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Abstract. We derive stationary optical solitons for the case when the nonlinear
refractive index of Kudryashov’s quintuple form is coupled with a nonlocal type of
self-phase modulation in the presence of nonlinear chromatic dispersion. An
enhanced Kudryashov’s approach has made this derivation of soliton solutions
possible for the case of generalized temporal evolution.
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1. Introduction

The theory of quiescent solitons is gradually gaining importance since it could be as a hindrance in
the soliton propagation dynamics [1-10]. One of the main sources of such stationary solitons is a
natural manifestation of chromatic dispersion, which is rendered nonlinear. This can lead to
stalling of soliton propagation, an unwanted feature causing a disaster in telecommunication
industry. In other words, the issue must be avoided at all costs. Below we will portray a
mathematical picture of the quiescent solitons. It emerges from the governing nonlinear
Schrédinger’s equation with nonlinearity of a Kudryashov’s quintuple-power law, which is
coupled with a nonlinear refractive index of a nonlocal form. The current study is a sequel to the
previous work on the same model which has been examined for the simpler case of a linear
temporal evolution. Now we consider the same model with a generalized temporal evolution. The
enhanced Kudryashov’s integration algorithm will be implemented to recover stationary optical
solitons in the model. The corresponding results will represent a generalized version of those
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reported previously in Ref. [1]. Accordingly, our present results collapse to the earlier ones
whenever the generalized temporal evolution parameter relaxes to unity.

2. The enhanced Kudryashov’s method

Our governing model is a nonlinear Schrdodinger’s equation where the source of self-phase
modulation comes from a Kudryashov’s quintuple-power law of nonlinearity, which is coupled with
anonlocal type of a nonlinear refractive index. In a dimensionless form, it can be structured as

i), +a(|q|r ql)

XX

6]
+|:b1 |q|2m +b2 |q|2m+n +b3 |q|2m+2n +b4 |q|2m+n+p +b5 |q|2m+2n+p +(|q|p )xleq[ -0.

In Eq. (1), the dependent variable ¢ (x,t) is a complex-valued function that represents a nonlinear

wave profile. The independent variables x and ¢ stand for the spatial and temporal coordinates,
respectively. The first term in the 1. h. s of Eq. (1) is associated with a generalized temporal
evolution described by the evolution parameter [, while a denotes the coefficient of nonlinear

chromatic dispersion. The b; coefficients (1< j<5) entering in Eq. (1) form the self-phase

modulation structure introduced earlier by N. A. Kudryashov [1]. Finally, the last term in the
L. h. s. of Eq. (1) stands for the nonlocal nonlinearity.

We remind that the parameter / governs a generalized temporal evolution. The special case
of /=1 is reduced to the linear temporal evolution. The model given by Eq. (1) with the linear
temporal evolution has been studied in 2022. Now we turn this page and study the same model
with the generalized temporal evolution. As a consequence, our results would collapse to those
obtained for the linear temporal evolution under the condition given by /=1.

Let us consider the nonlinear evolution equation

F(u,uy ;0 ,1,,,...) =0, )

where u =u (x,t) is an unknown function and F a polynomial in u, with independent spatial and
temporal variables.

The fundamental algorithmic procedures in the frame of the enhanced Kudryashov’s method
are as follows (see Ref. [1]).

Step 1. Use the following transformation:

u(x,t)=U(&), &=k(x—v), 3)

where k& and v are constants to be determined later. Then Eq. (2) is reduced to a nonlinear

ordinary differential equation of the form

P(U,—ka’, kU’,sz",...) - 0. (4)
Step 2. Assume that the solution of Eq. (4) can be expressed in the form
N
U(e)=40+2 2 40 (S)R(S)., )
I=li+j=l

where 4, 4; (i,j=0,1,..,N) are constants to be determined and the functions R(¢) and Q(¢&)

satisfy the ordinary differential equations
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R(EY =RE (- 2R()) ©)
and
0'(¢)=0(£)(no(&)-1), @)
with a,b,n and y being arbitrary constants. The solutions of Egs.(6) and (7) are given
respectively by
4a
R(S)= ®)
( ) 4a%e° +;(e_§
and
1
-——. ©)
n+be

Step 3. Determine the positive integer number N in Eq. (5) by balancing the highest-order
derivatives and the nonlinear term in Eq. (4).

