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Abstract. Hazelnut kernels can often be incomplete or malformed and have some 
other defects. Manual methods for their classification and recognition or even old-
fashioned machine-learning approaches are prone to the problems of low recognition 
efficiency and high misjudgement rates. In this study we apply deep learning to the 
problem of recognition of hazelnut-kernel defects. Two convolution neural-network 
systems, MobileNetV2 and Resnet-50, are used for training and recognition. It is 
found that the prediction accuracy of the ResNet-50 training set is improved by 10.3% 
and the training-loss rate reduced by 0.041, if compared with MobileNetV2. 
Moreover, the validation accuracy achieved with ResNet-50 is higher by 13.9% and 
the validation-loss rate lower by 0.151. This proves that the overall training effect of 
the Resnet-50 neural network is better than that of MobileNetV2. Basing on the near-
infrared absorption spectroscopy, we also detect the protein content in hazelnuts, 
which represents an important parameter for evaluating their quality. A Kennard–
Stone algorithm is used to classify a sample set. To elaborate a technique for the 
quantitative protein analysis of hazelnuts, we employ a partial least-squares method. 
The appropriate spectral data is preprocessed according to the methods of first 
derivative, second derivative and standard normal variate. The effect of these methods 
on the accuracy are compared. The results demonstrate that the model based on the 
first derivative is the best in case of the data referred to the overall spectral range. The 
correlation coefficients for the training and test sets are respectively equal to 0.938 and 
0.965, whereas the root-mean-square errors for these sets amount respectively to 0.286 
and 0.577. Our study testifies that the protein content in hazelnuts can be quickly and 
nondestructively detected using the near-infrared spectroscopy. 
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1. Introduction 
Hazelnut is known to be rich in proteins, lipids, sugars, carotene, vitamins B1, B2 and E, as well as 
eight kinds of amino acids needed by a human body. The amounts of calcium, phosphorus, iron, 
and some other nutritional elements in hazelnuts is higher than that in the other nuts [1]. Hazelnut 
is not only a delicious snack loved by many people but can also be added to chocolate, candy and 
bread [2, 3]. Being a valuable source of proteins and lipids, it is often called a “king of nuts” [4, 5]. 

Hazelnuts are affected by climatic environment and storage factors and have often the 
problems of low yield, small size, deformity and high percentage of incomplete nuts. These 
problems deteriorate the quality of hazelnuts and affect seriously their subsequent processing and 
consumption [6]. 

Common techniques used for the classification of hazelnut kernels are based on manual 
selection, which is inefficient, while standard discrimination methods are difficult to unify and prone 
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to mistakes, such that a high-quality level of hazelnut kernels cannot be ensured. Many scholars have 
studied the problems of classification of kernels and recognition of crop defects for the nuts and 
seeds. As a result, great progress in the field has been achieved [2, 3]. The researchers have used 
computers to classify agricultural products, thus providing high speed of the recognition and 
classification. However, standard classification methods reveal evident shortcomings. For instance, 
the efficiency of manually selected image features is usually low, the characteristics of image 
extraction are not obvious, and the efficiency of image recognition and classification is low. A rapid 
development of deep learning and associated computer technologies in the recent years has provided 
significant success in image classification and object detection. The work concerned with deep 
learning and based upon convolutional neural networks is now in full swing. Deep-learning 
algorithms have natural advantages over many other methods in terms of automatic feature extraction 
and representation of raw data. Moreover, they manifest strong fitting and inclusion abilities. In the 
present study, we suggest the deep learning for detecting defects of hazelnut kernels. 

He Yizhi et al. [7] have offered a method for recognition of lemon defects, which is based on 
the deep learning. A vgg16-based convolutional neural network has been constructed to train 
preprocessed data. The appropriate experiments have shown that the accuracy of the model in the 
verification set is 95.44%, which is much higher than that typical for the traditional k-nearest 
neighbour and support vector-machine methods. Basing on transfer learning, Li Cong et al. [8] 
have suggested an improved RESNET network TL-ROI-X-ResNext-50 classification model for 
recognizing defects of Hami jujube. Their experiments have demonstrated that the method can 
significantly reduce the amount of calculations, improve the recognition accuracy and meet better 
the main production requirements. 

