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Abstract. We show that a bending mechanical stress can produce a topological
defect of orientation of the eigenvectors of Christoffel tensor with the strength equal
to %. This implies generation of a singly charged acoustic vortex for transverse
acoustic waves. In general, this vortex is anisotropic, although it can be transformed
into isotropic one at some geometrical parameters of distributed mechanical load.
The acoustic vortices generated by the bending stresses can be produced even in
isotropic solid-state media. Using the example of crystals belonging to the point
symmetry group 3m, we also consider the process of backward collinear acousto-
optic diffraction for the case of interactions of optical and acoustic waves that bear
bending-generated topological defects of their phase fronts. It is demonstrated that,
in the case of linearly polarized incident optical wave, a vector beam with a unit
polarization order is generated in the crystals. Acousto-optic interaction of this
vector beam with the acoustic beam bearing a singly charged anisotropic vortex
produces a diffracted optical wave that bears a vortex, too. The embedded
topological defect of the phase front associated with this vortex has the strength
given by a sum of strengths of the topological defects of the incident optical wave
and the acoustic wave. The diffracted optical beam represents an anisotropic vortex
beam with the orbital angular momentum (OAM) equal to 24. When both the
acoustic wave and the incident optical wave nest the bending-induced singly
charged anisotropic vortices, the diffracted optical wave would also bear a vortex.
Its charge is a linear combination of the charges referred to the acoustic and incident
optical waves, which involves the parameters of acoustic and optical anisotropies.
When the signs of OAMs of the interacting acoustic and optical waves are the same,
the diffracted optical wave bears a doubly charged anisotropic optical vortex. At
some specific anisotropy parameters, it can be transformed into isotropic vortex.
Finally, the topological defects embedded in the interacting waves annihilate and the
diffracted optical wave becomes vortex-free when the signs of OAMs of the
interacting waves are opposite.
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1. Introduction

In our recent work [1] we have shown that mechanical torsion stresses can impose acoustic

singularities of the eigenvectors of Christoffel tensor due to a piezo-acoustic effect [2, 3]. This

produces a singly charged acoustic vortex beam propagating inside a crystal. We have also

demonstrated that the process of backward collinear acousto-optic (AO) interaction of a linearly

polarized incident optical wave with a torsion-induced acoustic vortex wave in crystals is

accompanied by generation of a vector beam with a unit polarization order. AO interaction of this

vector beam with the acoustic beam bearing a singly charged vortex results in a vortex-bearing
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diffracted optical wave. It has an embedded topological defect of its phase front, the strength of
which is given by the sum of strengths of topological defects of the incident optical wave and the
acoustic wave (AW). Then the diffracted optical beam would also bear a vortex with the orbital
angular momentum (OAM) equal to 2/ [4]. If the torsion-induced circular optical vortex wave
interacts with the acoustic vortex wave of the same chirality, the diffracted optical wave would
bear a doubly charged vortex. In the case of AO interaction of the waves with the opposite
chiralities and the vortices having the opposite signs of their charges, the latter vortices would
annihilate in the process of AO diffraction so that the diffracted optical wave becomes vortex-free.

Notice that the effects described above can occur in the crystals that belong to the point
symmetry groups 3m, 32, 3m, 3, 3, 23, m3, 432, 43m and m3m, provided that the torsion
moment is applied along the three-fold symmetry axis. This limits the kinds of material media
where the effect can be observed to the crystals having one or more three-fold axes among their
symmetry elements. On the other hand, we have shown [6] that mechanical bending of solid-state
media can also produce polarization singularities nested in optical beams and corresponding singly
charged optical vortices. In general, these vortices are anisotropic [6], i.e. the relevant optical field
contains a mixed screw-edge dislocation of its phase front [7]. At some values of geometric
parameters, the vortex can be transformed into isotropic one.

Maybe, the most important characteristic of this method of generation of optical vortices is
that bending stresses can induce polarization singularities in the crystals of arbitrary symmetries
and even in isotropic glasses. In the present work, we analyze the possibilities for generation of
acoustic polarization singularities and acoustic vortices through application of mechanical bending
to glass-like media. The other subject of this work is a potential transfer of acoustic OAM from
acoustic to optical beams, which takes place in the course of AO diffraction in crystals.