Step 4. Substitute Egs. (5)—(7) into Eq. (4). As a result, we get a polynomial of Q(&),R(&)
and R'(£). In this polynomial, we gather all the terms of the same powers and equate them to

zero. Then we get an over-determined system of algebraic equations which can be solved, e.g.,

with Maple or Mathematica, in order to obtain the unknown parameters k, v, a, b, 1, x, 4

and 4; (i,j=0,L---,N ) . In this manner one can obtain the exact solutions of Eq. (2).

3. Application to governing equation
In order to integrate the model equation, we set the wave transformation
g (1) =U () @0 (10)

where w represents the wave number and 6, stems from the phase constant. Inserting Eq. (10)
into Eq. (1) gives

ak? (r+ 1)U 0"+ @k (P (r=1)r+1(2r -1)JU'U

+b4U2m+n+p+2 +b5U2m+2n+p+2 +b3U2(m+n+l) +b2U2m+n+2 (11)

+h U™ + k2 pUPTU" + k2 (p—1) pUPU * ~10U? = 0.
Let us assume the equality » =2m+ p . Then Eq. (1) becomes

ig', +a(la " q')
(12)
+|:b1 ‘q |2m +b2‘q |2m+n +b3 |q |2m+2n +b4‘q |2m+n+p +b5‘q ‘2m+2n+p +(‘ q |p )xx:|ql =0,
while Eq. (12) changes to
ak® (2m+p+ 1)Uy P
+ak [P +1(2(2m + p)=1)+(2m+ p=1)(2m+ p) [UU>™7
13)

+b4U2m+n+p+2 loU? +b5U2m+2n+p+2 +b3U2(m+n+1) +b2U2m+n+2
+h U™ 2 + k2 pUPHU" + k% (p—1) pUPU 2 = 0.

Using the transformation
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u=rn, (14)
one can transform Eq. (13) into

2m 2m+2n 2m+n 2m+n+p 2m+2n+p

WV —lo+bV n +bV n bV n +bV n +by  n

P 2m+p
+h* (p=1)pV"*V " +ak? (12 +l(2(2m+p)—l)+(2m+p—l)(2m+p))V'2V no(15)

P 2m+p
APV (Y =(n=1)V 2 )+ ak® 2m+p+ 1)V 1 (VY =(n=1)V ) =0,

Now let us put the conditions p =n=2m . Then Eq. (12) becomes

-1 4 l
ig', +a(lq 1" q )xx

(16)
+ g P sblq 7 by +bi) a7 b5 g P+ (1gP) o' =o.
while Eq. (16) transforms to
2 (2akm 1+ 4m) V" + 4bym? |+ 7 (ak*1 + 6ak”im + 8akni”
a7)

b5V + (4bym® + 4bym? |V + dbymV + 4EPm*V "~ 4o = 0.

Balancing V" with V4 in Eq. (17) gives N =1 . Consequently, we obtain
V(£)="20+201R(E)+ ApQ(£)- (18)
Now we substitute Eq. (18) along with Eqgs. (6) and (7) into Eq. (17). As a result, we get a
polynomial of Q(&),R(&) and R'(&). After gathering all the terms of the same powers in this
polynomial and equating them to zero, we obtain an over-determined system of algebraic
equations. The latter can be solved by Maple or Mathematica. The following results have been

derived in this way.
The Result 1 is given by

_ 8bsm® —a(by +b,)(1+4m)(1+6m) 2y,

4abs (1+4m)(l+5m) 2n
/110:_ n\/zz ’ //I()l:O’ w=- 3 4 = 6 4° (19)
2abs (I +4m) (l+5m) 64lbsa” (4m+1)° (Sm+1)