Protein accounts for more than 20% of hazelnut kernels [9]. It provides an important index to 
judge the quality of hazelnut kernels. To determine the protein content, a Kjeldahl nitrogen method 
is usually used, although it is destructive. This method employs time-consuming, laborious and 
cumbersome operations. Moreover, a toxic gas released during the process is harmful to laboratory 
personnel, while the corresponding environmental pollution is large enough [10, 11]. Therefore, it 
would be very important to develop a nondestructive, harmless, simple and rapid method for 
detecting the hazelnut-protein content. 

A near-infrared spectroscopy (NIRS) is a well-known method of qualitative or quantitative 
analyses of organic chemicals, which uses the optical-response characteristics of these chemicals 
in the near-infrared spectral range and can be combined with stoichiometric methods. It is a 
nondestructive, low-cost and rapid method that causes no pollution. A spectral absorption band in 
the near-infrared range typically represents a superposition of octave, combined and differential 
absorption bands, which correspond to the fundamental frequencies of chemical bonds with high 
energies in an organic matter [12]. The NIRS can also reflect the composition information of the 
organic compounds containing hydrogen. It is very suitable for both qualitative and quantitative 
analyses of such hydrogen-containing organic compounds as agricultural, food and medical 
products. 

In general, the NIRS can be used to determine the origin of such food as almonds [13], tea 
[14], apples [15], pine nuts [16], etc. It can also be devised for classifying animal fibres [17], bread 
drying [18], oranges [19], normal and mouldy chestnuts [20–22] and corn grain hardness [23]. The 
method can be successfully used to quantify the contents of protein [24], fatty acids [25], mould 
[24], sugar [22] and oil [25]. Moreover, it has been employed for evaluating seed vigour and 
damage, e.g., for wheat [26, 27], corns [28, 29] and hazelnuts [30, 31]. 
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The aim of this study is to evaluate the shape and deficiencies of hazelnuts and examine the 
feasibility of NIRS-based determination of the protein content in shelled hazelnuts. First we collect 
the spectral information associated with hazelnuts using the NIRS and then construct their spectral 
database. The protein content is also directly measured using a chemometric method. A model for 
nondestructive detection and identification of the protein content in hazelnuts is elaborated. The 
influence of common data-preprocessing and spectral-band screening methods on the accuracy of 
our model is discussed. This improves its prediction accuracy. 

Our study reveals that the convolutional neural-network systems MobileNetV2 and ResNet-
50 can identify efficiently the defects of hazelnuts. The performance of ResNet-50 is higher than 
that of MobileNetV2. The accuracy and recall have been improved, so that the F1 score for 
Resnet-50 is larger than 97%. As a result, we have demonstrated that the NIRS technique can 
reliably detect the protein content in hazelnuts. A well-known partial least-squares (PLS) method 
has been used to work out our model, while the technologies of first derivative, second derivative 
and standard normal variate (SNV) preprocessing have been compared and analyzed. 
Uninformative-variable elimination (UVE), Monte Carlo uninformative-variable elimination 
(MCUVE) and random-frog band-selection methods have been used for this aim. Our 
experimental results have demonstrated that the final model grounded upon the first-derivative 
preprocessing and the MCUVE band selection has the best performance. 

2. Materials and methods 
Hazelnut samples “Corylus heterophylla” were collected from Yichun Area of Heilongjiang 
Province and “C. heterophylla × C. avellana” from Tieling area of Liaoning Province in 2020. The 
samples were stored in our laboratory at the temperatures below 15ºC and the relative air humidity 
less than 60%. Ventilation was ensured and exposure to light was avoided to prevent hazelnuts 
from mildew and hazel smell. Then, the hazelnuts were shelled.  

A high-resolution Canon EOS 600D SLR camera was used in our experiments. In order to 
prevent the influence of external environment, a standard HQ-T60 light-source box was used. A 
D65 light source of this source box was consistent with the sunset light, which could imitate a 
natural light source under normal conditions. Under these conditions, we were able to reduce 
completely the impact of lighting and shooting factors on the experimental data. 

