Optical solitons for the concatenation model with power-law
nonlinearity: undetermined coefficients
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Abstract. In the current paper, a full spectrum of 1-soliton solutions to the
concatenation model with the power—law of self-phase modulation has been
recovered. The method of undetermined coefficients has permitted us to solve this
problem successfully. The parameter constraints naturally emerge from the
derivation and are also listed, guaranteeing these solitons' existence. It has been
proved that dark solitons and singular solitons of a specific type would exist only
when the power—law parameter collapses to unity.
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1. Introduction
One of the most interesting models that govern optical soliton propagation through waveguides
stems from the concatenation of three well-known and well-studied equations. They are the
nonlinear Schrodoimger’s equation (NLSE), the Lakshmanan—Porsezian—Daniel (LPD) equation,
and the Sasa—Satsuma equation (SSE). Hence it is referred to as the concatenation model. This was
first proposed in 2014 [1, 2]. Later, a lot of studies stemmed from this model. The rogue waves
have been studied, the conservation laws have been extracted, the quiescent solitons of the model
for nonlinear chromatic dispersion (CD) have been retrieved, and the Painleve analysis has been
carried out. There are several approaches that revealed soliton solutions of a wider variety. Such
integration schemes that made these happen are the usage of the undetermined coefficients,
Kudryashov’s approaches, the trial equation method, and others [3-9]. The model was later
studied in birefringent fibers and the soliton solutions were revealed in that case as well [4].

This paper turned the page. While all of the past results are with Kerr's law of self-phase
modulation (SPM), the current work moves up ahead with the next form of SPM. This is the power—
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law of nonlinearity. Thus, the concatenation model is studied in this paper with the power—law of
nonlinearity. Again, the method of undetermined coefficients will retrieve the bright, dark, and
singular 1-soliton solutions. The corresponding parameter constraints would naturally emerge during
the course of the derivation of the soliton solutions. An interesting observation that would be made is
that a dark 1-soliton solution and one of two forms of singular 1-soliton solutions would exist when
the power—law nonlinearity parameter for the SPM would collapse to unity. The results along with
the solution derivation are all discussed in detail and exhibited in the rest of the paper.

2. Governing model

The concatenation model with power law nonlinearity may be written as [3]:
. 2n
iq, +aq.. +blq|" q
2 x 2 2n 2 % 2n+2
+y [quxm +05(4,) a4 +03]a] g+ 04l g + 0567 + 06 d] q} (0
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Where ¢ = q(x,t) is the wave profile, ¢, gives the temporal dispersion, ¢, is the spatial dispersion,

Qx> G AN Gy correspond to the higher-order dispersions, o; — represent the coefficients of
nonlinearity. The coefficients of ¢; and ¢, are the portions from LPD and SSE, respectively. The
concatenation model given by Eq. (1) is true to its name. For ¢ =0, Eq. (1) reduces to the
familiar SSE, while for ¢, =0, equation (1) reduces to the LPD model. But for ¢; =¢, =0 , (1)
collapses to the familiar NLSE with power—law nonlinearity. The bright 1—soliton solution, from
the method of undetermined coefficients, will reveal the conserved quantities. The several
constraint conditions that will naturally emerge from the scheme will also guarantee the soliton
existence criteria.

The model is an extended version of the familiar NLSE, SSE, and LPD models. Thus, the
current model describes the propagation of solitons through an optical fiber in a much more
accurate manner. CD and self-phase modulation provide the basic ingredients for the solitons to
exist. In case CD runs low, this is compensated by the third—order dispersion and fourth—order
dispersion effects that stem from the SSE and LPD components of the concatenation model. The
details are enumerated and displayed in the subsequent sections.

