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Abstract. Segmentation of aerial images of crop is an important method for the crop 
prediction and analysis based on plant-protecting unmanned aerial vehicles (UAVs). 
The problem is that the accuracy of traditional crop-image segmentation based on a 
super-green feature is not high enough and, moreover, the corresponding algorithm 
can reveal great differences in the precision for different crops. In this study, we use a 
Markov random-field segmentation model for the aerial images taken from the plant-
protecting UAVs. A standard K-mean algorithm is employed to mark the observation 
field and the model parameters are estimated by an expectation-maximization method. 
For deriving the segmentation results, an iterated conditional-modes algorithm is 
applied. The experimental results testify that the approach of Markov random fields 
can segment efficiently the cotton-plant images obtained from the UAVs. Then the 
segmentation accuracy becomes higher and the algorithm adaptability better. 
However, the processing time increases and the real-time regime can be questioned 
when the number of segmented image pixels exceeds a critical value. 
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1. Introduction 
Rapid and accurate monitoring and evaluation of crop growth is one of the key issues in precision 
agriculture. It is also a basis for collecting important agricultural information and machinery auto-
mation, which has become a hotspot in the field of agricultural production in the recent years. At pre-
sent, applications of computer-vision technologies in agriculture have become more and more fre-
quent. They include monitoring and evaluating of crop information, yield prediction, weeding, pest 
control, etc. Image segmentation is the most important technical part of the appropriate problems [1]. 

Unmanned aerial vehicles (UAVs) aimed at protecting plants have many advantages such as 
high efficiency, small amount of liquids sprayed per unit area, no need in special airports for 
taking off and landing, and good maneuverability. Moreover, the UAVs for the plant protection 
can be operated remotely, thus avoiding fundamentally a risk for operators to be exposed to 
pesticides and improving the working conditions of those operators. Driven by a precision 
agriculture and a large-scale planting, the plant-protecting UAVs have demonstrated their 
outstanding advantages in such areas as operation of paddy fields and high-stalk crop fields, a 
quick response to pests and diseases, etc. [2]. Under real-life operating conditions, the relevant 
natural environment is complex and changeable and, moreover, there are notable differences in the 
shapes of different crops. The abilities of autonomous navigation and path-planning for the plant-
protection UAVs are limited by the crop-image extraction. As a consequence, the image-
segmentation algorithms used for the plant-protecting UAVs are of primary importance. 
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Although the common methods of green-crop detection are based on so-called super-green 
features and morphological processing, the corresponding segmentation accuracy is not 
sufficiently high. Besides, the accuracies of the same algorithm applied to segmentation of 
different crops can be enormously different. 

Recently, many scholars have adopted a method of Markov random fields (MRF) for image 
segmentation. The MRF has been widely used in many brunches of science and technology. In 
Ref. [3], the MRF and a mixed kernel-function clustering have been applied to the problem of 
brain-tumour image segmentation. Gaussian prior and Markov random-field constraints have been 
applied in a pre-stack seismic inversion by Xiaoshuang et al. [4]. The MRF has also been applied 
to the analysis of development of karsts [5]. L. Ning et al. [6] have suggested an improved MRF 
version to segment defect-involving images associated with stamping. Zhang Ling et al. [7] have 
offered the MRF to identify damaged buildings in the single-phase seismic images, while Li 
Pengju et al. have used the improved MRF in event-camera denoising [8]. 

Besides of the MRF, deep machine learning is also acquiring some popularity in image 
segmentation. As a single example, A. Feng et al. have used this approach to evaluate the 
germination of cotton plants [9]. Note that the deep-learning algorithms manifest high enough 
segmentation speed and accuracy, although they require a large amount of data. One has to note in 
this respect that the datasets of cotton seedlings are relatively scarce and so the annotation tasks 
are difficult. Since we are mainly interested in the segmentation of test cotton fields, which is 
characterized by a small amount of data, the deep-learning approach can be not better than the 
traditional segmentation methods. 

The subject of the present study is aerial photographs of cotton seedlings. Below we will 
demonstrate that the segmentation accuracy can be greatly improved and the real-time 
performance can be provided by an improved Markov-based iterated conditional-modes (ICM) 
algorithm. In particular, the algorithm suggested by us has a higher accuracy than that of the 
traditional crop-extraction methods based on the super-green features, while the navigation and 
operation of the plant-protecting UAVs become more intelligent (see Ref. [2]). 