In particular, to eliminate the influence of shooting angle on the experimental results, one had 
to meet the following conditions in the process of hazelnut-image collecting: when collecting a 
sample image, the equipment and the experimental sample were required to be at fixed positions, 
at a fixed distance and under a unified angle. Moreover, it was required that the focus was in the 
centre of the sample to ensure accurate focusing. In this way we tried to avoid the difficulties with 
image post-processing due to inaccurate focusing or blurred images. In our study, we adopted self-
shooting. The shooting location was a laboratory at the Northeast Forestry University in Harbin, 
Heilongjiang Province. A total of 1085 images were taken. 

The NIRS was used to evaluate our hazelnut samples. Before scanning them, the samples 
were stored at the laboratory for about 24 h to make their temperature and humidity consistent 
with those of the laboratory. After scanning, they were stored at –20ºC until the protein content 
was determined. 

A NIR Quest512 spectrometer (American Ocean Company) was used for the NIRS 
experiments. It was equipped with a 512-element InGaAs array. The wavelength range was 900–
1700 nm, the spectral resolution 3 nm, the response peak 1.6 µm, the signal-to-noise ratio 4000:1 (for 
full signal), and the integration time ranged from 1 ms to 10 s. Our equipment was able to measure 
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the reflectance (R) spectra, from which the absorbance A was obtained as  10log 1/A R , suppo-

sing that the transmittance was small enough to be neglected. A calibrated 50% standard was used as 
a white reference before the measurements to prevent our detector from saturating during acquisition. 
The dark reference spectrum was obtained by covering the measuring head with all black. 

During the measurements of the near-infrared spectra for hazelnuts, each sample was 
installed on a ring with a 6 mm-diameter opening, whereas a ring with a diameter 6 mm was fixed 
at the top (see Fig. 1). A diffuse reflection probe was placed parallel to the surface of hazelnuts as 
far as possible. Ten spectral values were obtained in each case and the average value was 
calculated. The spectral data were stored in MS Excel. 

 

 

 

 

 

 

Fig. 1. NIRS acquisition system (see the 
texts for explanations). 

The protein content in hazelnuts was determined with a Kjeldahl method (according to the 
first technique described in GB 5009.5-2016). During the spectroscopic experiments, each sample 
was measured three times, and the average was taken as an accurate value associated with the 
protein content in a given sample (see Table 1). 

A Kennard–Stone method was used to select and make the calibration (training) set more 
representative, with a more uniform distribution and more reasonable division of the sample set. 
According to this method, the relative Euclidean distance in the sample spectral-data space was 
used to determine a subspectral space that represented a predetermined number of correction 
samples in the original data space to the greatest extent. First, the samples were uniformly selected 
in the feature space to conduct a principal-component analysis on the original spectral data. Then 
the principal-component score was selected as a characteristic variable to select the samples. The 
sample set was divided into a calibration (training) set and a verification (test) set according to the 
principle of 4:1. The results of this division are shown in Table 1. 

Table 1. Protein partition results obtained for hazelnut samples. 
Protein content, % 

Sample set Number 
Maximum Minimum Average 

Total sample set 185 24.01 11.07 18.14 
Training set 148 24.01 11.07 18.21 

Test set 37 20.87 12.23 17.77 

3. Identification of hazelnut-kernel defects  
3.1. Dataset preprocessing 
According to the T/CSF 004-2019 hazelnut-quality grade, the hazelnut images collected in our 
experiments can be divided into three grades: full, incomplete and deformed (malformed). The 
relevant original images are shown in Fig. 2. 
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  (a) 

  (b) 

  (c) 
Fig. 2. Hazelnut images: full (a), incomplete (b) and malformed (c) hazelnuts. 

The sizes of the images collected in our experiments are 5184×3456. Too large numbers of 
pixels would have affected the network-training speed, whereas a useful feature information is 
usually situated in the middle of the image. In order to reduce the amount of data calculations and 
the network-training time, we have chosen cropping the images, while ensuring retention of their 
key information. After noise reduction and clipping of images, they have been transformed to the 
gray scale. 

3.2. Dataset enlarging and partitioning 
A set of images taken in our experiments has been limited. To avoid fitting during the 
experiments, we have chosen to enlarge the dataset to a certain extent. This mainly implies random 
rotations and movements and mirror inversion of the initial images, as well as adding noise. In this 
manner we arrive at the situation when a limited image dataset is in fact equivalent to a larger final 
dataset without significant increase in the factual data amount. 

The expanded dataset is divided according to the proportion 70:30. 4232 images are randomly 
selected as a training set, 2962 as a verification set, and 1270 as the validation set. This dataset 
division is illustrated in Table 2. 

