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Abstract. It is known in the field of infrared-and-visible image fusion that infrared 
targets can be not too prominent while scene-texture details can be insufficient. To 
solve this problem, we suggest using intensity transfer and phase congruency in the 
domain of nonsubsampled shearlet transform (NSST). The method first decomposes 
source images with the NSST to obtain low- and high-frequency subbands. Then the 
low-frequency subbands are fused using a fusion rule based on the intensity transfer. 
This enables controlling a transfer of information associated with high-intensity 
values, i.e. information about important targets and detailed texture. Meanwhile, the 
phase congruency can be extracted from the source images as an absolute measure 
of feature significance. This is combined with analysis of directional-vector variance 
of the high-frequency subband NSST coefficients. In this way the influence of noise 
in the infrared and low-illumination visible images on the fusion is either eliminated 
or notably reduced. Then the high-frequency coefficients are found. Finally, a fused 
image is reconstructed using inverse NSST. The experimental results reported in this 
work demonstrate that our method can improve efficiently the performance of 
fusion, since it simultaneously retains the contours and edges of infrared targets and 
the scene-texture details. This method reveals obvious advantages over its 
counterparts in terms of both subjective evaluation and quantitative metrics. 

Keywords: image fusion, intensity transfer, phase congruency, nonsubsampled 
shearlet transform 
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1. Introduction 
Image fusion aims to combine the images of the same scene detected with different types of sensors into 
a single image for subsequent processing of the latter or relevant decision-making. Infrared-and-visible 
image fusion represents an important branch of the image fusion. It can be used to improve perfor-
mance of different security-surveillance, target-detection and some other systems. Infrared images 
capture thermal radiation, which is independent of illumination. Therefore infrared imaging can work 
efficiently under low-light or bad-weather conditions, although its resolution remains low and noise 
high. Visible images capture the information associated with visible light. They can clearly reflect many 
details of a scene under certain conditions but visible imaging is vulnerable to influence of such natural 
conditions as illumination or weather. It is evident that the two types of image information are 
complementary and their fusion can bring more information with stronger robustness. Therefore fused 
images are suitable for human visual perception and have a wide range of applications [1, 2]. 

According to contemporary theoretical basis, standard fusion methods can be  based on such 
approaches as multi-scale transform, sparse representation, neural networks, subspace 
representation, saliency detection and hybrid approach. These methods have represented research 
hotspots at different times. In particular, the multi-scale transform-based method has been 
elaborated thoroughly. It decomposes a source image through a multi-scale transform into multiple 
subbands, uses specific rules to fuse each subband and then constructs a fused image. A number of 
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specific multi-scale transform methods are known, which are associated with wavelet [3], curvelet 
[4], nonsubsampled contourlet [5] and nonsubsampled shearlet (NSST) [6] transformations. In 
particular, the NSST has been widely applied in various fields of image fusion [7, 8] due to its 
shift invariance, high computational efficiency and unlimited number of wavelet directions. The 
method involves a nonsubsampled Laplacian pyramid and several shearing filters. 

In view of many advantages of the NSST, in this work we offer a fusion method 
implemented in the NSST domain. This method focuses on designing the fusion rules for the 
coefficients of low- and high-frequency subbands after NSST decomposition. The low-frequency 
subband concentrates the main energy of any image. In the case of infrared images, targets are 
mostly represented by the high-intensity pixel values. In order to retain in full the target 
information, we suggest an infrared-intensity transfer scheme for the low-frequency subband 
fusion. Regarding the high-frequency subband fusion, one must preserve detailed-texture features 
and so we offer a fusion rule based on phase congruency. To further avoid the influence of noise in 
the fusion process, a directional-vector variance is introduced into significance measure for the 
high-frequency coefficients. This approach employs in full the high-frequency subband NSST 
coefficients and the corresponding statistical characteristics. 

