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Abstract. It is known in the field of infrared-and-visible image fusion that infrared
targets can be not too prominent while scene-texture details can be insufficient. To
solve this problem, we suggest using intensity transfer and phase congruency in the
domain of nonsubsampled shearlet transform (NSST). The method first decomposes
source images with the NSST to obtain low- and high-frequency subbands. Then the
low-frequency subbands are fused using a fusion rule based on the intensity transfer.
This enables controlling a transfer of information associated with high-intensity
values, i.e. information about important targets and detailed texture. Meanwhile, the
phase congruency can be extracted from the source images as an absolute measure
of feature significance. This is combined with analysis of directional-vector variance
of the high-frequency subband NSST coefficients. In this way the influence of noise
in the infrared and low-illumination visible images on the fusion is either eliminated
or notably reduced. Then the high-frequency coefficients are found. Finally, a fused
image is reconstructed using inverse NSST. The experimental results reported in this
work demonstrate that our method can improve efficiently the performance of
fusion, since it simultaneously retains the contours and edges of infrared targets and
the scene-texture details. This method reveals obvious advantages over its
counterparts in terms of both subjective evaluation and quantitative metrics.
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1. Introduction

Image fusion aims to combine the images of the same scene detected with different types of sensors into
a single image for subsequent processing of the latter or relevant decision-making. Infrared-and-visible
image fusion represents an important branch of the image fusion. It can be used to improve perfor-
mance of different security-surveillance, target-detection and some other systems. Infrared images
capture thermal radiation, which is independent of illumination. Therefore infrared imaging can work
efficiently under low-light or bad-weather conditions, although its resolution remains low and noise
high. Visible images capture the information associated with visible light. They can clearly reflect many
details of a scene under certain conditions but visible imaging is vulnerable to influence of such natural
conditions as illumination or weather. It is evident that the two types of image information are
complementary and their fusion can bring more information with stronger robustness. Therefore fused
images are suitable for human visual perception and have a wide range of applications [1, 2].
According to contemporary theoretical basis, standard fusion methods can be based on such
approaches as multi-scale transform, sparse representation, neural networks, subspace
representation, saliency detection and hybrid approach. These methods have represented research
hotspots at different times. In particular, the multi-scale transform-based method has been
elaborated thoroughly. It decomposes a source image through a multi-scale transform into multiple
subbands, uses specific rules to fuse each subband and then constructs a fused image. A number of
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specific multi-scale transform methods are known, which are associated with wavelet [3], curvelet
[4], nonsubsampled contourlet [5] and nonsubsampled shearlet (NSST) [6] transformations. In
particular, the NSST has been widely applied in various fields of image fusion [7, 8] due to its
shift invariance, high computational efficiency and unlimited number of wavelet directions. The
method involves a nonsubsampled Laplacian pyramid and several shearing filters.

In view of many advantages of the NSST, in this work we offer a fusion method
implemented in the NSST domain. This method focuses on designing the fusion rules for the
coefficients of low- and high-frequency subbands after NSST decomposition. The low-frequency
subband concentrates the main energy of any image. In the case of infrared images, targets are
mostly represented by the high-intensity pixel values. In order to retain in full the target
information, we suggest an infrared-intensity transfer scheme for the low-frequency subband
fusion. Regarding the high-frequency subband fusion, one must preserve detailed-texture features
and so we offer a fusion rule based on phase congruency. To further avoid the influence of noise in
the fusion process, a directional-vector variance is introduced into significance measure for the
high-frequency coefficients. This approach employs in full the high-frequency subband NSST
coefficients and the corresponding statistical characteristics.