2. Markov random field 
The MRF is often used in the field of computer vision to model different pixel-level image 
features. Due to equivalence of the MRF and Gibbs distributions, the joint distribution of the MRF 
can be transformed to a simple form. The cost function can be derived by a Bayesian-based 
maximum a posteriori (MAP) estimation, so that the problem of image segmentation can be 
transformed into the problem of cost-function optimization [10, 11]. 

A canonical Markov process describes a sequence of random states in time. Suppose that a 
random process generates a random state Z at time t. Then the random state appearing after the 
time moment t is linked only with the state Z and has nothing to do with the random states 
occurring before this moment. This memoryless process is called a Markov process [12, 13]. By 
analogy, the Markov process in the image processing describes a relationship between the state 
and the spatial coordinates of pixels. The state (or the category) of a given pixel is related only to 
the category of the pixels in its neighbourhood and does not depend on the characteristics of more 

distant pixels. Suppose that every point in the space   , 1 ,1S s i j i M j N       

corresponds to a random variable  sX X s S  . Then  sX X s S   is called a random 

field on S (see Fig. 1). 
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Fig. 1. Illustration of S-field and X-field in a Markov random field (see the text and Ref. [14] for more details).  

Here s sX x  is given by  1 1,..., MN MNX x X x  , which can be simplified to X x  
(with M being the number of pixels that fit into the image width and N the number of pixels along 
the image height). Let  1 2, ,..., MNx x x x  constitute a set of all possible random states X  on S. 

When X  is a random marking field, the probability  s sP X x  for any random variable 

s sX x  can be written as  sP x , whereas the joint probability  P X x  can be simplified to 

 P x . 

The random field X  exists in the probability space  , ,S P  if and only if we have the 

inequality   0P x  , where 

    \ ss s NS sP x x P x x .     (1) 

Having defined the random field X  on the probability space  , ,S P , we obtain the MRF 

with respect to the neighbourhood system  sN N s S   . Here  \S s  denotes the point set 

that excludes s  in the grid S , and sN  denotes the neighbourhood of the node s  referring to the 
set of all the points adjacent to this node. 

3. MRF-MAP segmentation model 
A maximum-likelihood estimation (MLE) provides the idea of solving a Markov marker-field 
model for a given observation field. When the regularized solution process introduces a priori 
parameters, the MLE becomes the maximum posterior-probability estimation, MAP. The 
difference between the MAP and the MLE in the pixel space is that the MLE believes that the 
probability of each pixel being marked as a certain class is uniform, while the MAP incorporates 
the label probability distribution brought by the model parameters themselves. 

The characteristic  1 2, ,..., MNS s s s  involves all the image pixels belonging to the set 

M N . The observation field  Y y s Ss   corresponds to the aerial-image data, while each 

element represented by the marker field selects a category tag from the category space. The marker 
field  sX x s S   indicates that each element of S  selects a category tag in the category space 

 1, 2,...,L l . 
When the observation field is specified, the Bayesian posterior-probability criterion is given by 

     
 

P Y y X x P X x
P X x Y y

P Y y
  

  


,   (2) 

which can be simplified to 

     P X Y P Y X P X x  .     (3) 

Marker field X 2 
3 

4 
1 

Observation field S 
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In its turn, the expression for the energy is as follows: 

     
   

*

1 2

arg max arg min ,

arg min

X P Y X P X x U X Y

U X U Y X

  

   
,   (4)  

where  ,U X Y  is the overall system-energy function,  1U X  the energy function of the marker-

field prior model, and  2U Y X  the energy function of the observation field under the conditional 

probability. One can obtain from the above formula that the image segmentation represents a 
process of minimizing the posterior energy function [15]. The modelling steps of the MRF-MAP 
segmentation model are illustrated in Fig. 2. 

 
Fig. 2. Schematic explanation of an MRF-MAP segmentation model: ‘EM’ denotes ‘expectation–maximization’.  

3.1. System energy function 
3.1.1. Prior model energy function. A Hammersley–Clifford theorem gives the equivalence 
relationship for the MRF and Gibbs random field, i.e. the prior probability of the MRF follows the 
Gibbs distribution [16]. The neighbourhood system adopts a homogeneous and isotropic second-
order 8-neighbourhood. The corresponding mathematical model is given by 

           2 1, 1 , 1, , 1, 1 , , 1 , , 1 ,sN i j i j i j i j i j              1, 1 , 1, , 1, 1i j i j i j     . 