2. Related work 
2.1. Intensity transfer 
An intensity-transfer scheme has originally been suggested as a fusion method by Li et al. [9]. 
Here the fusion is considered as a minimization problem: 
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where 1mnu, v   are the vector forms of respectively infrared and visible images, 1mnx   

denotes the vector forms of a fused image, 2|| ||  the 2l -norm, mn mnW   the diagonal weight 
matrix to balance the two terms, and pw  the diagonal element of W  at the position p . The latter 
can be obtained as 

 | log( ) |p pw S ,     (2) 

where pS  implies the value of spatial-saliency map at the position p . One can derive it from the 
image statistics via the relation 
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In Eq. (3), VN  denotes the total number of pixels in the image I , of which intensity values 
are equal to V , while pI  is the intensity value of pixel in the image I  at the position p . It is 
worth noting that Eq. (2) can also be represented in the form 

 log( )W S .     (4) 

To solve Eq. (1), one supposes that the derivative of the objective function with respect to x  
is zero. Then one can obtain the relation 

 * 1( ) ( )II W W  x u v ,    (5) 

with mn mnII   representing the unit matrix. 
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2.2. Phase congruency  
Phase congruency is an image-feature perception model suggested by Morrone et al. [10]. It assumes 
that a feature should be at the maximum point of phase of the image Fourier component. Kovesi [11] 
has proposed a method for calculating the phase congruency, using a log Gabor filter. It allows for 
constructing filters with arbitrarily large bandwidth and still maintains a zero (i.e., DC) component in 
an even-symmetric filter. The phase congruency at the position x  can be expressed as 

 2
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where o  means the direction, n  the scale, ( , )oW x y  the weight function of filtering response, 
( , )noA x y  the amplitude of n -th Fourier component along the direction o , oT  the noise estimate, 

    some non-negative value, and   a small number to avoid division by zero. Note that 
( , )no x y  is the phase deviation [12], of which definitions are as follows: 
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Here ( )I x  is the input image, and e
noM  and o

noM  are even symmetric and odd symmetric 
wavelets, respectively. 

The phase congruency represents a dimensionless quantity which is not affected by any 
changes in image brightness or contrast. It is suitable as an absolute measure of saliency of the 
image features. Meanwhile, it contains rich texture and structure information, which is consistent 
with human visual perception [13]. 

3. Our fusion method 
3.1. Fusion steps 
This Section introduces a framework of fusion procedures based on intensity transfer and phase 
consistency in the NSST domain. The basic steps are as follows. 

Step 1. NSST decomposing.  
Let infrared, visible and fused images be represented respectively as IR , VI  and F . The 

multi-scale and multi-directional decomposition of NSST is performed on IR  and VI , and then 

the NSST coefficients  ,( , ), ( , )IR IR
kL x y H x y  and  ,( , ), ( , )VI VI

kL x y H x y  can be obtained. Here 

, ( , ), { , }I
kL x y I IR VI   denote the low-frequency subband coefficients at the position ( , )x y , while 

, ( , ), { , }I
kH x y I IR VI   are the directional subband coefficients at the scale k  for the direction  . 

Step 2. Fusing low-frequency and high-frequency subbands.  
The NSST coefficients of the fused image are obtained according to the fusion rule for the 

low-frequency subbands, which is based on the intensity transfer, and the fusion rule for the high-
frequency subbands, which is based on the phase consistency and the directional-vector variance. 
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These points will be described in a more detail in Subsections 3.2 and 3.3. 
Step 3. NSST reconstructing.  
The fused image F  is formed in a straightforward manner, using the inverse NSST 

transform. 

3.2. Low-frequency subband fusion rule based on intensity transfer 
The main task of infrared-and-visible image fusion is highlighting the targets in images, e.g., 
persons or weapons. The low-frequency subband obtained by the multi-scale decomposition 
concentrates the main energy and reflects the basic contours of image features. Therefore the 
strategy of the low-frequency subband fusion is more essential than that of the high-frequency 
subbands. In particular, infrared images associated with thermal-radiation imaging can better 
reflect the contours, the position and the other information about the targets. Any target manifests 
some smooth textures different from the surrounding environment, which is represented mainly as 
smooth high-intensity pixel values. 