2. Related work
2.1. Intensity transfer
An intensity-transfer scheme has originally been suggested as a fusion method by Li et al. [9].
Here the fusion is considered as a minimization problem:
X =argmin || x—u H% +W | X—V||§ or

' Q)

=argminzp((xp —up)2 +w,(X, —Vp)z),
X

where u,veR™! are the vector forms of respectively infrared and visible images, x e R"™™!
denotes the vector forms of a fused image, |||, the /,-norm, W e R™ ™" the diagonal weight
matrix to balance the two terms, and w), the diagonal element of /¥ at the position p. The latter
can be obtained as

wy, = log(S,) [, (@)
where S, implies the value of spatial-saliency map at the position p. One can derive it from the

image statistics via the relation
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SP - V=0
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In Eq. (3), Nj denotes the total number of pixels in the image / , of which intensity values
are equal to V', while 7, is the intensity value of pixel in the image I at the position p. It is
worth noting that Eq. (2) can also be represented in the form
W =|log(S)|. 4)
To solve Eq. (1), one supposes that the derivative of the objective function with respect to x
is zero. Then one can obtain the relation

X =(IT+W) Yu+mwv), 5)

with IT e R"™"" representing the unit matrix.
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2.2. Phase congruency

Phase congruency is an image-feature perception model suggested by Morrone et al. [10]. It assumes
that a feature should be at the maximum point of phase of the image Fourier component. Kovesi [11]
has proposed a method for calculating the phase congruency, using a log Gabor filter. It allows for
constructing filters with arbitrarily large bandwidth and still maintains a zero (i.e., DC) component in
an even-symmetric filter. The phase congruency at the position x can be expressed as

YD ()] Ay (D)AD,,, (x)-T, |
D 2o Fe ’

where o means the direction, n the scale, W, (x,y) the weight function of filtering response,

PCy(x) =

(6)

A,,(x,y) the amplitude of n -th Fourier component along the direction o, T, the noise estimate,
LJ some non-negative value, and & a small number to avoid division by zero. Note that

AD, (x,y) is the phase deviation [12], of which definitions are as follows:
Al‘lO (x)A(DHO (x) = no (X)q?Zo (x) + 0}’[0 (x)¢_10 (x)

~eso (o () + 04 (X3 ()] @

br0(X) =2, €0 (0 By (%), ®)

G10(x) = 04 (0) [E,(x) ©)

E, 0 = (Zen ) +(Xom ), (10)
€0 (X) = 1(x)* M, (1)

0, (x) = 1(x)* M, . (12)

Here I(x) is the input image, and M, and M, are even symmetric and odd symmetric

wavelets, respectively.

The phase congruency represents a dimensionless quantity which is not affected by any
changes in image brightness or contrast. It is suitable as an absolute measure of saliency of the
image features. Meanwhile, it contains rich texture and structure information, which is consistent
with human visual perception [13].

3. Our fusion method
3.1. Fusion steps
This Section introduces a framework of fusion procedures based on intensity transfer and phase
consistency in the NSST domain. The basic steps are as follows.

Step 1. NSST decomposing.

Let infrared, visible and fused images be represented respectively as IR, VI and F . The
multi-scale and multi-directional decomposition of NSST is performed on /R and VI, and then

the NSST coefficients {L]R (x,y),H,gag (x, y)} and {LVI (x, y),H,I(/’IO (x, y)} can be obtained. Here

Liag (x,y),1 € {IR,VI} denote the low-frequency subband coefficients at the position (x, y), while

H ,{’9 (x,y),1 € {IR,VI} are the directional subband coefficients at the scale & for the direction 6.
Step 2. Fusing low-frequency and high-frequency subbands.
The NSST coefficients of the fused image are obtained according to the fusion rule for the
low-frequency subbands, which is based on the intensity transfer, and the fusion rule for the high-
frequency subbands, which is based on the phase consistency and the directional-vector variance.
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These points will be described in a more detail in Subsections 3.2 and 3.3.

Step 3. NSST reconstructing.

The fused image F is formed in a straightforward manner, using the inverse NSST
transform.

3.2. Low-frequency subband fusion rule based on intensity transfer

The main task of infrared-and-visible image fusion is highlighting the targets in images, e.g.,
persons or weapons. The low-frequency subband obtained by the multi-scale decomposition
concentrates the main energy and reflects the basic contours of image features. Therefore the
strategy of the low-frequency subband fusion is more essential than that of the high-frequency
subbands. In particular, infrared images associated with thermal-radiation imaging can better
reflect the contours, the position and the other information about the targets. Any target manifests
some smooth textures different from the surrounding environment, which is represented mainly as
smooth high-intensity pixel values.