The training set is mainly used to train the parameters of our model. The validation set is 
responsible for testing the accuracy and loss rate of the model after each epoch is completed. After 
the validation performed on the validation set is completed, the model provides the training and 
validation data and starts the next round of epoch training. These procedures are repeated in a 
cycle until the end of 30 epochs. 

Table 2. Dataset division. 
Type of hazelnuts Training set, pieces Validation set, pieces Dataset, pieces 

Full 1184 495 1679 
Incomplete 1007 387 1394 
Malformed 771 388 1159 

3.3. MoblieNetV2 network structure and analysis 
MobileNetV2 is a new type of lightweight networks, which ensures high accuracy and reduces 
greatly computing and storage resources. A core part of the MobileNetV2 architecture is that it 
uses an inverted residual approach. The inverted residual block is different from the ordinary 
residual block in its structure. The difference is that when the input enters the residual structure, 
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the module increases the dimension of the data, increases the number of channels of the 
characteristic matrix, then carries out a depth-wise convolution on the increased-dimension data 
and finally reduces the dimension of the data. When compared with the ordinary residual structure, 
the inverted residual one chooses to increase the dimension first and then reduce it. Moreover, the 
two networks have certain differences in the selection of activation functions. The activation 
function for the fast use of the ordinary residuals represents a rectified linear unit (ReLU) function, 
while the function used for the cross-use of the inverted residuals is ReLU6 [17]. 

Using the MobileNetV2 network in training and recognizing 4232 images from our hazelnut-
kernel defect dataset, we have obtained the following results: after 30 times of epoch training, the 
highest accuracy of the model-training set is 89.6% and the lowest loss rate equals to 0.044. The 
accuracy of the validation set amounts to 85.2% and the loss rate is 0.179. The training results of 
the MobileNetV2-model recognition are shown in Table 3. Fig. 3 displays the curves related to the 
model-training effect. It is seen from Fig. 3 that the model data converges quickly beginning from 
about epoch 9. The model-fitting effect is good and the model accuracy can be evaluated as fair. 
After the model training, we have calculated the precision and recall of the MobileNetV2 model 
for the three types of hazelnut samples (full, incomplete and malformed), as shown in Table 4. 

As seen from Table 4, we have the highest accuracy rate for the malformed hazelnut kernels, 
the highest recall rate and the lowest accuracy occur for the full kernels. The recall rate for the 
hazelnuts of the incomplete type is the lowest, which proves that the model reveals the best 
recognition effect for the hazelnuts of abnormal types. At the same time, the recognition is 
somewhat poorer for the hazelnuts of the full and incomplete types. On the whole, we state that the 
recognition and classification abilities of our model are insufficient and cannot meet the 
requirements of processing and production. 

Table 3. Training results obtained for the MobileNetV2-model recognition. 
Method Training 

accuracy 
Training loss Validation 

accuracy 
Validation loss 

MobileNetV2 89.68% 0.0422 85.23% 0.1785 

Table 4. Accuracy and recall obtained for the MobileNetV2 method. 
Method Precision Recall 

Full Incomplete Malformed Full Incomplete Malformed 
MobileNetV2 

0.84 0.90 0.90 0.90 0.84 0.87 

(a) (b)  
Fig. 3. Training-effect curves obtained for the MobilNetV2 method: (a) training-loss rate and (b) validation 
accuracy. 
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3.4. Resnet-50 network structure and analysis 
Trying to solve the problem that the gradient disappears in deep learning and a deep network is difficult 
to train, we have adopted a Resnet-50 network model. Using Resnet-50 to train and recognize 4323 
images from the hazelnut-kernel defect dataset, we have obtained the results  shown in Table 5. 

Table 5. Accuracy and recall obtained for the Resnet-50 method. 
Method Training 

accuracy 
Training loss Validation 

accuracy 
Validation loss 

Resnet-50 99.97% 0.0029 99.16% 0.0273 

Fig. 4 displays the curves that illustrate the model-training effect. As seen from Fig. 4, the 
model converges rapidly beginning from about epoch 9. The curves of the training and validation 
accuracies are close to each other, the training and validation loss rates are described by relatively 
smooth curves, and the fitting effect of the model is good enough. The overall effect looks better 
than that of the training MobileNetV2 model. After the model training, we have calculated the 
accuracy and recall of the Resnet-50 model for the three types of hazelnut samples (see Table 6). 