The target information in the visible images cannot be ignored. Even in its low-frequency 
subband, it still contains rich texture details that must be transferred to the fused image. The most 
direct scheme is to transfer the pixel intensity with the texture details. It is worthwhile that the 
target information in the infrared images should be taken into account when transferring the 
intensity of texture-detail features and prevent interference. In the present work, we improve the 
intensity-transfer scheme in the low-frequency subband fusion. Namely, we modify the 
optimization problem as follows: 

 2 2
2 2min ( )= || ( ) ( ) || || ( ) ( ) ||

F

F F IR F VI
L

J L vec L vec L W vec L vec L   , (13) 

where ( )vec   represents the operation of stacking the matrix by columns as vectors. For simplicity, 

let we have ( )Fvec Lx , ( )IRvec Lu  and ( )VIvec Lv . Then Eq. (13) can be rewritten as 

 * 2 2
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x
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Eq. (14) has the same form as Eq. (1). In the same way, assuming that the derivative of ( )J x  
is zero, one can obtain x , as shown in Eq. (5). Then it will be reshaped to the shape of the original 
subband. 

In Eq. (5), there is only one unknown parameter, W , which is crucial in the intensity 
transfer. In Ref. [9], acquisition of spatial-saliency map has been based on image-information 
statistics, namely Eqs. (2) and (3). However, a lot of calculations are involved in this acquisition. 
In fact, we have found experimentally that the effect of spatial-saliency map is similar to the effect 
of enhancing the infrared image. Therefore, in order to accelerate the fusion process and reduce 
both the noise itself and the influence of that noise on the intensity transfer, we apply a bilateral 
filter to the infrared image to obtain a new saliency map: 

 ( )S filter IR .     (15) 
After S  is normalized, the weight matrix W  can be obtained with Eq. (4). 

3.3. High-frequency subband fusion rule based on phase congruency and directional-
vector variance 
After NSST decomposition, the subbands of high-frequency details contain mainly the edge, 
texture and target-contour information. Since such information should be retained at all costs, its 
identification is of primary importance. Here a traditional way is comparing the absolute values of 
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the high-frequency coefficients and taking the larger ones as fused high-frequency coefficients. 
However, this method has the two problems. The first one is that the edges, the texture and the 
other features in the source image are usually continuous and smooth, although these features can 
become discrete and too rough in the high-frequency coefficients, as a result of traditional 
processing. The other problem is that the existence of noise can perturb selection of the 
coefficients. As a matter of fact, the noise is inevitable in the infrared images and the low-
illumination visible images, which usually corresponds to relatively large absolute values lying 
inside the high-frequency subbands. 

The solution of the first problem adopted in this work is employing phase congruency to 
extract the edges, the textures and the other features directly from the source images. This can be 
expressed as 

 2( , ) ( ( , ))IP x y PC I x y      (16) 

where , { , }IP I IR VI  is the result of phase congruency, of which shape is the same as that of the 
source image. 

The element range of the phase-consistency result is [0,1], where 1 and 0 correspond 
respectively to significant and insignificant features. This parameter is suitable for comparing the 
feature significance of different pixels and then selecting the pixels or the high-frequency 
coefficients with richer information. 

To cope with the second problem, we identify the noise and eliminate or reduce its influence 
on the fusion. Since we use the NSST decomposition, it would be a good choice to take full 
advantage of the characteristics of NSST coefficients. Because the edges, the texture and the other 
features of the image reveal directionality, the amplitudes of the high-frequency coefficients along 
some directions (and the corresponding adjacent directions) will be large. On the other hand, the 
noise has a different behaviour and, in general, it is non-directional. It can also have a large 
amplitude but the distribution of each directional coefficient will remain relatively uniform. 
Therefore, a feature can be distinguished from a noise by judging about the distribution patterns of 
the high-frequency coefficients at each scale. 

The coefficients at the position ( , )x y  along each direction at the scale j  can be extracted to 
form a composite directional vector [14]: 

 ,1 ,2 ,( , ) [ ( , ), ( , ), , ( , ), ]I I I I
j j j jDV x y H x y H x y H x y   . (17) 

Its variance is given by 
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  and N  denotes the directional quantity. If the directional-

vector variance of a given pixel is large, this pixel belongs to some texture, edge or other feature. 
Otherwise, it is simply a noise. 