The target information in the visible images cannot be ignored. Even in its low-frequency
subband, it still contains rich texture details that must be transferred to the fused image. The most
direct scheme is to transfer the pixel intensity with the texture details. It is worthwhile that the
target information in the infrared images should be taken into account when transferring the
intensity of texture-detail features and prevent interference. In the present work, we improve the
intensity-transfer scheme in the low-frequency subband fusion. Namely, we modify the
optimization problem as follows:

rrLliFn J(IY= || vee(LF ) —vec(L®) |3 +W || vee(L ) —vec(I) |15, (13)

where vec(-) represents the operation of stacking the matrix by columns as vectors. For simplicity,
let we have x = vec(LF ), u= vec(LIR) and v= vec(LV] ) . Then Eq. (13) can be rewritten as

X =argminJ(x)=|| x—ul} +¥ || x-v|3. (14)
X

Eq. (14) has the same form as Eq. (1). In the same way, assuming that the derivative of J(x)

is zero, one can obtain x, as shown in Eq. (5). Then it will be reshaped to the shape of the original
subband.

In Eq. (5), there is only one unknown parameter, W , which is crucial in the intensity
transfer. In Ref. [9], acquisition of spatial-saliency map has been based on image-information
statistics, namely Egs. (2) and (3). However, a lot of calculations are involved in this acquisition.
In fact, we have found experimentally that the effect of spatial-saliency map is similar to the effect
of enhancing the infrared image. Therefore, in order to accelerate the fusion process and reduce
both the noise itself and the influence of that noise on the intensity transfer, we apply a bilateral
filter to the infrared image to obtain a new saliency map:

S = filter(IR) . (15)

After S is normalized, the weight matrix # can be obtained with Eq. (4).

3.3. High-frequency subband fusion rule based on phase congruency and directional-
vector variance

After NSST decomposition, the subbands of high-frequency details contain mainly the edge,
texture and target-contour information. Since such information should be retained at all costs, its
identification is of primary importance. Here a traditional way is comparing the absolute values of
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the high-frequency coefficients and taking the larger ones as fused high-frequency coefficients.
However, this method has the two problems. The first one is that the edges, the texture and the
other features in the source image are usually continuous and smooth, although these features can
become discrete and too rough in the high-frequency coefficients, as a result of traditional
processing. The other problem is that the existence of noise can perturb selection of the
coefficients. As a matter of fact, the noise is inevitable in the infrared images and the low-
illumination visible images, which usually corresponds to relatively large absolute values lying
inside the high-frequency subbands.

The solution of the first problem adopted in this work is employing phase congruency to
extract the edges, the textures and the other features directly from the source images. This can be
expressed as

P! (x,y) = PCy(I(x,)) (16)

where P!, e{IR,VI} is the result of phase congruency, of which shape is the same as that of the
source image.

The element range of the phase-consistency result is [0,1], where 1 and O correspond
respectively to significant and insignificant features. This parameter is suitable for comparing the
feature significance of different pixels and then selecting the pixels or the high-frequency
coefficients with richer information.

To cope with the second problem, we identify the noise and eliminate or reduce its influence
on the fusion. Since we use the NSST decomposition, it would be a good choice to take full
advantage of the characteristics of NSST coefficients. Because the edges, the texture and the other
features of the image reveal directionality, the amplitudes of the high-frequency coefficients along
some directions (and the corresponding adjacent directions) will be large. On the other hand, the
noise has a different behaviour and, in general, it is non-directional. It can also have a large
amplitude but the distribution of each directional coefficient will remain relatively uniform.
Therefore, a feature can be distinguished from a noise by judging about the distribution patterns of
the high-frequency coefficients at each scale.

The coefficients at the position (x, y) along each direction at the scale j can be extracted to

form a composite directional vector [14]:
DV} (x,y) =[H} (X, ), H 5 (x,3),, H b g (x,9),0+]. (17)

Its variance is given by

DVAR)(5,) =~ Xy (H o (5:0) =] ()2 (18)
0

= 1 Y . L
where VI-I (x, y):N—z oH 11»’9 (x,y) and Ny denotes the directional quantity. If the directional-
' 0

vector variance of a given pixel is large, this pixel belongs to some texture, edge or other feature.
Otherwise, it is simply a noise.

