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Abstract. Phase unwrapping is a key step in processing interferometric synthetic-
aperture radar (InSAR) data. Here we offer a phase-unwrapping method based on 
phase-gradient estimation and energy equation. The method can be implemented 
through adjusting four neighbourhoods in the original energy-equation method to 
eight neighbourhoods and combining fast Fourier transform with chirp-Z transform 
for the estimation of phase gradient in iterative equation. Both simulated and real 
InSAR data are used to perform phase-unwrapping experiments. We test our phase-
unwrapping method based on the phase-gradient estimation and the energy equation 
using such quantitative standards as, e.g., discontinuity map and root mean-square 
error. On this basis we compare our approach with some other standard phase-
unwrapping methods. It is shown that our method suppresses efficiently the errors 
generated in unwrapping process and provides reliable and high-accuracy 
unwrapping results. 
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1. Introduction 
Phase unwrapping is a key step in synthetic-aperture radar interferometry. Since formulation of the 
principles of interferometric synthetic-aperture radars (InSARs) in 1974, a number of phase-
unwrapping methods have been developed. Each of these methods has its own characteristics, 
advantages and shortcomings. Let us define a phase residue as a point where the sum of 
differences for four adjacent pixel points is greater than zero. Then the phase-unwrapping methods 
can be divided into two main categories, depending on the phase-residue processing: 

(1) Path-following phase-unwrapping methods. This category includes mainly a branch-cut 
method [1, 2] , a minimum-spanning tree method [3], a region-growing method [4], a quality-map 
guided method [5], a mask-cut method [6], and a Flynn-minimum discontinuity one [7]. Their 
advantages are fast calculations and less memory requirements. However, the methods can easily 
impose error propagation during phase unwrapping, since one must ‘pass through’ rather than 
‘bypass’ the phase residues. 

(2) Non-path-following phase-unwrapping methods. They include a minimum-norm method [8–
10], an optimal-estimation method [11, 12], a feature-extraction method [13, 14], an energy-equation 
method [15] and some others. These techniques do not need identification of phase residues in the 
phase-unwrapping process, the errors caused by the phase residues are avoided, while the unwrapping 
precision is high enough. Note that the phase-unwrapping method based upon the energy equation 
implies that an unwrapped constraint is converted into some energy function and then minimized. 
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However, when a terrain is steep or the relevant slope is relatively large, the phase jump 2  often may 
cause some unwrapping errors which propagate from one pixel to its neighbours. 

Among the previous work on the subject, one can remind the study by Liming Pu et al. [16] 
who have suggested a phase-gradient estimation network for the InSAR, which is based on 
encoder–decoder architecture PGENet. On the other hand, Xianming Xie et al. [17] have used an 
enhanced local phase-gradient estimator based on amended matrix-pencil model. Weike Liu et al. 
[18] have applied additional constraint condition to a nonlinear least-squares phase unwrapping in 
order to obtain a real phase. In the present work, we offer a phase-unwrapping method following 
from the energy equation and the phase-gradient estimation. First, four neighbourhoods in the 
original energy-equation phase-unwrapping method are adjusted to eight neighbourhoods. Then a 
fast Fourier transform (FFT) and a chirp-Z transform (CZT) are combined for phase-gradient 
estimating and phase unwrapping. Simulated data and real InSAR data are used for our 
experiments which verify feasibility and efficiency of this algorithm. 

The remainder of this article is organized as follows. Section 2 introduces details of the 
phase-gradient estimation technique and our phase-unwrapping method, which is based on this 
approach and energy equalization. Section 3 illustrates performance of our method with the 
examples involving both simulated and real data. Here we also compare our method with its 
contemporary counterparts, including such representative algorithms as the network-flow and 
least-squares approaches. Finally, the concise conclusions are drawn in Section 4. 