In summary, a combination of the phase congruency and the directional-vector variance, 
PD , can overcome many disadvantages of the traditional fusion rule. This can be expressed as 

 ( , ) ( , ) ( , )I I I
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It is worth noting that the same evaluation indices ( , )IR
jPD x y  and ( , )VI

jPD x y  are used in 
Eq. (20) for each directional subband at the scale j . In this way one can reduce the amount of 
calculations needed and, moreover, eliminate the consistency problem which sometimes occurs 
after the inverse NSST. 

4. Experimental results and their analysis 
To verify the efficiency of our fusion method, five advanced fusion methods have been used for 
comparison. These are an original NSST method [15], a gradient-transfer fusion (GTF) [16], a 
latent low-rank representation (LatLRR) [17], an infrared-feature extraction (IFE) [18], and a 
fusion based on generative adversarial network (FusionGAN) [19]. 

To facilitate correct and unbiased comparison, our method and the traditional NSST method 
involve the same NSST parameters: 3-level decomposition, “9-7” wavelet basis for the multi-scale 
decomposition and “23-45” wavelet basis for the multi-directional decomposition. Moreover, the 
numbers of corresponding directions are 8, 8, and 16 in the both cases. Notice that the NSST-based 
methods use simple but efficient rules [20], an average scheme for the low-frequency coefficients 
and a maximum-selection scheme for the high-frequency coefficients. In order to obtain easily 
reproducible data, we have fixed the parameters of the other fusion methods at the default values 
described in the relevant original works [16–19]. 

 
 

  

 
 

  

(a) (b) (c) (d) 
Fig. 1. Infrared (upper row) and visible (lower row) images of standard image pairs ‘quad’ (a), ‘kayak’ (b), 
‘soldier’ (c) and ‘bunker’ (d). 

Four groups of infrared and visible images have been used for our fusion-performance 
comparison. These are the standard pairs ‘quad’, ‘kayak’, ‘soldier’ and ‘bunker’ (see Fig. 1). The 
former two pairs come from the page http://www.imagefusion.org and the last two can be found in 
the TNO dataset (https://figureshare.com/articles/TNO_Image_Fusion_Dataset/1008029). 

The fused images are shown in Fig. 2. It is evident that all the methods under comparison, 
including our method, highlight successfully the infrared targets and retain the necessary 
background information. Nonetheless, different methods impose different effects. In the first group 
of ‘quad’ images, the brightness of background and target and the contrast obtained by the NSST-
based method are low, the background information is blurred, and the contours of target are not 
clear enough. A similar situation also occurs with the images fused by the GTF and FusionGAN 
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methods. Loosely speaking, the image quality obtained by the LatLRR and IFE methods is 
significantly improved but there are still some deficiencies in the target-contours clarity and the 
background details, if compared with the fused image due to our method. This can be clearly 
observed at least on the billboard, the remote pedestrians, the vehicles and the trash bins. 

   
NSST GTF LatLRR 

   
IFE FusionGAN Our method 

 (a)  

   
NSST GTF LatLRR 

   
IFE FusionGAN Our method 

 (b)  
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NSST GTF LatLRR 

   
IFE FusionGAN Our method 

 (c)  

   
NSST GTF LatLRR 

   
IFE FusionGAN Our method 

 (d)  

Fig. 2. Fused images obtained using different methods indicated in the legend. Panels a, b, c and d correspond 
respectively to the image pairs ‘quad’, ‘kayak’, ‘soldier’ and ‘bunker’ (see Fig. 1). 

To facilitate a more detailed analysis, the information on the remote pedestrian in the  
fused ‘quad’ images is extracted and enlarged in Fig. 3. It is seen from Fig. 3 that the fused  
image obtained using our method has obvious advantages in both target highlighting and  
edge preserving. The results of comparison of the fusion effects for the other three image pairs  
are basically similar to those mentioned above for the first image pair. In a word, our method 
reveals outstanding performance with respect to preservation of details and its fusion quality is  
the best. 
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(a)  (b)  (c)  

   
(d)  (e)  (f)  

Fig. 3. Data of local enlargement of a remote pedestrian seen in the fused ‘quad’ images, as obtained using the 
NSST (a), GTF (b), LatLRR (c), IFE (d) and FusionGAN (e) methods and our method (f). 

