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Abstract. To extract accurately and quickly the fractional vegetation coverage (FVC) for the
case of soybean crops in alpine black-soil regions during flowering-podding and seed-filling
growth stages, we use unmanned aerial vehicles (UAVs) to collect multi-spectral images of
the soybean crops. Different vegetation indices for the multi-spectral bands are analyzed and
compared. These are a vegetative index (VEG), a colour index of vegetation extraction
(CIVE), an excessive green-feature index (EXG), an excessive green-and-red difference
index (EXGR), a combined vegetation index (CVI), a normalized green-blue difference index
(NGBDI), a normalized vegetation index (NDVI), a soil-adjusted vegetation index (SAVI),
and a modified soil-adjusted vegetation index (MSAVI). A supervised classification method
is combined with a threshold method based on statistical histograms of the vegetation indices.
This offers an efficient technique for extracting the soybean coverage in the alpine black
soils. We divide our experimental field into soil pixels and soybean pixels, while the UAV-
based remote-sensing data is divided into the categories of soil and soybean vegetation, using
a supervised classification method. Then intersects of the histograms of the vegetation-indices
distributions derived with the UAV data are taken as thresholds for the soil and soybean-
vegetation pixels. The soybean FVC extracted from synchronously collected high-resolution
visible-light images with the ground resolution 0.036 m is used as a reference value for the
comparative analysis of the accuracies. Our study reveals the following: (1) the FVC-
extraction accuracy becomes higher than 90% if the thresholds of the vegetation indices are
determined by the statistical histograms and the images obtained with the UAVs are classified
in order to extract the FVC, (2) one obtains too high a coverage with the NGBDI index; the
corresponding errors are equal to 6.14% and 2.18% respectively for the flowering-podding
and seed-filling stages, (3) the COM, VEG, EXG, SAVI and MSAVI indices demonstrate a
sufficient accuracy and reliability, and (4) the EXG index provides the highest precision at
the podding stage, while the COM index is the best for the period of soybean-kernel filling.
Our results represent an important reference for future high-precision extraction of the
soybean-vegetation coverage at different growth stages.
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1. Introduction

Fractional vegetation coverage (FVC) reflects a degree to which an above-ground vegetation
covers a soil area. Usually, it is determined as the ratio of the vertical projection area of above-
ground vegetation organs (including stems, leaves and branches) to the total vegetation area on a
soil (usually expressed in per cents) [1, 2]. In such applied fields as construction and testing of
ecological models, e.g. hydrology and climate ones, the FVC is an important factor for monitoring,
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analyzing and describing the state of vegetation growth [3, 4]. Moreover, it has a great significance
for crop monitoring and disaster assessment [5—7].

Up to date, the common methods for measuring the FVC [8, 9] include mainly remote-
sensing estimations and near-ground measurements [10, 11]. Due to the limitations of temporal
and spatial resolutions [12, 13], satellite-based remote-sensing estimation of images is mainly
suitable for large-scale monitoring of vegetation. It hardly meets the needs of crop-coverage
monitoring at the scales of separate fields. Near-ground measurement methods [14, 15] are
generally used within small areas. They are characterized by high operating costs and can easily
damage the crops [16—18]. In recent years, aerial-photography technologies based upon unmanned
aerial vehicles (UAVs) are increasingly maturing. Their main features are high flexibility, simple
operation, low flight requirements and easy control of temporal and spatial resolutions. This
explains wide utilization of the above technologies in the studies of small-scale regional
agricultural production, vegetation-information extraction and some other applications [19-21].

Many scholars have already examined the UAV-based remote-sensing technology for the
extraction of vegetation coverage. Choi et al. [22] have estimated the vegetation coverage in some
dune areas, using a random-forest classification and a normalized vegetation index (NDVI)
obtained from multi-spectral UAV images. Liu Yanhui et al. [23] have analyzed the FVC for large
grasslands, using an excessive green-feature index (EXG) and a colour index, and reported that the
accuracy for the UAV images is high enough if the EXG index is estimated by the maximum-
entropy method based on a genetic algorithm. Zhao Jing et al. [4] have extracted the FVC of maize
during four different growth periods in summer, using visible-light UAV images and employing a
visible difference-vegetation index, an EXG and a normalized green-blue difference index
(NGBDI). It has been found that the results derived with the EXG index are the best. Due to Xie
Bing et al. [24], a red-green-blue vegetation index (RGBVI) has been suggested for the high-
precision UAV-based extraction of FVC for small areas. The reliability and the accuracy of the
method have also been verified.