2. Description of the method 
2.1. Phase-gradient estimation 
In the two-dimensional phase unwrapping, practical signals are often non-stationary, so that the 
notion of frequency loses its usefulness. Then a parameter called as instantaneous frequency (IF) is 
usually introduced, which accounts for time-varying nature of the process. Note that the IF of the 
phase corresponds to the phase gradient. In general, a complex signal ( , )Z x y  in two-dimensional 

space can be represented as follows: 
 ( , )( , )( , ) ( , ) ( , ) iW x yi Z x yZ x y Z x y e Z x y e   .    (1) 

In Eq. (1), [ ( , )]W x y  is the principal value of the unwrapped (unknown) phase function 

( , )x y  and ( , )Z x y  denotes the argument of the complex signal ( , )Z x y . The unwrapped-phase 

surface ( , )x y  can be derived from the IF of the phase. The IF estimated directly from the two-

dimensional signal ( , )Z x y  is given by 

( , ) [ ( , )] ( , )1 ( , )1
Z

Z Z
x yx yf x y Z x y f x y f x y

  
     ,  (2) 

where 
z

f  implies the IF estimated from ( , )Z x y ,   is the gradient operator, z
xf  and z

yf  are 

respectively the x  and y  components of the estimated IF, and 1x


 and 1y


 mean the unit vectors 
respectively along the x  and y  directions. 

The common frequency-estimation methods include (i) a method based on auto-correlation 
matrix, (ii) a multi-resolution method, which actually introduces multi-resolution idea into the 
auto-correlation matrix method and aims to eliminate aliasing errors, and (iii) a spectrum-
estimation method. It is obvious that the spectrum-estimation method based on the FFT needs 
much time to achieve high estimation accuracy. On the other hand, high-precision estimation 
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results can be obtained quickly when introducing the CZT. As a result, below we will combine the 
FFT and CZT approaches to implement the frequency-estimation method. 

2.2. Frequency-estimation approach based on combination of FFT and CZT  
The core idea of the frequency estimation is that the phase within a small window can be simulated 
by the two-dimensional linear phase model. In other terms, the phase within this window can be 
regarded as having a single frequency. The appropriate mathematical model can be expressed as 

  0exp ( , ) exp( ) exp 2 ( )x yj m n j j mf nf      ,
    

(3) 

where ( , )m n  is the phase defined at the point within a given window (its displacement relative to 
the centre of the window being determined by ( , )m n ), 0  denotes the average phase within the 
window, and xf  and yf  are the local frequencies associated respectively with the x  and y  
directions. 

As mentioned above, we combine the two-dimensional FFT and the CZT for estimating the 
local interference-fringe frequency. The basic idea of this method lies in the following. For the 
M N  interferogram ( , )z x y , the local fringe frequencies xf  and yf  at the point ( , )x y  can be 

estimated by maximizing the likelihood function [19]: 
( 1)/2( 1)/2

( 1)/2 ( 1)/2
( , ) ( , ) exp 2 ( )

yx

x y

N WM W

x y x y
x M W y N W

J f f z x y j f x f y
  

     

       ,  (4) 

with xW  and yW  being the estimated window sizes along the x  and y  directions, respectively. 

The window size can be adjusted according to a given terrain. For a flat terrain, the interference 
fringes are sparser and, therefore, larger windows can be used. The interference fringes for a steep 
terrain are denser so that smaller windows must be used. In this study we choose the window size 
equal to 13 13 . 

When the local interference fringes are estimated, a 32×32-point two-dimensional Fourier 
transform is performed inside the window. In this way a maximum value for the complex two-
dimensional phase spectrum is found in the corresponding window. When the local frequency 
estimation falls within the main lobe of the two-dimensional spectrum, a 128×128-point two-
dimensional CZT can be used for spectral refinement. 

2.3. Phase-unwrapping method based on phase-gradient estimation and energy equation 
The basic principle of the phase-unwrapping method based upon the energy equation is to convert 
the unwrapping constraints into the energy equation. Then a dynamic system based on the energy 
equation is introduced for minimizing the energy-equation value [15]. The energy equation based 
on eight neighbourhoods is given by 

2 2
1 1, , , 1, 2 , 1 , , , 1

, ,

2 2
3 1, , , 1, 4 , 1 , , , 1

, ,

2
5 1, 1 ,

ˆ ˆ ˆ ˆ ˆ ˆ[( ) cos( )], [( ) cos( )],

ˆ ˆ ˆ ˆ ˆ ˆ[( ) cos( )], [( ) cos( )],

ˆ ˆ[( ) c

i j i j i j i j i j i j i j i j
i j i j
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,(5) 

1 2 3 4 5 6 7 8totalE E E E E E E E E        ,   (6) 
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where ,i j  and ,î j  are respectively the wrapped and unwrapped phases. It is evident that Eq. (6) 
represents a sum of eight energy equations. Since we deal with the non-path-following method, 
only 1E , 2E , 3E , 4E , 5E , 6E , 7E  and 8E  are the smallest.  