In summary, a combination of the phase congruency and the directional-vector variance,
PD , can overcome many disadvantages of the traditional fusion rule. This can be expressed as

PD} (x,y) = P! (x,y)- DVAR](x,y), (19)

H(x,p),

. PD (x, )| 2 [PDY (3, )
HE g (x,9) = . (20)

H ;/19 (x,y),otherwise
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It is worth noting that the same evaluation indices PD}R (x,y) and PD}/I (x,y) are used in

Eq. (20) for each directional subband at the scale ;. In this way one can reduce the amount of

calculations needed and, moreover, eliminate the consistency problem which sometimes occurs
after the inverse NSST.

4. Experimental results and their analysis

To verify the efficiency of our fusion method, five advanced fusion methods have been used for
comparison. These are an original NSST method [15], a gradient-transfer fusion (GTF) [16], a
latent low-rank representation (LatLRR) [17], an infrared-feature extraction (IFE) [18], and a
fusion based on generative adversarial network (FusionGAN) [19].

To facilitate correct and unbiased comparison, our method and the traditional NSST method
involve the same NSST parameters: 3-level decomposition, “9-7” wavelet basis for the multi-scale
decomposition and “23-45” wavelet basis for the multi-directional decomposition. Moreover, the
numbers of corresponding directions are 8, 8, and 16 in the both cases. Notice that the NSST-based
methods use simple but efficient rules [20], an average scheme for the low-frequency coefficients
and a maximum-selection scheme for the high-frequency coefficients. In order to obtain easily
reproducible data, we have fixed the parameters of the other fusion methods at the default values
described in the relevant original works [16—19].

o
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(a) (b) (c) (d)
Fig. 1. Infrared (upper row) and visible (lower row) images of standard image pairs ‘quad’ (a), ‘kayak’ (b),
‘soldier’ (c) and ‘bunker’ (d).

Four groups of infrared and visible images have been used for our fusion-performance
comparison. These are the standard pairs ‘quad’, ‘kayak’, ‘soldier’ and ‘bunker’ (see Fig. 1). The
former two pairs come from the page http://www.imagefusion.org and the last two can be found in
the TNO dataset (https://figureshare.com/articles/TNO_Image Fusion Dataset/1008029).

The fused images are shown in Fig. 2. It is evident that all the methods under comparison,
including our method, highlight successfully the infrared targets and retain the necessary
background information. Nonetheless, different methods impose different effects. In the first group
of ‘quad’ images, the brightness of background and target and the contrast obtained by the NSST-
based method are low, the background information is blurred, and the contours of target are not
clear enough. A similar situation also occurs with the images fused by the GTF and FusionGAN
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methods. Loosely speaking, the image quality obtained by the LatLRR and IFE methods is
significantly improved but there are still some deficiencies in the target-contours clarity and the
background details, if compared with the fused image due to our method. This can be clearly
observed at least on the billboard, the remote pedestrians, the vehicles and the trash bins.

IFE FusionGAN Our method

e A s
FusionGAN Our method
(b)
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FusionGAN

FusioGAN Our mthod
(d

Fig. 2. Fused images obtained using different methods indicated in the legend. Panels a, b, ¢ and d correspond
respectively to the image pairs ‘quad’, ‘kayak’, ‘soldier’ and ‘bunker’ (see Fig. 1).

To facilitate a more detailed analysis, the information on the remote pedestrian in the
fused ‘quad’ images is extracted and enlarged in Fig. 3. It is seen from Fig. 3 that the fused
image obtained using our method has obvious advantages in both target highlighting and
edge preserving. The results of comparison of the fusion effects for the other three image pairs
are basically similar to those mentioned above for the first image pair. In a word, our method
reveals outstanding performance with respect to preservation of details and its fusion quality is
the best.
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(d) (e) ®

Fig. 3. Data of local enlargement of a remote pedestrian seen in the fused ‘quad’ images, as obtained using the
NSST (a), GTF (b), LatLRR (c), IFE (d) and FusionGAN (e) methods and our method (f).