To verify the resources of our method further on, we use such canonical quantitative metrics of the 
fused images as a standard deviation (SD), a spatial frequency (SF), a structural similarity (SSIM) [21], 
a normalized mutual information (NMI) [22] and a feature mutual information (FMI) [23]. The relevant 
results are gathered in Table 1. The SD and SF can directly evaluate fused images and reflect the 
appropriate amount of detailed information. The SSIM quantizes the amount of information transferred 
from a source image to a fused one. In this work, we first derive the metric values corresponding to 
infrared, visible and fused images and then average them to obtain the resulting value. Finally, the NMI 
and the FMI also represent useful evaluation indicators for the fusion results. 

Note also that each of the evaluation metrics mentioned above assesses the image quality from a 
different perspective. Therefore a large single-metrics value would not be enough to indicate superiority 
of a given fusion method. Moreover, since all of the fused images inspected by us are about the same 
scene and include the same target features and textures, the metrics values for different methods should 
be close to each other. Then multiple metrics must be simultaneously considered when evaluating the 
fusion results. In Table 1, both optimal and suboptimal values for every metrics are marked in bold. It is 
obvious that our method is superior with respect to the other methods in terms of the objective 
evaluation and in the viewpoint of the basics of statistics. 

Let us compare in detail the fusion methods, using all the metrics and taking the first image pair as 
example. It is seen from Table 1 that the optimal values for the SF, SSIM and FMI metrics correspond to 
our method. Regarding the SD, our method obtains suboptimal value, though it is close enough to the opt-
imal one. Finally, the performance of our method proves to be mediocre from the viewpoint of the NMI. 
Note that the similar conclusions can also be drawn in the case of fusion of the rest of three image pairs. 
Summing up, our analysis demonstrates superiority of our method in terms of the overall fusion quality. 
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Table 1. Results of quantitative evaluation of the fused ‘quad’, ‘kayak’, ‘soldier’ and ‘bunker’ 
images obtained by different methods. 

Fused image Metrics NSST GTF LatLRR IFE FusionGAN Our method 

‘quad’ 

SD 0.091  0.117  0.109  0.146  0.082  0.125  
SF 0.048  0.037  0.037  0.044  0.031  0.048  

SSIM 0.668  0.618  0.671  0.649  0.653  0.674  
NMI 0.323  0.429  0.323  0.953  0.370  0.377  
FMI 0.921  0.917  0.918  0.920  0.907  0.921  

‘kayak’ 

SD 0.129  0.164  0.143  0.182  0.125  0.148  
SF 0.043  0.036  0.034  0.051  0.030  0.043  

SSIM 0.749  0.720  0.766  0.697  0.732  0.751  
NMI 0.303  0.307  0.331  0.400  0.314  0.387  
FMI 0.884  0.877  0.877  0.888  0.869  0.886  

‘soldier’ 

SD 0.142  0.121  0.143  0.183  0.130  0.147  
SF 0.054  0.046  0.033  0.050  0.046  0.048  

SSIM 0.688  0.628  0.709  0.665  0.652  0.685  
NMI 0.269  0.230  0.263  0.228  0.240  0.342  
FMI 0.923  0.901  0.897  0.892  0.898  0.922  

‘bunker’ 

SD 0.111  0.121  0.112  0.156  0.097  0.118  
SF 0.056  0.051  0.035  0.060  0.042  0.050  

SSIM 0.655  0.629  0.689  0.595  0.655  0.655  
NMI 0.193  0.161  0.217  0.211  0.168  0.215  
FMI 0.927  0.917  0.894  0.883  0.899  0.922  

In addition, we have conducted experiments with the multiplier k involved in the weight 
matrix: 

 log( ) , 1,2,W k S k    .    (21) 

Fig. 4 shows the appropriate partial fusion results derived by our method for the case of 
‘bunker’ image pair as an example. As seen from Fig. 4, the information about details in the image 
increases with increasing k , and the same is true of the overall brightness. Table 2 lists the results 
of quantitative evaluation of these fused images. It becomes evident that all of the SD, SF, NMI 
and FMI metrics improve with increasing k , although to different degrees. On the other hand, the 
SSIM then decreases slightly but maintains basically the same value. Hence, a better fusion effect 
can be achieved by setting the appropriate k  parameter. 