Although a lot of studies have been carried out on the FVC extraction from the multi-spectral
and visible-light UAV-obtained images, most of them select only two or three different vegetation
indices and address only single-stage grasslands or crop regions. Moreover, only a few studies
have been reported on the FVC extraction for the soybeans at different stages of their growth. The
problem is that the vegetation indices differ at different growth stages due to different spectral
reflectances of soybeans and soil background.

In the present study, we take Nenjiang City, an area of alpine black soils in Heilongjiang
Province, as an experimental area. Both visible-light and multi-spectral UAV images of the
soybean crops have been collected during two different periods of growth. By analyzing and
comparing our experimental data, we have estimated the FVC for our experimental area, using a
common vegetation index suitable for the visible spectral range. The sample photographic data for
the field is then combined to analyze the extraction results obtained with different vegetation
indices. Our final aim is to find the most reliable methods of FVC extraction for the soybean crops
at different growth periods.

2.2. Materials and methods
2.1. Area under study and data sources

Nenjiang City is an important area for soybean production in Heilongjiang Province. The area
studied in our experiments is located in the east of Nenjiang City (125°40'40"-125°40'47"E and
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49°6'31"-49°6'35"N). It is characterized by a cold-temperate continental monsoon climate, with
the average annual temperature 0.8—1.4°C, the average annual precipitation between 480 and
512 mm, and the accumulated temperature greater than or equal to 10°C being about 2340°C.
Soybeans have been planted by machines.
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Fig. 1. Area under study: location of the area (a) and images of the sample area taken on July 23" (b) and
September 3“ (c).

2.2. Data acquisition and processing

The images were collected on July 23 and September 3, 2020. They correspond to the
flowering-podding and seed-filling stages of soybeans, respectively (see Fig. 1). Due to
COVID-19, the data for the flowering-podding stage was collected a little bit later, and the
collection time referred to the middle and late soybean flower-pod period. The UAV-obtained

visible-light images, which had been used for verification, were acquired using a DJI Phantom 4
RTK UAV. The main parameters of the UAV are gathered in Table 1. The UAV-obtained multi-
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spectral data used in the test were acquired by DJI M600 equipped with an Altum UAV multi-
spectral sensor (produced by MicaSense). The multi-spectral sensor that integrated infrared and
visible images with high resolution was able to detect five visible and infrared bands between
475 nm and 840 nm. The spatial resolution reached 5.2 cm at the altitude 120 m. The
corresponding main parameters are also shown in Table 1.

The UAV-based visible images of the soybean fields had been collected between 11:00
and 13:00 on sunny days with no clouds and breeze at the following flight parameters: the
flight height 70 m, the flight speed 4 m/s, the side overlaps 80%, the heading overlap 80%,
and the ground resolution 0.036 m. The flight route was automatically planned (the 1*' time)
and fixed (the 2™ time). The flight height used for obtaining the multi-spectral images with
the UAV was equal to 100 m and the ground resolution was 0.05 m. The general overview of
the field is shown in Fig. 1. In this study, Pix4D software was employed to process the visible
images collected by the UAVs. After importing aerial photos with POS information into the
software, the pre-collected coordinates of the image-control points were imported by manual
puncturing. Then we generated the UAV-obtained visible image of the experimental area
through point-cloud encryption, feature-point matching, texture-feature matching, etc. In case
of he multi-spectral images, we calculated the spectral reflectances using a combination of
image data, a standard whiteboard and ENVI. Based on the POS data obtained by the UAVs,
the Pix4D software was used for stitching processing of the multi-spectral images.

Table 1. Main parameters of our UAV.