To verify the resources of our method further on, we use such canonical quantitative metrics of the
fused images as a standard deviation (SD), a spatial frequency (SF), a structural similarity (SSIM) [21],
a normalized mutual information (NMI) [22] and a feature mutual information (FMI) [23]. The relevant
results are gathered in Table 1. The SD and SF can directly evaluate fused images and reflect the
appropriate amount of detailed information. The SSIM quantizes the amount of information transferred
from a source image to a fused one. In this work, we first derive the metric values corresponding to
infrared, visible and fused images and then average them to obtain the resulting value. Finally, the NMI
and the FMI also represent useful evaluation indicators for the fusion results.

Note also that each of the evaluation metrics mentioned above assesses the image quality from a
different perspective. Therefore a large single-metrics value would not be enough to indicate superiority
of a given fusion method. Moreover, since all of the fused images inspected by us are about the same
scene and include the same target features and textures, the metrics values for different methods should
be close to each other. Then multiple metrics must be simultaneously considered when evaluating the
fusion results. In Table 1, both optimal and suboptimal values for every metrics are marked in bold. It is
obvious that our method is superior with respect to the other methods in terms of the objective
evaluation and in the viewpoint of the basics of statistics.

Let us compare in detail the fusion methods, using all the metrics and taking the first image pair as
example. It is seen from Table 1 that the optimal values for the SF, SSIM and FMI metrics correspond to
our method. Regarding the SD, our method obtains suboptimal value, though it is close enough to the opt-
imal one. Finally, the performance of our method proves to be mediocre from the viewpoint of the NML
Note that the similar conclusions can also be drawn in the case of fusion of the rest of three image pairs.
Summing up, our analysis demonstrates superiority of our method in terms of the overall fusion quality.
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Table 1. Results of quantitative evaluation of the fused ‘quad’, ‘kayak’, ‘soldier’ and ‘bunker’
images obtained by different methods.

Fused image Metrics NSST GTF LatLRR IFE FusionGAN Our method

SD 0.091  0.117 0.109  0.146 0.082 0.125

SF 0.048 0.037 0.037  0.044 0.031 0.048

‘quad’ SSIM 0.668 0.618 0.671 0.649 0.653 0.674
NMI 0323 0.429 0.323 0.953 0.370 0.377

FMI 0.921 0917 0918 0.920 0.907 0.921

SD 0.129  0.164 0.143 0.182 0.125 0.148

SF 0.043  0.036 0.034  0.051 0.030 0.043

‘kayak’ SSIM 0.749  0.720 0.766  0.697 0.732 0.751
NMI 0.303  0.307 0.331 0.400 0.314 0.387

FMI 0.884 0.877 0.877  0.888 0.869 0.886

SD 0.142  0.121 0.143 0.183 0.130 0.147

SF 0.054 0.046 0.033 0.050 0.046 0.048

‘soldier’ SSIM 0.688  0.628 0.709  0.665 0.652 0.685
NMI 0.269 0.230 0.263 0.228 0.240 0.342

FMI 0.923 0.901 0.897  0.892 0.898 0.922

SD 0.111  0.121 0.112 0.156 0.097 0.118

SF 0.056 0.051 0.035 0.060 0.042 0.050

‘bunker’ SSIM 0.655  0.629 0.689  0.595 0.655 0.655
NMI 0.193  0.161 0.217 0.211 0.168 0.215

FMI 0.927 00917 0.894  0.883 0.899 0.922

In addition, we have conducted experiments with the multiplier £ involved in the weight
matrix:

W =k-[log(S)],k=1,2,-. (1)

Fig. 4 shows the appropriate partial fusion results derived by our method for the case of
‘bunker’ image pair as an example. As seen from Fig. 4, the information about details in the image
increases with increasing & , and the same is true of the overall brightness. Table 2 lists the results
of quantitative evaluation of these fused images. It becomes evident that all of the SD, SF, NMI
and FMI metrics improve with increasing & , although to different degrees. On the other hand, the
SSIM then decreases slightly but maintains basically the same value. Hence, a better fusion effect

can be achieved by setting the appropriate £ parameter.

() k =2 (b k =4 O k-6 T k-8

Fig. 4. Fused ‘bunker’ images obtained by our method at different k values (see the text).
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Table 2. Quantitative evaluation of the fused images shown in Fig. 4 obtained by our method.