A minimum in Eq. (5) can be obtained by applying the dynamic system along the down 
energy-gradient direction. The corresponding dynamic system is as follows:
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,    (7) 

with   representing the convergence rate for our system. Eq. (7) relates the unwrapped phase at 
the point ( , )i j  to the energy-change rate in its neighbourhood.  

After substituting Eq. (7) into Eq. (5), discretizing Eq. (5) in time and adding the estimated 
phase gradients ,

x
i j  and ,

y
i j , one can arrive at the relations 
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In Eq. (8),   implies the convergence-rate constant and 1  . The convergence condition 
for Eq. (8) is given by 1

, ,ˆ ˆt t
i j i j   , where 1

,ˆ t
i j   and ,ˆ t

i j  are the unwrapped phases at the time 
moments 1t   and t , respectively. 

3. Experimental results and their analysis 
3.1. First data-simulation experiment 
A simulated phase map with the size of 100 100  pixels is shown in Fig. 1. Fig. 2 and Fig. 3 
display respectively the interferogram corresponding to Fig. 1 and the same interferogram with the 
coherence coefficient 0.8. Finally, Fig. 4 shows the unwrapped-phase maps obtained using our 
method, the network-flow one and the least-squares method. It is seen from Fig. 4 that the 
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unwrapped-phase map obtained with our method is basically consistent with the original surface, 
except for a deviation of the centre position. The phase value at the highest point is the same as 
that of the original surface, whereas the entire unwrapped-phase map is smooth. Although the map 
obtained from the network-flow method at the highest point is roughly the same as that in the 
original surface, one observes some burrs in the unwrapped data. On the other hand, the least-
squares method yields in multiple burrs, while the highest value is significantly lower than that in 
the original surface. Therefore the corresponding unwrapped-phase map is less accurate. 

 

 
 
 
 
 
 
 
 
 

Fig. 1. Original phase map. 

 

 
 
 
 
 
 
 
 
 
 
Fig. 2. Interferogram with no noise 
corresponding to Fig. 1. 

 

 
 
 
 
 
 
 
 
 
Fig. 3. Noisy interferogram corresponding to 
Fig. 1. 
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Fig. 4. Unwrapped phase maps (panels a, c and e) and three-dimensional maps (panels b, d and f) corresponding 
to Fig. 1, as obtained by our method (a, b), network-flow method (c, d) and least-squares method (e, f). 

In Fig. 5 we show a tenth-row curve obtained from the simulated data. It is obvious that all of 
the three methods basically reach the maximum value of the original surface. However, the 
position of the maximum value derived from the least-squares method does not match that of the 
original surface and its precision is less. Regarding the smoothness of the curves, the least-squares 
and network-flow methods produce more sawtooth-like curves which manifest higher fluctuations. 
On the contrary, our method yields the curve which is roughly the same as that corresponding to 
the original surface, while the unwrapped-phase map is better. 
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(a) (b) 

(c) (d) 

Fig. 5. Curves corresponding to the tenth-row phase (see the text): (a) original surface, (b) our method, (c) 
network-flow method and (d) least-squares method. 

3.2. Second data-simulation experiment 
Now we select for simulations an interferogram with no interference fringes in the upper part and 
intense interference fringes in its lower part (see Fig. 6). In Fig. 7, we add the Gaussian noise with 
the coherence coefficient 0.9. It follows from the unwrapped-phase maps shown in Fig. 8 that the 
method offered in the present work has only insignificant burrs, which are located at the bottom of 
the three-dimensional map. The amplitude in the part with no interference fringes is the same as 
that of the original interferogram. Moreover, we obtain in general a better unwrapped-phase map. 
Concerning the map resulted from the network-flow method, the unwrapped surface is broken and 
the amplitude corresponding to a non-striped part is obviously lower than that of the original 
interferogram. Moreover, the latter map involves larger errors. Finally, the map obtained by the 
least-squares method is too smooth and does not maintain the characteristics of the original 
surface. The appropriate unwrapped-phase map reveals the largest errors. 