_ mzﬁ _ %)
3 5 =53 4 3’
a’bs(4m+1) (5m+l)(6m+1) 8bsa” (4m+1)" (Sm+1)

with
o =(1+6m)(1+4m) {36 (by -+, (1 4m)’ 1+ 6m)
~Sabs (1+4m)| aby (1+4m)(1+5m)* =6 by + by )m® |-19263m"}, .
0 =a (by+by) (143m)(1+4m)* (1+6m)’
—~4a? (by +by ) bs (1+3m) (1 +4m)’ (1 + 6m)(ab2 (1+4m)(1+5m)* ~6(by +b4)m3) @1)

~64abdm’ (1+4m){aby (1+4m)(1+5m)} =3(by + by )® (1 7m)| =51263m (1+Tom),
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oy =a* (by +b,)t (142m)(1+4m)° (1+6m)’ =8> (by +by ) bs (1+4m)* (1+6m)’
x| aby (1+ 2m)(1+ 4m)(1+5m) +12(by +by ) |+16a%0 (1+4m)? (1+6m)
x{a2b22 (1+2m)(1+4m)* (1+5m)* + 24aby (by + by )m* 1+ 4m) (I +5m)*
~12(by +by ) m* (1+ 6m) (17 + 6im +11m2)}+512ab53m4 (1+4m) .
x{ab2 (1+4m)(1-+5m)? (12 + 6lm+2m° )+ 2(bs + by )m? (P +161m +95Im” + 206m’ )}
~12288b¢m” (20 +11m).
Substituting Eq. (19) and Eqs. (6) and (7) into Eq. (18) yields

8bsm® —a(by +by ) (1+4m) (1 +6m)
q(x’t):{ daby (1+4m)(1+5m)

A 2
+ 10 S '} (23)

2 2n
bexp| |- 3 ;n‘“Ol x|+n
a’bs(4m+1)’ (5Sm+1)(6m+1)

| 1%
. t+6
xel[{ 641b53a4(4m+1)(’(5m+1)4} 0)

Setting 7 = b in the solution given by Eq. (23), we arrive at dark and singular solitons:

8bsm® —a(by +by ) (1+4m) (1 +6m)
4abs (1+4m)(1+5m)

Ja tanh[ \/ o

2m
- x (24)
4abs (I +4m)* (1 +5m) 4a’bs(4m+1)° (Sm+1)(6m+1) ”

. Oy
i t+6,
e [{ 641b;a4(4m+1)°(5m+1)“} ”]

q(x,t):{

1

and
8bsm? —a(by +by ) (1+4m)(1+6m)
"("”):{ dabs (1+4m) (1 +5m)

Ja coth[ J il

2m
- X (25)
4abs(I+4m)* (1+5m) 4a’bs(4m+1)° (Sm+1)(6m+1) ]}

z[{ & }t+0]
e 64ib}a’ (4m+1)° (Sm+1)* °'

These soliton solutions are valid under the condition

1

absg <0.
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Fig. 1. Profiles of a dark quiescent 1-soliton given by Eq. (24).

Fig. 1 displays the profiles of a dark quiescent 1-soliton obtained at /=1.5. The other
parameter values chosen by us are as follows: bs =1, a=-1, by =1, by =1,and b, =1.

The Result 2 can be described as follows:

8bsm” —a(by +b;) (1> +100m -+ 24m” )

b

4abs (17 +91m-+20m)

X
%1=\/ 4 A0 =0,

8a?b2 (I+4m)* (1+5m)>”

2
k= = a , (26)
2a*bs (1 +4m)* (1 +5m)* (1 +6m)

b =- =
8a>b2 (I +4m)* (1 +5m)°

)
o= S
256a*B31(1 + 4m)* (I + 5m)*

where ¢; and ¢, are given by Egs. (20) and (21), and

05 =(a(bs +b4)(l+4m)(l+6m)—8b5m2)[5a3 (by +by ) (1+2m)(1+4m)* (1+6m)’
—8a” (by +by ) bs (1+4m)’ (1+6m)
{2y (1+42m) (1+-4m) (1 + S’ (b + by )n® (1+10m) (51+16m)| -
~64ab;m® (1+4m)
x{2aby (1-+4m) (1+ 5m)? (1-8m)-+ (b + by ) (12 =18~ 1 60m? )|
~15366m° (31+20m) |