Metric k=1 k=2 k=4 k=6 k=8
SD 0.117 0.131 0.147 0.156 0.161
SF 0.050 0.051 0.052 0.052 0.052

SSIM 0.654 0.658 0.654 0.651 0.648

NMI 0.214 0.296 0.389 0.437 0.465
FMI 0.922 0.924 0.927 0.928 0.928

5. Conclusion

In the present work we have suggested a method for the infrared-and-visible image fusion, which
is based on the intensity transfer and the phase congruency. The intensity transfer considers the
low-frequency subband NSST fusion as a minimization problem. To solve this problem, the
information about high-intensity values in the two fused images can be retained in full by
controlling a balance between the salient target information involved in the infrared image and the
detail-texture information in the visible image. Since the phase congruency is not affected by
either image brightness or its contrast, it can be used as a measure of significance of any image
feature and, therefore, as a measure for selecting the high-frequency NSST-subband coefficients.
Considering a need in eliminating or reducing the influence of noise, we have also introduced the
directional-vector variance as a factor for selecting the high-frequency subband coefficients.

In our experimental studies, six up-to-date fusion methods have been employed to fuse four
standard image pairs. The corresponding data has been compared with each other. The results have
testified that our method can preserve successfully the infrared-target and texture-detail
information. According to both the subjective evaluation and the objective quantitative metrics,
this method is superior to the well-known NSST, GTF, LatLRR, IFE and FusionGAN methods.
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AHoTauia. V ecanysi saumms iH@pavepsonux i sUOUMUX 300padiceHb 8i0oMo, Wo iHppauepsoHi
00 ’exmu Modcymv Oymu He Hao0mo NOMIMHUMU, a Oemaii MeKCmypu cyeHu — HeOOCMAamHIMU.
o6 supiwumu yio npobremy, Mu NPOROHYEMO BUKOPUCMOBYBAMU NePeOas8aHHs iHMEHCUBHOCMI
ma KouepyeHmHicmb ¢hazu 6 obaacmi HecyOOUCKpemu308ano20 Wepremogo20 NepemseopeHisl
(NSST). Memoo cnouamky posknadae suxioni 30opaxcenns 3a donomozoio NSST ons ompumanms
HU3bKO- MA GUCOKOYACMOMHUX niodianasonie. Ilomim HuzbKowacmomui niodianazonu 31U8aoms
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3a 00NOMO2010 NPAsUNA 3MUMMSA, 3ACHO8AH020 HA NnepedasanHi inmeHcusnocmi. Lle dae 3moey
KOHMPOA08amu nepeoasanHs iHopmayii, nog s3anoi 3i 3HAYEHHAMU BUCOKOI IHMEeHCUBHOCHI,
mobmo inghopmayii npo sadciusi 00’ ’exkmu ma demanvry mexcmypy. Boonouac, xonepyenmuicme
Gaszu moodicna odepxcamu 3 UXIOHUX 300padicensb K aOCONOMHY MIpy 3Hauyujocmi o3Haxu. Lle
NOEOHYIOMb 3 AHANI30M  BIOXUIEHHA HANPAMHO20 Gekmopa 0aa  koeiyienmie  NSST
BUCOKOYACTMOMHUX NIO0Ianasouis. Y maxuu cnocibé ycysaiomvs abo 3HAUHO 3MEHULYIOMb BNIUG
wymie 8 iHppauepeoHux 300paxicenHax abo BUOUMUX 300PANCEHHAX 3i CLAOKUM OCBIMIIEHHAM HA
Oani 3numms. Ilomiv 3uaxooams eucokouacmomui Koeghiyienmu. Hapewmi, 31ume 306pasxceHHs
peKoHCcmpyioms 3a 00nomo2or obeprenoeo NSST. ExcnepumeHmanvHi pe3yibmamu, HageoeHi 8
yitl pobomi, OeMOHCIPYIOMb, WO HAWL MEMOO MONCe SHAYHO NOMNUUMU eHeKINUSHICTNG 3TUMMSL
3a605KU OOHOUACHOMY 30EpPedCeHHI0 KOHMYPI6 [ Kpais ingpauepsonux yineu i demanei mexcmypu
cyenu. Lleit memoo 3aceiduye oueguoHi nepesazu HAO AHALO2AMU 3 MOYKU 30pY | CYO EKMUBHUX
OYIHOK, | KITbKICHUX NOKA3HUKIG.
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