Parameter Multi-spectral channels Thermal infrared channel
Resolution 2064x1544 160x120
Lens focal length 8 mm 1.77 mm
Field of view 48°%36.8° 57°x44.3°
Spatial resolution (at the 5.2 cm 81 cm

flying altitude 120 m)

Channel wavelength Blue: 465-485 nm 8-14 pm
Green: 550-570 nm
Red: 663-673 nm
Red-edge: 712-722 nm
NIR: 820-860 nm

Volume and weight 82x67x64.5 mm’® (357 g) 82x67x64.5 mm’® (357 g)

Digital photos of the field were collected manually and visible images were obtained by
the UAVs. Thirty-four sampling points were arranged in the experimental area at the intervals
15-20 m and the sampling range for each sampling point was equal to 90x90 cm® (with
wiring by staff before photographing). At the centre of each sampling point, a tablet
(Huawei Brand) had been used to take photos vertically downward in order to minimize
geometric deformation errors at the height 60 cm from the top of the crop. 1 to 3 photos
had been taken at each sampling point to ensure that there were no people or other objects in
the photos.
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2.3. Method for extraction FVC for the soybean crops

The reflection characteristics of soybean canopy and soil in the blue, green, red, red-edge and
near-infrared bands obtained from the experimental area during the flowering-podding and seed-
filling stages are shown in Fig. 2. From comparison of the data, we conclude that the soybean
canopy has a small reflection peak in the green band of the Altum UAV multiple-spectral sensor
and a strong reflection in the near-infrared region, with the reflectivity about 0.7. There is a
reflectance valley inside the red band, while the reflection inside the red and blue bands is weak.
The soil characteristics are relatively gentle and the corresponding reflection increases when
passing from blue to green, red, red-edge and near-infrared bands. This reflectance is smaller than
that of the soybean canopy in all the bands except for the red band where it is slightly higher. The
reflectance difference is about 0.6 in the near-infrared band, which is consistent with the studies
performed on the wheat canopy and the appropriate soils [3].
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Fig. 2. Typical spectral curves of soybeans and soil that correspond to (a) flowering-podding and (b) seed-filling
stages.

In application to green-vegetation monitoring, the vegetation indices can better reflect the
spectral characteristics of green vegetation based upon multi-band spectral calculations. More than
40 kinds of the vegetation indices have been used in the branches of vegetation studies and
ecology (see also Section 1). They include NDVI, an enhanced vegetation index (EVI), and a new
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vegetation index (NVI). From the viewpoint of the spectral characteristics of soybeans and soils, a
vegetative index (VEG) [25], a colour index of vegetation extraction (CIVE) [26], an EXG [27],
excessive-green and excessive-red difference indices (EXGR) [28], a combined vegetation index
(CVID) [29] and an NGBDI [30, 31] have been selected. The aim is better detection of strong
reflection of green light by green vegetation. An NDVI, a soil-adjusted vegetation index (SAVI)
and a modified soil-adjusted vegetation index (MSAVI) [32] have been selected to detect better
the characteristics of the red and near-infrared bands. In total, 12 vegetation indices can be used to
extract the soybean-vegetation coverage. Specific formulae for the vegetation indices used by us
are shown in Table 2. In the above formulae, pp, p;, pr and py;r are the reflectances

respectively in the blue, green, red and near-infrared bands
(e =R G B NIR )
PR=RvG+B PO TRiGiB P RiG+B T PV T RIG+BINRR

The methods commonly used for estimating the vegetation coverage, which are based on the
remote-sensing data, are mainly divided into three categories: empirical methods, hybrid pixel
models and machine-learning methods [11]. The empirical method needs establishing a statistical
relationship between the FVC and the vegetation index based on a large number of reliable sample
data. It is difficult to do in the case of FVC estimation at large scales [33]. The threshold approach
to the vegetation index, which is widely used in the mixed pixel model, considers that each pixel
can be divided into vegetation and non-vegetation [14]. The intersection method for the
vegetation-index time-series graphs have been applied to determine a classification threshold for
the UAV-obtained images of winter wheat and summer corns. It can achieve good enough results
[3, 4]. In the present study, we use the UAV multi-spectral remote-sensing technology and the
vegetation-index threshold method. It is based on selecting the nine vegetation indices described
above to estimate the soybean FVC in the alpine black-soil region. The relevant extraction process
is illustrated in Fig. 3.

Table 2. Formulae used for calculating different vegetation indices.