(a) (b) 
Fig. 4. Training-effect curves obtained for the Resnet-50 method: (a) training-loss rate and (b) validation 
accuracy. 

Table 6. Accuracy and recall obtained for the Resnet-50 method. 
Method Precision Recall 

Full Incomplete Malformed Full Incomplete Malformed 
Resnet-50 

0.99 0.96 0.99 0.99 0.99 0.97 

3.5. Comparison of models 
The main results of the MobileNetV2 and Resnet-50 models are gathered in Table 7 and Fig. 5. As 
compared with MobileNetV2, the training accuracy of Resnet-50 is improved by about 10.3% and 
the training loss rate is reduced by ~ 0.04. The prediction accuracy for the validation set increases 
by ~ 13.9% and the validation loss rate is reduced by ~ 0.15. In other words, the overall training 
effect is improved. At the same time, the absolute values of the accuracy, recall and F1 score for 
Resnet-50 are also significantly improved and reach more than 97%. 
 
Table 7. Comparison of Resnet-50 and MobileNetV2 results. 

Method Training accuracy Training loss 
Validation 
accuracy 

Validation loss 

MobileNetV2 89.68% 0.0442 85.23% 0.1785 
Resnet-50 99.97% 0.0029 99.16% 0.0273 
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Fig. 5. Comparison of training processes for the 
Resnet-50 (full circles) and MobileNetV2 (full squares) 
methods.  

4. NIRS data processing and analysis of results 
4.1. Spectral analysis 
The original spectral data obtained for hazelnuts are shown in Fig. 6 and Fig. 7. Here the 
wavelength range is 900–1700 nm and the sampling interval is equal to 1.57 nm. Protein is a 
substance with a complex spatial structure, of which main components are C, H, O and N. The 
main bands observed in the near-infrared range are those associated with the absorption of 
hydrogen-containing groups. The phenomenon of overlapping is also observed, i.e. multiple and 
combined fundamental frequencies can contribute to a given band. The original spectra of 
hazelnuts involve three principal peaks, as shown in Fig. 6 and Fig. 7. The first peak is located 
near 1180 nm, i.e. a combined frequency of the stretching vibration of the hydrogen-containing 
group [32]. The second peak is around 1420 nm, which corresponds to the first-order frequency 
doubling for the N–H group [33]. Finally, the third peak is located near 1660 nm, which represents 
a wavelet [34]. It refers to the first-order frequency doubling for the C–H and O–H groups. 
Although the absorption intensity in the near-infrared range is weak and different bands overlaps 
with each other, the shapes of the bands are highly regular and can reflect the information about 
the hazelnut protein. 

  
Fig. 6. Original absorbance spectra obtained for a 
single hazelnut sample.  

Fig. 7. Original absorbance spectra obtained for a 
group of hazelnut samples. 

4.2. Spectral data preprocessing 
Besides of the information on the basic chemical composition of samples, the spectral data 
collected by us contains also the information on individual samples, together with a considerable 
amount of background information and a noise. Therefore some preprocessing of the spectra is 
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necessary to reduce the spectral noise and eliminate the scattered light and influence of the optical-
path change on the spectra. In this study, the first-derivative, second-derivative and SNV 
approaches are used to preprocess the spectra. The first two approaches imply a baseline 
correction, which can eliminate efficiently the background interference and the baseline drift or 
rotation, although they amplify the noise. 

Fig. 8 shows the preprocessing results obtained with the first- and second-derivative methods. 
Here the ordinates are the first and second derivatives of the absorbance A. It is evident that the 
interference of baseline and the background in these spectra are eliminated. 

   
  (a)     (b) 
Fig. 8. Results of preprocessing of the original absorbance spectra by the first-derivative (a) and second-
derivative (b) methods. 

The SNV is a method for correction of scattering. It subtracts the average value of the 
spectral absorbance from the original spectral signal and then divides it by the standard deviation 
of the spectrum obtained for the correction set. This can reduce the spectral difference caused by 
surface-dispersion characteristics and optical-path changes. Note that the calculation principle of 
the SNV involves the rows of the spectral array. Therefore, its processing effect is related to the 
spectral characteristics of individual samples. Fig. 9 shows the results of preprocessing performed 
using the SNV technique. After the SNV treatment, the coincidence of spectra obtained for 
different samples becomes higher and the influence of scattering is weakened. 