    
(a) k  = 2 (b) k  = 4 (c) k  = 6 (d) k  = 8 

Fig. 4. Fused ‘bunker’ images obtained by our method at different k values (see the text). 
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Table 2. Quantitative evaluation of the fused images shown in Fig. 4 obtained by our method. 

Metric k  = 1 k  = 2 k  = 4 k  = 6 k  = 8 
SD 0.117 0.131 0.147 0.156 0.161 
SF 0.050 0.051 0.052 0.052 0.052 

SSIM 0.654 0.658 0.654 0.651 0.648 
NMI 0.214 0.296 0.389 0.437 0.465 
FMI 0.922 0.924 0.927 0.928 0.928 

5. Conclusion 
In the present work we have suggested a method for the infrared-and-visible image fusion, which 
is based on the intensity transfer and the phase congruency. The intensity transfer considers the 
low-frequency subband NSST fusion as a minimization problem. To solve this problem, the 
information about high-intensity values in the two fused images can be retained in full by 
controlling a balance between the salient target information involved in the infrared image and the 
detail-texture information in the visible image. Since the phase congruency is not affected by 
either image brightness or its contrast, it can be used as a measure of significance of any image 
feature and, therefore, as a measure for selecting the high-frequency NSST-subband coefficients. 
Considering a need in eliminating or reducing the influence of noise, we have also introduced the 
directional-vector variance as a factor for selecting the high-frequency subband coefficients.  
In our experimental studies, six up-to-date fusion methods have been employed to fuse four 
standard image pairs. The corresponding data has been compared with each other. The results have 
testified that our method can preserve successfully the infrared-target and texture-detail 
information. According to both the subjective evaluation and the objective quantitative metrics, 
this method is superior to the well-known NSST, GTF, LatLRR, IFE and FusionGAN methods. 
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Анотація. У галузі злиття інфрачервоних і видимих зображень відомо, що інфрачервоні 
об’єкти можуть бути не надто помітними, а деталі текстури сцени – недостатніми. 
Щоб вирішити цю проблему, ми пропонуємо використовувати передавання інтенсивності 
та конгруентність фази в області несубдискретизованого шерлетового перетворення 
(NSST). Метод спочатку розкладає вихідні зображення за допомогою NSST для отримання 
низько- та високочастотних піддіапазонів. Потім низькочастотні піддіапазони зливають 
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за допомогою правила злиття, заснованого на передаванні інтенсивності. Це дає змогу 
контролювати передавання інформації, пов’язаної зі значеннями високої інтенсивності, 
тобто інформації про важливі об’єкти та детальну текстуру. Водночас, конгруентність 
фази можна одержати з вихідних зображень як абсолютну міру значущості ознаки. Це 
поєднують з аналізом відхилення напрямного вектора для коефіцієнтів NSST 
високочастотних піддіапазонів. У такий спосіб усувають або значно зменшують вплив 
шумів в інфрачервоних зображеннях або видимих зображеннях зі слабким освітленням на 
дані злиття. Потім знаходять високочастотні коефіцієнти. Нарешті, злите зображення 
реконструюють за допомогою оберненого NSST. Експериментальні результати, наведені в 
цій роботі, демонструють, що наш метод може значно поліпшити ефективність злиття 
завдяки одночасному збереженню контурів і країв інфрачервоних цілей і деталей текстури 
сцени. Цей метод засвідчує очевидні переваги над аналогами з точки зору і суб’єктивних 
оцінок, і кількісних показників. 