Substituting Eq. (26) and Egs. (6) and (7) into Eq. (18) yields
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8bsr” —af(by +by )| +10m-+24n”
q(x.1)=

I 14
+
dabs 1 +9m-+20n7? \ 8262 (1 +4m)’* (1 + 5m)’

2m
4,

x < (28)

2 ng ngl

4a”exp X |—yexp| — X
20 b (1 +4m)> (1 +5m)* (1+6m) 2a°bs(I+4m)> (I +5m)* (1+6m)
i[{z 6 41?11? (1 4}”9“]

e 56a"b.I(I+4m)” (I+5m)

Setting y = +44° in the solution given by Eq. (28), we arrive at bright and singular solitons:

8bsm” —a(by + by ) (17 +10m +24m”)
q(x.1)=

2
+
4ab, (12 +9lm + 20m2) \/ 8a’b2 (I +4m)* (I + 5m)>

N (29)
m* o 2m i[{256a4b31(1+[2m)5(1+5m)4 }HQ“J
xsech 3 S 5 X e ’
2a°bs (I +4m)” (I +5m) (l + 6m)

and
2_ 2 2
()= 8bsm” —a(by +by)(1” +100m +24m ) i 2
4abs (17 +90m +20m” ) 8a2b2 (1 +4m)* (I + 5m)>
1 (30)
m’ m i[{256 ‘Bl i)f S(I+5 “}HQ“]
xcsch 3 < 4 5 X e a’bsl(I+4m)"(I+5m) ‘
2a°bs (I +4m)” (I +5m) (l + 6m)
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N
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Fig. 2. Profiles of a bright quiescent 1-soliton given by Eq. (29).
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These soliton solutions are valid at the condition
absg > 0.
Fig. 2 shows the profile of a bright quiescent 1-soliton obtained at /=1.5. The other

parameters have been chosen as follows: bs =1, a=1, by =1, by =1,and b, =1.

4. Conclusion

The present study is a sequel to the recent report [1] on the stationary optical solitons, which
emerge from the governing nonlinear Schrodinger’s equation with the Kudryashov’s quintuple
form of the nonlinearity coupled with the nonlocal structure of the nonlinear refractive index. This
time the results concern the most general case of temporal evolution. Upon putting the generalized
temporal evolution parameter to be unity, one arrives at the results reported in Ref. [1]. Therefore
our present work portrays the generalized perspective of the stationary solitons arising from the
nonlinear Schrédinger’s equation with the novel form of the self-phase modulation suggested by
N. A. Kudryashov.

The results of our work convey a very important practical message to the community dealing
with the optical solitons. The ground engineers in the field of telecommunications must make
absolutely sure that the chromatic dispersion is not rendered to be nonlinear all the time while the
solitons are being transmitted across transcontinental and transoceanic distances through optical
fibres. Such is the stark warning to the industry!
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Anomayia. OOdepocano cmayioHapHi onmuyHi conimoHu 011 eunadky ¢opmu Kyopawosa 3
n’amum cmenerem OJid HENiHIIHO20 NOKASHUKA 3AJIOMJIeHHS, NOEOHAHOI 3 HENOKANbHUM MUNOM
camopazo6oi Mooynayii 3a HAEHOCMI HENIHIUHOL XpomMamuuHoi Jucnepcii. Y0ockonaienul nioxio
Kyopswoea 0as mooiciugicms odepaicamu  conimouHi posg’sizku O 6UNAOKY V3A2albHeHO!
4acogoi esooyii.

Knrouosi cnosa: conimonu, memoo Kyopsawoea, ducnepcis, uacoga egonoyis
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