 
Fig. 9. Results of SNV preprocessing of the original absorbance spectra. 
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4.3. Selection of characteristic bands 
The amount of full-band spectral data is too large to deal with. This data is associated with a lot of 
redundant information, so that heavy modelling and calculation workloads and long processing 
times would have been needed. Moreover, some frequency bands contain much noise, which 
makes the predictions unstable. Therefore, specific frequency bands (or spectral regions) should be 
selected for the modelling process. 

The basic idea of the UVE technique for screening characteristic variables is to take the ratio 
of the average regression coefficient corresponding to a variable to its standard deviation as a 
measurement basis for selecting this variable. The related expression is given by 

mean( )
Std( )

i

i

b
CV

b
 ,     (1) 

where bi is the column vector of the spectral matrix. The final judgment method is to add a certain 
number of random-variable matrices to the spectral matrix, use the PLS method through cross-
validation to obtain the regression-coefficient matrix and take the maximal CV value, CVmax, of the 
random-variable matrix as a threshold. When the CV value corresponding to a variable is lower 
than CVmax, the variable must be eliminated. 

Fig. 10 shows the results of the UVE preprocessing for the band selection. We have ranked the 
importance of the near-infrared spectral bands according to the UVE algorithm and selected the first 20 
bands. The red vertical lines in Fig. 10 indicate the characteristic bands filtered by us. It is readily seen 
from Fig. 10 that the selected wavelengths are relatively dense and there are no real absorption bands in 
the selected spectral regions. Therefore, this band-selection method cannot provide good results. 

 
Fig. 10. UVE-based band selection in the original absorbance spectra. 

The MCUVE method represents an improved version of the UVE. It adds a Monte Carlo 
sampling principle to the basic method for deleting uninformative variables. First, a variable-
selection standard is set. The purpose of this standard is to calculate the stability of each variable 
and then determine whether we introduce this variable into the model or not, issuing from the 
relevant stability value. Then the root-mean-square error of prediction (RMSE-P) is calculated for 
selecting the variables to be retained. A number of variables corresponding to the smallest RMSE-
P values are retained, thus establishing a PLS model. Fig. 11 shows the preprocessing results 
obtained by the MCUVE band-selection technique. The red vertical lines in Fig. 11 correspond to 
the characteristic wavelengths filtered with the MCUVE. The lines selected by the MCUVE 
method are concentrated in the region 1410–1580 nm, being located mainly around 1550 nm.  
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Fig. 11. MCUVE-based band selection in the original absorbance spectra. 

 
Fig. 12. Random-frog-based band selection in the original absorbance spectra. 

The random-frog technique is a new characteristic-band algorithm. It uses a small number of 
variable iterations for modelling and represents an efficient tool for selecting the variables. Fig. 12 
shows the preprocessing results obtained with the random-frog band-selection method. The 
vertical red lines in Fig. 12 represent the filtered characteristic wavelengths. The characteristic 
lines selected by the random-frog method are unevenly distributed near 1300 nm and between 
1400 and 1500 nm. 

4.4. Ascertaining a PLS method for NIRS 
The calibration of the model has been carried out using the PLS method. The calibration has been 
validated with the method of full cross-validation. The minimal root-mean-square error of the 
cross-validation has been taken to avoid overfitting. We have used the root-mean-square error 
RMSE and the correlation coefficient R as evaluation parameters: 
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where '
iy  and '

iy  are the individual sample points indexed by i and observed n times, and my  and 
'
my  are the mean values. 

4.5. Model validation 
In this study, we have used the first-derivative, second-derivative and SVN methods to preprocess 
the original spectra. Table 8 shows the modelling results obtained after spectral preprocessing 
performed with different techniques. The correlation coefficient testR  for the test set is the largest 
with the first-derivative method. It reaches the value ~ 0.965. The RMSE-P for the first-derivative 
method is the smallest, ~ 0.577. The original spectra are characterized by the worst Rtest value 
equal to ~ 0.579 and the smallest correlation coefficient which reaches only ~ 0.622. The original 
spectra also manifest the highest root-mean-standard error RMSE-C for the training set (~ 1.124). 
Finally, the highest root-mean-standard error for the test set found in the case of no spectral 
preprocessing (i.e., the original spectra) reaches the value ~ 1.365. 