Vegetation index Formula Reference
VEG VEG = % , @ =0.667 [25]
Pp  *PR

CIVE CIVE =0.441p, —0.811p; +0.385p, +18.78745 [26]
EXG EXG =2p; —pr —Ps [27]
EXGR XRG =3p; —24pg — pp [28]
CVI CVI =0.25EXG +0.3EXGR +0.33CIVE + 0.12VEG [29]
NGBDI NGBDI =£6 P8 [31]

PGt PB
NDVI NDVI = PR ~ PR [33]

PNIR T PR

ST =—PNRZPG (1, )
SAVI Pnr +Pc+L [33]
(L is soil conditioning factor, 0.5)
2

MSAVI MSAVI = 2pnr +1- \/(ZPNIR +1° =8(pnr — pr) [33]

2
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Fig. 3. Flow chart of FVC extraction for soybean crops.

The experimental field in the area under study is divided into two parts: soil pixels and
soybean pixels. Then the UAV multi-spectral data is divided into soil and soybean vegetation,
using a supervised classification performed with the support vector machine (SVM). The
intersection of the distribution histograms for a given vegetation index is derived with the UAV
multi-spectral data as a threshold for the soil and soybean-vegetation pixels. Then the image parts
with the values larger than the classification threshold correspond to the soybean-vegetation pixels.
Otherwise, they correspond to the soil pixels. Finally, the FVC is extracted based on the
classification results.

The relation used for extracting the FVC by the vegetation-index threshold method is given by

Nooyb
Fiovbean = ————0_ x100% , (1)
sovbean N, soybean +N, soil
where N pean 18 the number of the soybean pixels and Ny the number of the soil pixels.
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2.4. Accuracy evaluation for the soybean-crop FVC

A commonly known method for evaluating the FVC accuracy takes the coverage measured by the
ground photography as a true FVC value. However, it is unsuitable for FVC evaluating on large
scales due to the limitations of material resources. As the remote UAV-based sensing and deep-
learning technologies develop, a combination of high-resolution UAV images and supervised
SVM classification can provide the information on the FVC with high precision so that the results
of supervised classification can be used as a true coverage value.

Here we use the high-resolution visible-light remote-sensing images, while the parameters
measured for the field samples are verified through the supervised SVM classification. Then the
data obtained due to classification is used as a true value of the soybean FVC. As a result, the
accuracy of the soybean FVC extracted from the image can be evaluated. The parameters
measured for the field samples are extracted manually from the photos obtained for the field using
Photoshop software. First, the colour range is used to extract the soybean range and then a further
manual refinement is performed with ‘magic wand’ and ‘lasso’ tools. Three persons extract
independently their photographs of soybean samples and the final result for each sample point is
the average of these three results. To avoid human errors caused by supervised classification as
much as possible, three people perform the supervised SVM classification of the remote-sensing
visible-light data and the final classification results are averaged. The accuracy-evaluating
parameters used for the soybean-related FVC extraction read as

ol
mean absolute error =—"—" 1 2
n
. 1 & "\2
variance = E ,Zzll (xi - X; ) s 3)
]
accuracy =1- — x100% , @)

]
where x; denote the estimated values of the FVC at the sample points, x; the reference values of

the FVC at the sample points, and n is the number of the sample points.

3. Results and discussion
3.1. Classification and processing of high-resolution visible-light remote-sensing data

Our data source is the high-resolution visible-light remote-sensing data with the ground resolution
0.036 m. It is collected synchronously from the multi-spectral images acquired on July 23, 2020.
The SVM-supervised classification is then used. Thirty samples of soil and thirty samples of
soybeans have been selected from the experimental area to be divided into a soybean coverage
area and a non-soybean coverage area after preprocessing, field investigation and image
interpretation. To verify the accuracy of supervised classification, we calculate the confusion
matrix for the two classification results. The overall classification accuracy is equal to 98.73% and
the Cohen’s kappa coefficient is 0.972 (see Table 3).

To verify the FVC accuracy for the visible-light images, the digital photos collected for the
field have been manually extracted by Photoshop. Then the average has been taken as a reference
value. The measured values and the data of supervised classification for different sampling points
are shown in Fig. 4. Here the mean absolute error amounts to 0.0189, the variance is 0.00046 and
the accuracy equals to 97.99%.
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Table 3. Evaluation of supervised classification for soybean coverage.