The potential group of the second-order neighbourhood system is shown in Fig. 3. The basic 
potential group is a binary two-point potential group, while the remaining potential energy is given 
by 2 0cV   . Here  1U X  can be expressed as 

     1 1 2 ,
s

s s t
s S s S t N

U X U x V x x
  

    ,    (5) 

   
       (a)         (b)          (c) 

  
     (d)           (e) 

Fig. 3. Potential group of a second-order neighbourhood system: (a) single-point group, (b) horizontal and 
vertical double-point group, (c) diagonal double-point group, d) triple-point group, and (e) quadruple-point group. 
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where  2 ,s tV x x  is a potential function defined by the relation 

 2 , s t
s t

s t

x x
V x x

x x



 
   

.    (6) 

Here s  denotes the operational pixel, t  the second-order 8-neighbourhood pixel of s , sx  
and tx  are pixel markers, and   is the penalty factor. 

3.1.2. Conditional-probability energy function. The conditional probability  P Y X  of 

 2U Y X  cannot be obtained directly. Given the marker field X , the sampling pixels in the 

observation field Y  are independent of each other. At the same time, the mathematical model for 
all pixels in a certain spatial area of a colour image is the Gaussian distribution, so that we have 

     1
2 logT

s k k s k k
s S

U Y X y y 



         .    (7) 

Here  1, 2,...,k L l  , k  and k  are respectively the mean and the covariance matrix of 

the class- k  Gaussian field, and  1, 2,...,k L l  . 

The total energy function of the system can be obtained from Eqs. (5) and (7): 

       1
2, , log

s

T
s t s k k s k k

s S t N s S
U X Y V x x y y 

  

            .  (8) 

3.2. Estimates of model parameters with expectation–maximization algorithm.  
Let the MLE algorithm be used. In order to derive the parameters  ,k k    of the Gaussian 

distribution, it is necessary to find the θ value at which  log ,P x y   reaches its maximum. 

Therefore the calculations are rather complex [17]. In image segmentation we have  ,z x y , 

where the observation field y represents the known data and the label field x corresponds to the 
hidden unknown category labels of all the pixels. Then an expectation–maximization algorithm 
can be used to estimate the model parameters. The iterative processes of the expectation–
maximization algorithm can be described as follow. 

(i) E-step: 

 
 

1

,

,

t t t
k s k kt

s L
t t t
k s k k

k

P y

P y

 


 






,     (9) 

where t
s  is the prior probability of the pixel, and t

k , t
k  and t

k  are the iterative parameters of t . 

(ii) M-step: 

   

1 1 1

1 1

1 1, ,

1 .

t t t t t
k s k s st

s S s Sk
Tt t t

s s k s kt
s Sk

y
N N

y y
N

   


  


  

 

 



   

 

 


   (10) 

While iterating continuously the E-steps and M-steps and assigning periodically new values 

to the t
k , t

k  and t
k  parameters, one can arrive at stable model parameters. 
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3.3. ICM algorithm 
The ICM is a ‘greedy algorithm’. Every time it ignores a global optimal solution and seeks optimal 
solutions in a certain region instead. Let us operate with each pixel in the space. If the current tag 
makes the system energy decrease, then one has to update the tag field, otherwise the tag field 
remains the same. The times needed for updating the marker field are short and so the operation 
speed is high [18]. 

 
Fig. 4. A flow chart of a Markov-ICM algorithm. 



Qianqian Zhen et al 

Ukr. J. Phys. Opt. 2023, Volume 24, Issue 2 120 

The flow chart of the ICM algorithm is illustrated in Fig. 4 and an image segmented after three 
initial iterations is shown in Fig. 5. The experiments testify that the results obtained with the three 
iterations can be segmented to get the main area whenever the background of a cotton-plant image is 
relatively simple. Although further iterations are more accurate in the boundary-point classification 
and some pseudo-classified areas can be corrected, the real-time performance is more difficult to 
achieve for the corresponding procedure. In order to improve the segmentation accuracy and ensure 
the real-time performance at the same time, it is useful to set a reasonable global-energy threshold. 
After the initial iteration, morphological filtering can be used to remove a small-area noise. 

(a) (b) 

(c) 

Fig. 5. Illustration of image segmentation achieved 
after the first (a), second (b) and third (c) iterations. 