Table 8. Results of the PLS method obtained by different pretreatment techniques.  
Training set Test set 

Pretreatment technique 
Rtraining  RMSE-C  Rtest  RMSE-P  

Original spectra 0.6224 1.1238 0.5789 1.3652 
First-order derivative 0.9377 0.2864 0.9654 0.5766 

Second-order derivative 0.8632 1.0035 0.7322 1.0233 
SNV 0.6592 0.9664 0.5403 1.0969 

We have constructed the quantitative models using (i) the spectra of hazelnuts detected in the 
overall spectral range under test and (ii) the characteristic spectral bands selected by the UVE, MCUVE 
and random-frog methods. The optimal method for selecting the characteristic bands has been found by 
comparing the R and RMSE-P parameters. The evaluation results for different models are shown in 
Table 9. It is obvious from Table 9 that the methods of band screening improve the correlation 
coefficient and decrease the root-mean-square error. The results for the MCUVE-based method are the 
best, mainly because the characteristic bands screened by this technique correspond to the fundamental, 
doubled and combination frequencies of the protein bonds. 

The main components of vegetable proteins are -amino acids, which contain -carbon atom, 
one H atom, one amino group and one side-chain R group. There are 20 different -polypeptide 
polymers composed of amino acids and amino acids linked by different peptide bonds, e.g. C–H 
and N–H [35, 36]. The characteristic bands selected by the MCUVE method are mainly 
concentrated in the region 1427–1571 nm. In particular, there are 4 bands below 1500 nm (1427, 
1452, 1479 and 1490 nm), which can be assigned to the combined C–H frequency [37]. The rest of 
the bands are between 1500 and 1571 nm, including those located at 1501, 1512, 1517, 1534, 
1540, 1543, 1549, 1550, 1554, 1556, 1557, 1559, 1564, 1567 and 1571 nm. The first-order 
doubled-frequency absorption band corresponding to the stretching vibration of N–H bond is 
located near 1510 nm [38], which fits in the above characteristic bands. Hence, the most important 
absorption bands attributed to the proteins are retained, while most of the redundant variables are 
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eliminated. In case of the MCUVE band-selection, the correlation coefficient for the test set 
reaches 0.875 and the RMSE-P is 0.975.  

Table 9. Model-valuation results obtained for different band-selection methods. 
Training set Test set 

Band-selection method 
Rtraining RMSE-P  Rtest  RMSE-P  

Overall spectral range 0.7367 1.0447 0.7211 1.0226 
UVE 0.8407 1.0223 0.8081 1.0880 

MCUVE 0.9022 0.9667 0.8750 0.9753 
Random frog 0.8843 0.9954 0.8597 0.9844 

The data shown in Fig. 13 correspond to the model obtained by using simultaneously the first-
derivative preprocessing method and the MCUVE band-selection method. A total of 10 hazelnuts not 
participating in the training have been randomly selected to predict the protein content in hazelnuts 
and evaluate the efficiency of our method and its actual prediction effect. The reference protein 
contents have been measured by the reliable chemical method. The difference between the measured 

and predicted protein contents has been 
calculated (see Table 10). The absolute 
errors of the protein contents for all the 
hazelnuts are less than 0.46 and the relative 
errors range from 0.19 to 2.37%, such that 
this error remains less than 2% for most of 
the samples. This demonstrates that our 
model provides an essentially accurate 
prediction and makes it feasible to detect 
the protein content in the hazelnuts using 
the NIRS. Fig. 13 testifies that the 
predicted protein-content values in the test 
set fluctuate around the chemically 
measured value and the fluctuation region 
is relatively small and uniform. 

Table 10. Hazelnut-protein contents chemically measured for 10 samples versus the corresponding 
values predicted by our MCUVE–PLS model. 