Item Soybean, Soil, Total User accuracy,
pixels pixels %
Soybean, pixel 4337 72 4409 98.37
Soil, pixel 12 2210 2222 99.46
Total 4349 2282 6631
User accuracy, % 99.72 96.84

The total accuracy is 98.73% and the Cohen’s kappa coefficient is 0.972
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Fig. 4. Comparison of the results obtained from measurements and supervised classification.

3.2. Threshold extraction and analysis

The method for extracting the FVC based on the vegetation indices uses a threshold for binary
processing so that the extraction of this threshold is an important part of the experiments. In this
study, we have selected 30 soil samples and 30 soybean samples from the experimental area
to be divided into soybean-covered and non-soybean-covered areas using the method of supervised
classification. Based on the classification results, the vegetation indices of the corresponding
areas have been calculated. Then the statistical analysis has been carried out according to a method
of histograms, where the intersection of the statistical histograms is used as a classification
threshold.

Using the classification results and the statistical analysis, we have calculated the vegetation
indices VEG, CIVE, EXG, EXGR, CVI, NGBDI, NDVI, SAVI and MSAVI for the soybean crops
during the flowering-podding and seed-filling stages. The appropriate histograms are shown in Fig. 5
and Fig. 6. The intersect of the soil and vegetation curves in the extracted statistical histograms has
been used as the extraction threshold for the corresponding vegetation index (see Table 4).

Basing on the statistical histograms, one can conclude that the spectral reflectances of the
vegetation and the soil have evident double-peak characteristics. The spectral reflectance changes
notably depending on the growth period. The thresholds also depend on the growth period. In
particular, the threshold for the CIVE index shifts towards greater values and that for the other
indices shifts towards smaller values during the period of seed filling (see Table 4).
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Table 4. Extraction thresholds obtained for different vegetation indices.

Vegetation index Threshold value for the vegetation index

Flowering-podding stage Seed-filling stage
VEG 2.285 1.375
CIVE 18.766 18.777
EXG 0.054 0.027
EXGR 0.074 0.028
CVl 6.505 6.381
NGBDI 0.349 0.318
NDVI 0.869 0.515
SAVI 0.561 0.220
MSAVI 0.585 0.179

3.3. Extracted results and analysis of soybean FVC

The vegetation index for the multi-spectral UAV images has been calculated for the two periods
based on the formulae mentioned above and the classification resulted from the thresholds. Fig. 7
and Fig. 8 show the vegetation coverages extracted by various vegetation indices for the
flowering-podding and seed-filling stages. Green is the vegetation coverage area, and white is the
non-vegetation coverage area. It can be seen from the classification results that there are some
gaps between the ridges in the images of vegetation during the flowering-podding stage (July 23),
although they are almost completely covered during the period of seed filling (September 3). The
FVC is then obviously higher than that during the flowering-podding stage. The flowering-
podding stage is a rapid growth stage of soybean plants. On the other hand, the growth is slow
during the period of seed filling, especially during the period of vigorous reproductive growth with
partial yellow-green leaves. The changes observed in the FVC basically conform to the rules of
growth of soybean plants during these periods.

(h) W) (k)

Fig. 7. Classification images (panels a, b) and results (panels c—k) obtained for the flowering-podding period: (a)
a multi-spectral image, (b) a corresponding visible-light image, (c) VEG, (d) CIVE, (e) EXG, (f) EXGR, (g) CVI,
(h) NGBDI, (i) NDVI, (j) SAVI, and (k) MSAVI.
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Fig. 8. Classification images (panels a, b) and results (panels c—k) obtained for the seed-filling period: (a) a
multi-spectral image, (b) a corresponding visible-light image, (c) VEG, (d) CIVE, (e) EXG, (f) EXGR, (g) CVI, (h)
NGBDI, (i) NDVI, (j) SAVI, and (k) MSAVI.

0) (k)

To evaluate the accuracy for the soybean FVC obtained by the index-threshold method, we
determine the average of the supervised SVM-classification data obtained by three individuals as a
true soybean FVC. Then the formula for the FVC error is as follows:

Fyup =B

sup

Ep =0 " 1,100%, (5)

sup

where E implies the FVC-extraction error, Fy,, the soybean FVC extracted with the supervised-

S
classification method, and Fj,; the soybean FVC extracted with the vegetation-threshold method.