 

4. Experimental results and their analysis 
In order to test the segmentation results achieved for the aerial images of cotton seedlings taken 
with different resolutions, we have selected RGB images with the area 1550×551 px2. The 
working process of the Markov-ICM-algorithm segmentation is sketched in Fig. 6. For a 
comparison, the image segmented using the super-green features and the morphological filtering is 
shown in Fig. 7. There are 250238 target pixels containing cotton seedlings and 155780 target 
pixels marked by the super-green-features algorithm. On the other hand, the Markov-ICM 
algorithm finds 232061 target pixels, i.e. it improves the segmentation efficiency by 30.4%. 
Therefore, a comparison of the segmentation results presented in Fig. 6 and Fig. 7 confirms that 
the algorithm based upon the super-green features yields in under-segmentation. 

(a) (b)  

(c) (d)  

(e) (f)  
Fig. 6. Experimental implementation of segmentation with the Markov-ICM algorithm: (a) aerial photo of cotton 
plants, (b) K-mean marker field, (c) initial segmentation and edge extraction, (d) Markov-ICM edge extraction, (e) 
edge extraction performed after Markov-ICM morphological filtering, and (f) segmentation based on the MRF. 
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We remind that the segmentation principle associated with the MRF model is based on the 
energy connection between the image pixels and the field, which provides a high accuracy of 
segmentation. Moreover, the noises associated with a film and agricultural ruts in the background 
areas do not interfere with the texture information of the image, thus ensuring an excellent 
segmentation effect. 

 
Fig. 7. Image segmentation based on super-green features and morphological filtering. 

To verify the real-time performance of the Markov-ICM algorithm, we have segmented the 
images with different pixel sizes and determined the times needed to segment each of these 
images. The appropriate data are gathered in Table 1. At least above the image area 30000 px2, the 
dependence of segmentation time on the image area is perfectly linear, with the Pearson’s 
correlation coefficient larger than 0.999. This linear-in-time property would imply the real-time 
performance of the underlying algorithm.  

Table 1. Segmentation times achieved with the Markov-ICM algorithm for the images with 
different pixel numbers. 

Image width, px Image height, px Pixel area, px2 Segmentation time, s 

100 50 5000 1.3267 
300 50 15000 1.5661 
600 50 30000 1.9030 
900 50 45000 3.0189 
900 150 135000 6.7619 
900 300 270000 11.6119 

1200 500 600000 23.5039 
1500 500 750000 29.3514 
2000 800 1600000 61.9957 

5. Conclusion 
In this study, the MRF-based segmentation model is used for processing the aerial photos of cotton 
plants taken by the UAVs. The model parameters are estimated with the expectation–maximization 
method, while the segmentation results are derived using the ICM optimization algorithm. Our ex-
periments demonstrate that the MRF approach can make a complete account of spatial correlation 
among the pixels to express properly the prior information involved in the image. This method can 
efficiently segment the cotton-seedling images obtained by the UAVs. Its only drawback is that, in the 
process of segmentation, the number of ICM iterations increases with increasing image pixel number. 
Then the segmentation times become long and the real-time performance needs to be improved. 
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Анотація. Сегментація аерофотознімків врожаю – це важливий метод прогнозування та 
аналізу врожаю на основі безпілотних літальних апаратів (БПЛА) для захисту рослин. 
Проблема полягає в тому, що точність традиційної сегментації зображень на основі 
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суперзеленого елемента недостатньо висока, а відповідний алгоритм може виявляти 
значні відмінності в точності для різних культур. У цьому дослідженні ми використали 
марковську модель випадкового поля для сегментації аерофотознімків БПЛА для захисту 
рослин. Для позначення поля спостереження використано стандартний алгоритм  
K-середнього, а параметри моделі оцінено за методом максимізації очікування. Для 
одкржання результатів сегментації застосовано ітерований алгоритм умовних режимів. 
Експериментальні результати засвідчують, що підхід випадкового марковського поля 
може ефективно сегментувати зображення бавовнику, отримані з БПЛА. Крім того, 
точність сегментації стає вищою, а алгоритм – більш адаптивним. Однак коли кількість 
пікселів сегментованого зображення перевищує деяке критичне значення, час опрацювання 
зростає, а досягнення режиму реального часу стає проблемним. 

Ключові слова: марковське випадкове поле, ітерований алгоритм умовного режиму, 
безпілотні літальні апарати захисту рослин, сегментація зображення 