Sample 
number 

Value measured by the 
chemical method, %  

Value predicted from our 
spectral method, % 

Absolute 
error 

Relative error, % 

1 20.70 20.39 0.31 1.50 
2 16.33 16.47 0.14 0.86 
3 18.02 17.64 0.38 2.11 
4 14.88 14.56 0.32 2.15 
5 19.70 19.79 0.09 0.46 
6 19.38 19.84 0.46 2.37 
7 16.15 16.12 0.03 0.19 
8 20.64 20.90 0.26 1.26 
9 18.61 18.78 0.17 0.91 

10 19.02 18.79 0.23 1.21 

 
Fig. 13. Validation of PLS method. 
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5. Conclusions 
Let us summarize the main results of the present study. 

1. The MobileNetV2 and Resnet-50 neural-network models have been used for identification 
of the defects in hazelnut kernels. Basing on comparison of the training results obtained with the 
two networks, we have found that the prediction accuracy for the Resnet-50 training set is 10.3% 
higher than that of MobileNetV2 and the training loss rate is reduced by 0.041. Under the same 
conditions, the validation accuracy is improved by 13.9% and the validation loss rate is lowered by 
0.151. In other words, the overall training effect of the Resnet-50 neural network is notably better 
than that of MobileNetV2.  

2. The correlation coefficient Rtest for the test set becomes the largest (0.965 at the most) if 
one employs the first-derivative preprocessing technique. Then the parameters RMSE-P and 
RMSE-C are the smallest (0.577 and 0.2864 for the test and training sets, respectively). 

3. The correlation coefficients for the hazelnut spectra preprocessed using the second-
derivative for the training and test sets are respectively equal to 0.863 and 0.732. The same figures 
obtained with the SNV technique are 0.659 and 0.543 for the training and test sets, respectively. 
The results following from the SNV-preprocessed spectra are similar to those of the original 
spectra, thus indicating that this preprocessing method had a limited ability to extract efficiently 
the spectral information. 

Note that Hongbo Li et al. in their recent work [39] have studied the problems similar to 
those of our work. Namely, they have analyzed the methods for determining the concentration of 
lipids in pine nuts, using the NIRS in the range of 900–1700 nm. Since the nutrient components of 
the hazelnuts and pine nuts are relatively close, the spectra [39] are similar to our data.  
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Анотація. Ядра фундука часто можуть бути неповними або деформованими та мати 
деякі інші дефекти. Ручні методи їхньої класифікації та розпізнавання або навіть 
застарілі підходи машинного навчання виявляють низьку ефективність розпізнавання та 
високий рівень неправильних оцінок. У цьому дослідженні ми застосували глибоке навчання 
до розпізнавання дефектів ядра фундука. Для навчання та розпізнавання використано дві 
згорткові нейромережеві системи MobileNetV2 і Resnet-50. Виявлено, що точність 
передбачення ResNet-50 для навчального набору покращена на 10,3%, а коефіцієнт втрат 
навчання зменшений на 0,041, порівняно з MobileNetV2. Крім того, точність перевірки, 
досягнута за допомогою ResNet-50, вища на 13,9%, а коефіцієнт втрат перевірки нижчий 
на 0,151. Це доводить, що загальний тренувальний ефект для нейронної мережі Resnet-50 
кращий, ніж для MobileNetV2. За допомогою методу спектроскопії поглинання в близькому 
інфрачервоному діапазоні нами також вивчено вміст білка в фундуку, який є важливим 
параметром для оцінки його якості. Для класифікації вибірки використано алгоритм 
Кеннарда–Стоуна. Щоб розробити методику кількісного аналізу білка в фундуку, 
використано метод часткових найменших квадратів. Відповідні спектральні дані 
попередньо оброблено за методами першої похідної, другої похідної та стандартної 
нормальної змінної. Порівняно вплив цих методів на точність. Результати демонструють, 
що модель, заснована на першій похідній, є найкращою у разі даних, які стосуються всього 
спектрального діапазону. Коефіцієнти кореляції для навчальної та тестової вибірок 
дорівнюють відповідно 0,938 і 0,965, тоді як середньоквадратичні похибки для цих вибірок 
становлять відповідно 0,286 і 0,577. Наше дослідження засвідчує, що вміст білка в фундуку 
можна швидко виявити неруйнівним методом за допомогою близької інфрачервоної 
спектроскопії. 

Ключові слова: нейронні мережі, глибоке навчання, метод часткових найменших 
квадратів, спектроскопія близького інфрачервоного діапазону, неруйнівний контроль, 
вміст білка 