3. Undetermined coefficients

To construct single soliton solutions for the system given by Eq. (1) we allow it to have solutions
of the form [3]

g(x.1) = P(x,0)e") = P(£) ), )
for which the arguments of the amplitude factors and the phase factor respectively are:

&(x,0)=x—-vt, and
3
Y (x,1) =—kx+wt+6,,
where P(x,t) denotes the waveform according to each type of nonlinear wave, k represents the

soliton wavenumber, while o and 6, represent the frequency and phase constant, respectively, v

is soliton velocity, x is coordinate and ¢ is time. By substituting Eq. (2) into Eq. (1) and separating
it into real and imaginary parts, one gets:
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while the imaginary counterpart resulted to be:
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From the imaginary part given by Eq.(5) the soliton speed comes out as,

V:—ZK‘(G+4CIO'1K2), (6)
whenever

€08 = 20|04k, @)

€04 =2€1K(C72 —05), ®)
and

c,07 = 4K 0 ©)

hold. In view of the above three conditions (7), (8) and (9), the real part equation (4) reduces to
—(a)+a1<2 +36’161K4)P+Cl (03 +o05-30, )K2P3 Jr01(76})2n+3

4
+C1018_f (10)
Ox

2 2 2
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after simplification. Throughout the next four subsections, the last real part Eq.(10) will be utilized

+(b +004K° )P2"Jrl + (a +6¢,01K> )(227

to construct four different types of soliton solutions for the concatenation model with power law
nonlinearity given by Eq.(1).
3.1. Bright soliton

In this subsection, a bright soliton solution is constructed with the aid of the balancing principle.
First, we assume the following profile for the waveform:
P(x,t)=A sech’z,
(11)
T=8B (x — vt),

where A represents the amplitude of the soliton, p is a parameter to be determined, while B is

the corresponding inverse width with v representing the soliton speed. The substitution of Eq.(11)
into the real part (Eq. (10)) reduces the last to
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after simplification. In this case, the balancing principle allows comparing exponents (2n+1) P
and p+2, leading to

p=—. (13)
n

Equating the coefficients of the resulting linearly independent functions to zero, one gets for
the soliton width

30, —03 05

B=nx , (14)
O, + O3 +05
as long as
(30, —03—05)(0, +03+05)>0. (15)
In view of (14) the soliton frequency falls out as:
2 2 2 2 2
2K [(a+12c1c711< )02 —(a+4clalrc )(03 +c75) }
- - : (16)
(03 +03+05)
while the soliton amplitude results to be
1
K* (30, —03—05) {0y +03 +(n+1)os} |22
A= , a7)
0'6 ((72 +O'3 +O'5)

provided
K’06 (30, —03—05) {0y + 03+ (n+1) o5} (0, +03+05) > 0. (18)
In addition, after considering (14) and (17), the identities
o4{0y +03+(n+1)os} =(2n+1)(3n+1)0,0, (19)
and
(n+1)og [{aﬂz(nz +n+l)clallc2}0'2 +a—4(n2 +n—1)610'11<2 (03 +05 )} "
:[02 + 03 +(n+1)65:||:(b+4C10'4K2)+b(G3 +65):| .

must be satisfied in order for the soliton to exist. Therefore, the bright soliton solution for the

concatenation model with power—law nonlinearity (1) is
1

q(x,t)=4 sech;[B(x—vt)] ei(_KHwHG"), (21)
where the amplitude is given in (17) provided (18), the soliton width is expressed on (14) as long
as (15) is satisfied, the speed was early constructed in (6) in view of the constraints (7)—(9), while
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the soliton frequency is depicted on (16). In addition, the identities (19) and (20) must be satisfied
to preserve integrability.

3.2. Dark soliton

In this part, we construct a dark soliton solution following a similar procedure to the one used to
construct the bright solution in the previous part. First, we assume the following profile for the
waveform:

P(x,t)=AtanhPt, 7=B(x-wt), (22)
where, in this case, 4 and B are free parameters for the soliton, while p is a parameter whose

value will be determined properly balancing nonlinearity and dispersion. The rest of the
parameters have the same meaning as for bright soliton. Next, substituting Eq. (22) into Eq.(10),
the real part Eq.(10) emerges as:

—{(a)+a1<2 +acot)+2p? [(a+6010'1K2)—(5+3p2)cldle}B2}A tanh?t
+q [(03 +05-30, x> —2p* (0, + 0y +c75)B2}A3 tanh*Pt
+p(p+1)[(a+6clo'11<2)—4{2+p(p+2)}clc71B2}AB2 tanh P27
+p(p+1)(p+2)(p+3)co14B* tanh?**z
+pci| 05+ p(oy + 03 +05) | AB? tanh*P? 1
+p(p+1)eo A" B tanh > )P ¢ (23)
+[(b+clo'41<2)—2 p2c10—432]A2"+1 tanh PP 4 ¢ 423 tanh (2P
+pe,[ p(oy +03+05)—05 |A'B> tanh®" 1
+p(p—1)[(a+6clalx2)—4{2+p(p—2)}c10132]A32 tanh? ¢
+p(p-1)(p-2)(p-3)ci0,4B* tanh? ™z
+p(p-1)qo, 4> B tanh > P21 — g,
As for bright soliton, by equating the exponents (p+2) and (2n+1)p, the value for the

parameter as in Eq.(13) is retrieved. From the stand-alone coefficients of tanh? *[r] and

tanh? _2[1] ,weget p=1 implyingthat n=1, e.g., thatthe power law reduces to Kerr law in

Eq.(1). The resulting values of p and n allow one to get from Eq.(23) the wave number
w=q {(1634 ~126° B = 3x* )0y + (0 + 0 )AzBZ} —a(x® +28%), (24)

where the parameter 4 can be written in terms of B as

2{20(316132 —(a +6; lez )}

A=B , (25)
¢ {K2 (03 +05—-30,)-2(0, +03 +o-5)32} +{b+c10'4 (rc2 -2B? )}
as long as the radicand stays positive, while both free parameters must satisfy the identity
240,B* + {0, + 03 +2(0, +05)} A*B* + 044" = 0. (26)
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Therefore, the single soliton solution for the concatenation model given by Eq.(1) can be
written as

q(x,t) =A tanh [B(x—vt)} ei(7Kx+wH9°) 27
where the parameters along with corresponding constraint were discussed above.

3.3. Singular soliton (type-I)

For the first-type of singular soliton, we embrace the following waveform:
P(x,t)=4 cschPt, 7=B(x-w), (28)

To construct the type-1 of the singular soliton solution we first substitute Eq.(28) into Eq.(10)
simplifying the last to:

—[(a)+ ax® +3¢,0k* )~ p? (a+6c,0k% ) B - p“clalB“J cschPt

+¢ [(03 +05 30, ) k% + p? (0, + 05 +05)B2}A3 csch®Pt

+p(p+l)[(a+60101K2)+2{2+p(p+2)}c16132:|ABz cschPr

+p(p+1)(p+2)(p+3)co14B* csch Pz (29)

+p[ pe (o, +o-3)+(1+p)c10'5}A382 csch*3P

+[(b+cld4l<2)+pzclcr4BZ:|A2"+l eschP L

+p(p+1)og 4B esch™ PP e oo a2 csen PP~ g,
Proper balancing allows again to equate the exponents (2z+1)p and (p+2), yielding the

same value for the parameter p as in Eq.(13). Thus, inserting Eq.(13) into Eq.(29) and setting to

zero the coefficients of the resulting independent linear functions one gets the width B as in
Eq.(14), and the frequency @ as in Eq.(16), along with required constraint (15). For singular type-
1 the parameter A is slightly different than in Eq.(17), it resulted to be

4 _K2(3O'2_0'3_0'5){02+O'3+(n+l)o'5} E. 0
0-6(62 +G3 +(75)

Consequently, the direction of the corresponding constraint is inverted in Eq.(18), e.g
0630, —03—05){0y +03 +(n+1)0s} (0, + 03 +05) < 0. (31)
For this type of soliton, the same identities (19) and (20) must be satisfied as well for the

pulse to exist. Therefore, the type-1 singular soliton solution for the concatenation model with
power law nonlinearity (1) is
1
q(x,t)=A csch ”[B(x—vt)} ei(_KHwHe"), (32)
where the parameter 4 is given by Eq.(30) with corresponding constraint (31), while the rest of
the parameters and solvability conditions are the same as for bright soliton.