The FVC values have been calculated using different vegetation-index methods. As seen
from Table 5, the FVC ranges from 87% to 94% during the flowering-podding stage and reveals
notable data fluctuations. The difference of the maximal and minimal values is 6.81%. If we
compare our results with the data obtained by the supervised classification, one can see that the
accuracy is over 94%. Moreover, the absolute EXG error is the lowest and the absolute NGBDI
error is the highest. The FVC mostly lies in the region 95-99% during the seed-filling stage. The
soybean FVCs extracted by different vegetation indices are very close to each other, with small
enough fluctuations (e.g., the difference between the highest and lowest values is only 2.28%). A
comparison with the FVC extracted by the supervised classification shows that the absolute CVI
error is the lowest and the absolute NGBDI error is the highest. As follows from the results
derived for the two growth periods, the CVI and VEG accuracies are high enough. They are
followed by the EXG, SAVI and MSAVI accuracies. A comparison with the statistical NGBDI-
histogram data testifies that the applicability of NGBDI for the FVC extraction based on the
threshold of the statistical histogram is not sufficiently high. Fig. 9 displays the extraction
accuracy described as a scatter FVC plot (see Eq. (5)). It has been obtained by the supervised-
classification and vegetation-index threshold methods.

As follows from Fig. 9, it is better to extract the soybean FVC using the UAV multi-spectral
images and the vegetation-index threshold method. This refers to both the flowering-podding and
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Table 5. Calculation results obtained for soybean FVC.

Vege- Soybean growth  Vegetation index Supervised Error Absolute
tation stage threshold method, classification, extraction, error,
index % % % %
Flowering-
VEG podding stage 89.32 88.64 0.77 0.68
Seed-filling stage 98.20 97.42 0.80 0.78
Flowering-
CIVE podding stage 91.00 88.64 2.66 2.36
Seed-filling stage 95.97 97.42 1.49 ~1.45
Flowering-
EXG podding stage 88.42 88.64 0.25 -0.22
Seed-filling stage 95.92 97.42 1.54 ~1.50
Flowering-
EXGR podding stage 87.27 88.64 1.55 -1.37
Seed-filling stage 95.97 97.42 1.49 —1.45
Flowering-
CVI podding stage 87.92 88.64 0.81 —0.72
Seed-filling stage 97.80 97.42 0.39 0.38
Flowering-
NGB 5 dding stage 94.08 88.64 6.14 5.44
DI .
Seed-filling stage 99.54 97.42 2.18 2.12
Flowering-
NDVI podding stage 90.83 88.64 2.47 2.19
Seed-filling stage 98.93 97.42 1.55 1.51
Flowering-
SAVI podding stage 87.10 88.64 1.74 -1.54
Seed-filling stage 96.79 97.42 0.65 —0.63
Flowering-
MSA hodding stage 91.03 88.64 2.70 239
VI .
Seed-filling stage 96.73 97.42 0.71 —0.69
100 °
(o]
Q
) CIVE
]
o5 ) com
_ ° EXG
= ' EXGR
>
- 8 ) NGBDI
90 A o NDVI
g SAVI
° o MSAVI
85 A VEG
85 90 95 100

Supervised Classification value, %
Fig. 9. Scatter plot obtained for the FVC-extraction results.
seed filling stages. The results obtained with the CVI, VEG and EXG classification thresholds are
the closest to the supervised-classification data, while the NGBDI-classification threshold results
are the most distant from the supervised-classification data. The FVC remains lower during the
flowering-podding stage. Then the nine FVC-classification thresholds differ greatly from those of
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the seed-filling stage. During the period of seed filling, the FVC is higher and the nine FVC-
classification thresholds are smaller. When the plants grow, the reflectance of the soybean leaves
increases and each of the vegetation indices gets saturated to a certain extent. This is basically
consistent with the earlier results reported in the literature for wheat and corns. Deep reasons of
this correspondence still need to be explored. If compared with the supervised-classification
results, the soybean FVCs estimated by the classification thresholds for the nine vegetation indices
are larger. This can be associated with smaller classification thresholds obtained as intersects of
the vegetation-indices statistical histograms. Therefore these results are more consistent with the
data obtained for the winter-wheat FVC [3].