The root-mean-square errors associated with the three methods are reported in Table 1. These 
parameters have been derived when unwrapping a noisy interferogram with different coherence 
coefficients. Notice also that the root-mean-square errors have been found on the same data and 
computed from 30 simulations, in order to compare in a fair way the phase-unwrapped results 
delivered by each method. It is clear from Table 1 that the root-mean-square error calculated for 
the unwrapped results increases gradually with decreasing coherence coefficient. The error found 
for our method is the smallest and the precision of the corresponding unwrapped-phase map is the 
highest. The least-squares method has a larger root-mean-square error due to its peculiar 
characteristics, while the appropriate unwrapped-phase map is less precise. 
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Fig. 6. Simulated interferogram with no noise. Fig. 7. Simulated interferogram with noise added. 

(a) (b) 

(c)  (d) 

(d) (f) 
Fig. 8. Unwrapped phase maps (panels a, c and e) and three-dimensional maps (panels b, d and f) 
corresponding to Fig. 6 and Fig. 7, as obtained by our method (a, b), network-flow method (c, d) and least-
squares method (e, f). 
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Table 1. Comparison of accuracies of the simulated data obtained with different phase-
unwrapping methods. 

Root-mean-square error of the phase-unwrapping method, rad Coherence 
coefficient Our method Least-squares method Network-flow method 

1.0 0.4079 1.3360 1.3069 
0.9 0.8251 1.3385 1.3119 
0.8 0.8966  1.3617 1.3323 
0.7 1.0825  1.3732 1.3698 
0.6 1.2837  1.4629 1.3895 
0.5 1.3902 1.5691 1.4207 

3.3. Real-data experiment 
In this Subsection, we perform phase unwrapping on a real interferogram in order to elucidate 
better the performance of our algorithm and compare it with its counterparts. The experiments 
have been carried out using a Bam area images in Iran. They have been obtained by the ENVISAT 
satellite on December 3, 2003 and January 7, 2004. A part of the corresponding interferogram 
( 200 200  pixels – see Fig. 9) has been selected as our experimental data. Examination of the 
unwrapped-phase maps (see Fig. 10) evidences that there are many glitches in the three-
dimensional unwrapped-phase map obtained using the network-flow method. There is an error for 
the highest phase value derived in the three-dimensional unwrapped-phase map using the least-
squares method. This indicates that the corresponding errors are too large. On the contrary, due to 
phase-gradient estimation, our method provides satisfactory results even when there are many 
fringes. It manifests a higher phase-unwrapping precision and, moreover, the error propagation is 
prevented. 

 
Fig. 9. Experimental interferogram 

A point where the absolute difference value between the adjacent pixels’ phase gradients 
exceeds   is a so-called ‘discontinuity point’, whereas a map generated by the discontinuity 
points is termed as a ‘discontinuity map’ [19]. In real-data experiments, the unwrapped-phase 
maps are usually analyzed qualitatively. If the distribution of discontinuity points is dense, this 
means that the phase-unwrapping algorithm reveals poor performance in preventing error 
propagation. 
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(a)  (b) 

(c)  (d) 

(e)  (f) 

Fig. 10. Unwrapped phase maps (panels a, c and e) and three-dimensional maps (panels b, d and f) 
corresponding to real data (see experimental interferogram in Fig. 9), as obtained by our method (a, b), 
network-flow method (c, d) and least-squares method (e, f). 

When analyzing the discontinuity map corresponding to the original interferogram (see 
Fig. 11a), one can see that the discontinuity points for the experimental data are distributed mainly 
at the fringe edges and there are only two dense discontinuities in the upper left corner. Fig. 11b 
displays the discontinuity map typical for our method. There are no discontinuity points in the 
whole map, which indicates that our method can efficiently limit the local errors. The discontinuity 
map for the network-flow method (see Fig. 11c) reveals that this method is less resistible with 
respect to the error propagation. Finally, the discontinuity map typical for the least-squares method 
(see Fig. 11d) shows that the number of discontinuity points is significantly reduced, if compared 
with the method mentioned obove. In other words, this approach also reveals some resistibility to 
the error-propagation effect. 
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(a)  (b) 

(c) (d) 
Fig. 11. Discontinuity maps corresponding to  original interferogram (a), our method (b), network-flow method 
(c) and least-squares method (d). 