3.4. Singular soliton (type-II)

The second type of singular soliton solution is the last kind of soliton we are going to discuss in
this work. To retrieve type-I singular solitons from our concatenation system (1) a waveform
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having the following structure is assumed:

P(x,t) =4 coth?r,
(33)
T=8B (x — vt),

where the parameters 4 and B represent the soliton amplitude and inverse width correspondingly,
p 1s a parameter to be determined by balancing nonlinearity and dispersion, while v representing

the soliton speed. Inserting Eq.(33) into the real part Eq. (10) leads to
—{(a)+a1<2 +acout)+2p? [(a+6c1011<2)—(5+3p2)claleJBz}A cothPt
+¢ [(03 +05-30,)x* —2p* (05 + 03 + 05 )BZJ/P coth* Pt
+p(p+1)| (a+6q0k? ) =42+ p(2+ p)}cioyB” [ 4B coth 2z

+p(p+1)(p+2)(p+3)clalAB4 cothP™ ¢

+pc [05 +p(oy+03+05 ):|A3B2 coth*P ¢

-i—p(p+1)c164A2”+132 coth ()P (34)

+ [(b +o4K° ) -2p*c0,B° ] A o (2P cog A>3 coth (203)p

+pci | p(oy+03 +c75)—0'5}A382 coth*P ™2t

+p(p —1)[(01 +6clcrlrc2)—4(2 +p(p —2))clcrleJAB2 coth?¢

+p(p-1)(p-2)(p —3)01611434 cothP™*¢

+p(p—1)¢o, 4B’ coth > P27 _ g,

By inspection, the balancing yields the value for parameter p as in (13). However, the stand-

alone elements dictate n=1, turning the power law nonlinearity into a cubic nonlinearity.
Consequently, the value of p turns out to be one. Indeed, substituting the resulting value of p into

Eq.(34) yields the same results as dark soliton with corresponding solvability conditions. Thus, the
type-I1I singular soliton solution for system (1) is

q(x,t)=A coth [B (x—vt)} ei(_KHwHe"), (395)

where all the parameters along with corresponding constraints are the same as for dark soliton
discussed earlier on this manuscript.

4. Conclusions

The current paper recovered a full spectrum of 1-soliton solution to the concatenation model
having power—law of nonlinear refractive index. The method of undetermined coefficients granted
success with this scheme. The parameter constraints that naturally emerged during the derivation
process are also enumerated for each soliton type. An interesting observation is that the dark
solitons and one of the two forms of singular solitons would only exist for the power—law
nonlinearity parameter to stay at unity. This is a very interesting observation of the concatenation
model being made for the first time in this paper.

The results of this paper are a gateway to an avalanche of upcoming results that will follow
through. Later, the model would retrieve the conservation laws. The quiescent solitons would also
be recovered for the model using a variety of approaches. The model would be next considered
with fractional temporal evolution that would mitigate the "Internet bottleneck effect".
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Subsequently, with the conservation laws in place, the soliton perturbation theory would be
implemented to obtain the quasi-monochromatic dynamics of such solitons.
Disclosure. The authors claim there is no conflict of interest.
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Anomayia. [[n cmamms  6iOHO6MIOE NOBHULL  cneKmp  1-conimoHHUX po36’a3Kie moodeni
KOHKameHayii 3i cmeneHesuM 3aKOHOM camodazoeoi mooynayii. Memoo HegusHaueHUx
Koegiyicumia 003801U8 YCniwHo supiwumu Yy npoodnemy. ObmedceHHs HaABeOeHUX napamempis
NPUPOOHUM YUHOM BUHUKAE 13 BUBEOEHHS, WO Y CE0I0 Uepzy 2apaHmye iCHY8AHHA YUX CONIMOHIE.
Jlosedeno, wo memui CoNimonu ma CUHSYIAPHI CONIMOHU NeBHO20 MUny ICHysaiu 6 auuie mooi,
KOJIU NOPAOOK CMeNnenego2o 3aKoHy cnaodas 6u 0o 0OuHuyi.

Knirouosi cnosa: CONLIMOHU, CUA—3AKOH, KOHKameHaui}l,' 3AKOHU 36€p€9IC€HH}l.
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