twist) B, 1640.9732 2v,; (ring deform) E 1265.0216
2v;, (CD; s-str) B, 4085.8001
Table 4. Frequencies of the combination bands calculated for C4Ds.
Vibrational mode fre?litclrcl;,tec(rln’l Vibrational mode fre((:l?lleclilcls,ti(llnfl

vit v 4248.4045 2v;+ 2vp, 8216.9187

Vit vy 4235.8339 2v;+ 2vyy 8243.1405

Vit vy 4227.3040 2vi+ 2vy 8205.9116

vyt Vs 4474.5809 2vy+ 2vys 8546.6215

Vet vy 4463.3258 2vy+ 2vy, 8618.0881

Vst vz 4482.2347 2vis+ 2vy; 8638.1614

v+ 2vp, 6218.3121 2vit+ v, 6247.0111

v+ 2vy 6244.5339 2v;+ vy 6234.4405

vipt+ 2vy 6236.004 2vi,+ vy 6197.2116

vyt 2vps 6511.1834 2vyt s 6510.019

vyt 2vy; 6582.65 2vy+ vy 6498.7639

vis+ 2v; 6601.5589 2vis+ s 6518.8372

4. Conclusion

In the present work, we have developed the symmetry-adapted one-dimensional Lie algebraic
framework, which is adapted for cyclobutane-d8 in its gas phase. The appropriate vibrational
frequencies can be calculated with the root-mean-square deviation as small as 1.5566 cm™', if
compared with the experimental data. Hence, our results demonstrate that the vibrational
Hamiltonian reproduces successfully the fundamental vibrational frequencies and predicts the
first-overtone and combination bands of cyclobutane-d8 at a much lower computational cost, if
compared to the alternative techniques.
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Anomayia. Y yiti cmammi mu guxopucmogyemo oonosumipny U(2) ancebpaiuny modensv JIi ona
O0CTIONHCEHHS. OCHOBHUX KONUBATLHUX YACTNOM Nepuio2o 0OepmoHy ma ix KOMOIHOBAHUX cMmye
yuxnooymany-d8 (C,Dg), saxuii mae mouxogy epyny cumempii D, i3 He38i0HUMU npeOCmasieHHAMY
Ay, Ay By, By i E i cknaoaemoca 3 23 HOPpMANbHUX KOAUBANbHUX MOO. [Ipo6edeHo nopieHAHHA Midc
PO3PAX08AHUMYU  YACTMOMAMU KOIUSAHL § OOCMYNHUMU O08IOKOSUMU OAHUMU, T BUABLEHO, WO
cepednvokeadpamuune gioxunenns cmanosums 1,5566 ey’

Knrouogi crhosa: xonusanvruil caminemonian, ocyursimop Mopsze, U(2) aneebpa JIi, yuxnodyman-ds.
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