3.4. Further verification of FVC accuracy

To further verify the FVC accuracy based on the vegetation-indices approach, we extract manually
the digital photos collected on the field using Photoshop, with the mean value as a reference. The
indicators shown in Table 6 reveal that the accuracies of the nine vegetation indices used in our
study are all above 90%.

Table 6. Accuracy parameters of the FVC estimation for sample points.

Flowering-podding stage Seed-filling stage
Method Mean absolute Variance Accuracy, | Mean absolute ~ Variance  Accuracy,
error % error %

VEG 0.041 0.00179 95.62 0.014 0.00063 98.48
CIVE 0.024 0.00046 97.43 0.048 0.00353 95.01
EXG 0.027 0.00058 97.14 0.050 0.00375 94.83
EXGR 0.026 0.00054 97.22 0.038 0.00233 96.08
CVI 0.038 0.0014 95.94 0.016 0.00070 98.25
NGBDI 0.044 0.00137 95.28 0.052 0.00406 94.62
NDVI 0.044 0.00140 95.32 0.054 0.00429 94.46
SAVI 0.019 0.00026 98.03 0.011 0.00057 98.76
MSAVI 0.018 0.00023 98.12 0.017 0.00083 98.13

The FVC accuracy for the flowering-podding stage is the highest in case of the MSAVI index,
with the smallest variance and the highest stability. It is followed by the SAVI, CIVE, EXGR,
EXG, CVI and VEG indices. Finally, the accuracy of the NGBDI index remains the lowest. For
the seed-filling stage, the FVC accuracy is the highest for the VEG index. It provides the smallest
data fluctuations. Then the CVI, MSAVI, SAVI and EXGR indices follow. The lowest accuracy is
typical for the NDVI index. In general, the CVI, VEG, EXG, SAVI and MSAVI indices manifest a
sufficiently high accuracy and good stability. The soybean FVCs estimated by the classification
thresholds for the nine vegetation indices at the sampling points are generally higher than the
coverages measured by the ground-photography method. This fact is consistent with the previous
results obtained using the supervised-classification data.

4. Conclusions

Summing up the main results of this study, one can draw the following conclusions.
(1) The statistical histograms have been used to determine the thresholds vegetation—soil for
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different vegetation indices. On this basis, the UAV multi-spectral images have been classified to
extract the FVC values. The appropriate accuracy can be as high as 90%. Therefore it is feasible to
use common vegetation indices to extract the vegetation coverage.

(2) A comparison of the classification results demonstrates that the FVC extracted from the
NGBDI index is more reliable than the values obtained with the other vegetation indices.
Comparing the data associated with the NGBDI index and the statistical histograms, one can see
that the NGBDI index is not suitable for implementation of this method.

(3) A comparison of the soybean FVCs obtained from the UAV images, the vegetation
indices and the corresponding measured reference value testifies that the accuracy of FVC
extraction associated with the CVI, VEG, EXG, SAVI and MSAVI indices is sufficiently high.
The appropriate parameters reveal a satisfactory stability and are the closest to the true FVC value.
This refers to both soybean-growth periods.

(4) Comparing the soybean FVC extraction during the two different growth periods, one
concludes that different vegetation indices perform differently for these periods. The extraction
accuracy of the EXG index is the highest for the flowering-podding stage and the extraction
accuracy of the CVI index is the highest for the period of seed filling. As a consequence, the
automatic extraction of soybean FVC demands appropriate selection of the vegetation index
according to the growth characteristics of the vegetation during different periods.

(5) Comparing the coverage values measured by the ground-photography method and the
results of supervised classification, one testifies that the results for the soybean FVC estimated
using the nine vegetation-index classification thresholds are generally higher. This is caused by a
smaller classification threshold obtained as the intersect of the vegetation-index statistical
histograms. Since the resolution (0.036 m) of the UAV images in this study is not high enough,
some of the soil pixels or those of ‘mixed’ areas pixels (e.g., edge pixels and small gaps between
leaves) are classified as the vegetation pixels.