In order to check the unwrapping errors in a more detail, the unwrapped results have  
been rewrapped to generate so-called rewrapped maps [20]. As seen from Fig. 12, the rewrapped-
fringe pattern corresponding to our method remains consistent with that of the original fringe 
pattern. If compared with the original fringe pattern, the least-squares method also reveals  
less dispersion of speckle noise in the rewrapped data. On the contrary, the fringe patterns 
associated with the least-squares method are essentially lost and the unwrapping errors are  
larger. Summing up this analysis, we conclude that our method unwraps successfully the wrapped 
phase and, moreover, it removes efficiently the phase noise contained in the wrapped-phase 
images. 

To measure the quality of unwrapped data, a so-called   value is often used [21]. The 
smaller the   value, the higher the unwrapping quality is. The   parameter can be calculated as 

2 1 1 2

, 1, , , , 1 , ,,
0 0 0 0

1 1Δ Δ
M N M Np pyx x x

i j i j i j i j i j i j i ji j
i j i jMN MN

      
   

 
   

         , (9) 

where M  and N  are the numbers of respectively columns and rows, ,i j  is the unwrapped phase 

at the point ( , )i j , and ,
x
i j  and ,

y
i j  denote the weights corresponding respectively to the 

wrapped-phase gradients ,Δx
i j  and ,Δ y

i j . Some weight is generally given to the phase-quality map, 
with its value being in general between 0 and 1, while the p  value is usually taken to be 0, 1 or 2. 
In our case, we put the p  parameter to be equal to 1. 
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Fig. 12. Rewrapped maps obtained using our method 
(a), network-flow method (b) and least-squares 
method (c). 

As seen from Table 2, the number of discontinuity points peculiar for our method is 
significantly less than those of the network-flow and least-squares methods, thus indicating that 
our unwrapped results are more reliable. The   value for our method is slightly less than those 
typical for the other two methods so that the quality of our unwrapped-phase map is higher. 
Finally, the root-mean-square and median errors corresponding to our method are the lowest. This 
implies that the accuracy of unwrapping performed by our method is the highest. 

Table 2. Comparison of accuracy parameters obtained for different phase-unwrapping methods 
applied to real experimental data. 

Phase-unwrapping 
method 

Number of 
discontinuity points 

  value 
Root-mean-square 

error 
Average 

error 
Our method 0 0.7293 0.6294 0.6572 

Network-flow method 638 0.7410 1.3849 3.5451 
Least-squares method 25 0.8151 1.5013 3.5022 

4. Conclusion 
In this work we offer a robust phase-unwrapping method based on the estimation of phase gradient 
and energy equation. It retrieves continuous phase maps from interferograms, using a highly 
efficient phase-gradient estimation. The results obtained from both simulated and real 
experimental phase data demonstrate high enough efficiency of our method. In particular, a 
comparison with the commonly used methods, including the network-flow and least-squares ones, 
demonstrates that the approach suggested by us limits propagation of errors in the phase-
unwrapping process to a certain extent and provides more accurate final data. As a consequence, 
the results obtained in the present work would suggest new ideas for data processing performed 
with the InSAR technique. 
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Анотація. Розгортання фази – це ключовий крок в обробці даних інтерферометричних 
радарів із синтетичною апертурою (InSAR). Ми пропонуємо метод фазового розгортання, 
заснований на оцінюванні градієнта фази та енергетичному рівнянні. Цей метод можна 
реалізувати шляхом коригування чотирьох околиць у вихідному методі енергетичного 
рівняння до восьми околиць і поєднанні швидкого перетворення Фур’є та перетворення 
Chirp-Z для оцінки градієнта фази в ітераційному рівнянні. Для проведення експериментів 
із розгортанням фази використано змодельовані та реальні дані InSAR. Метод 
розгортання фази на основі оцінки градієнта фази та енергетичного рівняння 
протестовано за допомогою таких кількісних стандартів як, наприклад, карта розривів і 
середньоквадратична похибка. На цій основі виконано порівняння нашого підходу з деякими 
іншими стандартними методами розгортання фази. Показано, що запропонований метод 
ефективно пригнічує помилки, які виникають у процесі розгортання фази, і дає надійні та 
високоточні результати розгортання. 