Data availability. The experimental data used to support the findings of this study are available
from the corresponding author upon request.
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Anomauia. [1]o6 o0epacamu mouno ma weuoxko gpaxyiine pociunne nokpummst (OPII) ons nocisis
COi' 8 QMLNIUCLKUX UYOPHOZEMHUX De2iOHAX Ha CMAOIIX YGIMIHHA MA HANOGHEHHS HACIHHAM, MU
suxopucmanu 6eninomui nimanvui anapamu (bIIJIA) ons 360py mymbmucnekmpaibhux 300pasicets
nocieig coi. Ilpoananizoeano ma nopieHAHO pi3HI [HOEKCU POCTUHHOCHIE 07l OA2amMOCHeKmpaibHUX
dianasonis. Lle inoexc pocmunnocmi (VEG), konipuuii indexc euwryuents pocaunnocmi (CIVE), indexc
Haomiproi 3enenocmi (EXG), indexc Haomipuol seneno-uepgonoi pisnuyi (EXGR), xombinosarnuii
inoexc  pocaunnocmi  (CVI), nopmanizosanuii  indexc 3eneno-onakummuoi  pisnuyi  (NGBDI),
Hopmanizoeanuti inoexc pocaunnocmi (NDVI), indexc pociunnocmi 3 nonpagkoro Ha tpyum (SAVI) ma
Moougikosanull iHoexc pocrunnocmi 3 nonpasxoio Ha tpyum (MSAVI). Konmponvoseanuii memoo
Kaacugikayii NOEOHAHO 3 NOPO2OBUM MEMOOOM HA OCHO8I CMAMUCMUYHUX 2ICMOpam iHOeKcie
pocnunrocmi. Lle npononye egpekmusHy mexHiky 0151 6CMAHOGNEHHSI NOKPUMMIA COEI0 ANbNILCOKUX
uoprosemie. Mu nodinunu Haule excnepumeHmaivbHe noje Ha Nikceni IPYHmMy ma nikceli coi, mooi sk
Oaui Oucmanyitino2o 30HOyeaHHst Ha ocHo6i BII/IA nodinteno Ha kameeopii IpyHmy ma coesol
POCIUHHOCI 30 OONOMO2010 KOHMPOLbOBAH020 Memoody Kiacugixayii. [lomiv nepemunu zicmospam
PO3N00INY IHOEKCI8 POCIUHHOCHI, 00epicanux 3a oonomozoro oanux BIIJIA, 6epymb sk nopozosi
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3HaueHHs1 O nikcenie pynmy ma pociunnocmi. @PII coi, ooepoxcanuil i3 CUHXPOHHO 3IOPAHUX
300padiceHb BUCOKOL wimKkocmi y 6uouMomy ceimii 3 6az0680t0 po3dineror 30amuicmio 0,036 m,
BUKOPUCIAHO K eMAIOHHE 3HAYEHHs! Olisl NOPIGHANIbHO2O ananizy mounocmen. Hawe docnioocenns
3aceiouuno maxe: (1) moynicme ecmaroenenns @PII cmae euworo 3a 90%, axuo nopie iHOexcy
POCIUHHOCIT BUHAUAIOMb 3d OONOMO20I0 CIAMUCHUYHUX 2ICIOSPaM, d 300paAdiCeHHs, OMPUMAHI 3d
oonomozoio BIIJIA, xknacughixyioms ons suaxoooicenns PPII; (2) 3a donomoeoro indexcy NGBDI
odeparcyemo 3anaomo sucoxe DPIT; noxubku dopisniorome 6,14% i 2,18% 6ionosiono onsa emanis
yeiminuA-ciey ma eucunauHa Hacinua, (3) indexcu COM, VEG, EXG, SAVI ma MSAVI
O0eMOHCMPYIomMb OOCIMAMHI0 MOYHicmb i Hadiunicmy, (4) indexc EXG 3abe3neuye naiiguugy moyHicme
Ha cmaoii cmpyukyeaniss, mooi sk iHoexc COM e naininuum Ons nepiody HANOBHEHHS COEGUMU
3epramu. Hawi pe3ynomamu € 6ajiciuguM OpicHMupom OJisi MAUOYMHIX GUCOKOMOYHUX OOCTIONCEHb
POCTUHHO20 NOKPUBY COI HA PI3HUX CIAOISIX POCMY.

Knrouosi cnosa: bacamocnekmpanvbhi 300paicenis, Nocisu col, IHOeKcu poCIuHHOCHI, Oe3niiomHI
qimanvri anapamu (BILJIA).
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