2. Method of analysis
Let us consider a parallelepiped-shaped optical sample prepared from BK7 glass. The latter is
characterized by the refractive index n=1.52 [8] and the piezo-optic coefficient

(7:66):(7111)—(7:12):—1.591><10’12 m?/N [9] at the wavelength A=632.8nm of optical

radiation. The sizes of the beam-like glass sample are taken to be 5 = 3.0 mm, % =3.22 mm and
[=16.0 mm.
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Let a distributed load P;=20.0 N be applied along the X axis (see Fig. 1). Suppose that a
glass beam is placed on two cylindrical rods, with the distance between the rods being equal to

16.0 mm. Let the load distributed over the distance d on the upper surface be applied to the glass
beam (see Fig. 1) and the optical and acoustic waves propagate along the Z axis. Then we have in
the region —d /2 <Y <d /2 (see Refs. [10, 11] for more details):
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where M is the bending moment and Q the transverse mechanical force. The corresponding stress
components read as

M, _6R d(2l—d)-4Y*

o, = X, 2
2 JZ bh3 4d ( )
2 2
gézi h__X __6AY h__X2 , (3)
2J,\| 4 bid| 4
while the optical-indicatrix rotation angle and the optical birefringence are given by
2(h2/4—X2)Y 2(h2/4—rzcoszgo)
tan2¢5 = = S5 e, 4)
(d(21—d)/4—Y )X (d(21—d)/4—r sin go)
3 2 2 2
An12=3”33 Mo (d(y_d)—yzj X ed x|y (5)
bh’d, 4 4
At the polar coordinate » — 0, Eq. (4) reduces to
5 2
tan2¢ 4 = — =26 2h ne (6)

b =
o, d(2i-d)

The above dependence of the angle {5 on the azimuthal angle ¢ corresponds to a so-called

anisotropic vortex that appears due to a mixed screw-edge dislocation of the phase front. Under the
condition 24% /d,(2l-d,)=1 (or d, =1-~I* =2h* =h> /1 at 2h> < [*), Eq. (6) yields in

tan2¢5 =tang (or £y =¢/2), 7
i.e. we deal with a pure screw dislocation of the phase front. It gives rise to the isotropic vortex
having the unit charge. Here the notation d,, is introduced to indicate the distance at which the

pure screw dislocation of the optical wavefront is achieved. Under the same conditions, the spatial
distribution of optical birefringence is given by a conical surface:

3
B /

The Young and Poisson coefficients for the BK7 glass are equal respectively to

E=82.0GPa and v =0.206 [12], and the density amounts to p =2510 kg/m3 [13]. The
appropriate elastic-stiffness coefficients can be calculated using the well-known relations

vE E
=, =Cp+—. ©
(1—2v)(1+v) 1+v

They are equal to C;; =91.81 GPa and C}, =23.82 GPa . Finally, the AW velocities v,,, (with

the indices m and n corresponding respectively to the directions of propagation and polarization of

C12

the AW) can be found from the elastic-stiffness coefficients via the Christoffel equation:

2
Cijram jmy pp = PV, Dj - (10)
Here Cy; is the elastic-stiffness tensor written in tensor notation, m; and my imply the unit

wavevectors of AWs, and p; and p; the unit vectors of AW polarizations. The quantity
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in Eq. (10) represents a second-rank Christoffel tensor. We note that the AW velocities calculated
for the BK7 glass are equal to v33 = 6048 m/s and vy = vz, =3680 m/s .
The changes in the elastic stiffnesses (or the AW velocities) occurring under mechanical
stress (or strain) are known as an acousto-elastic effect [2, 3]. They are described by the relation
ACiiit = Oijktmnemn = OijrtmnSumrtOrt = OijkirtOre » (12)

where ACj; denotes the increment of elastic stiffnesses, 6, and © are the sixth-rank

ijklmn
polar tensors with the internal symmetry [[V*]*][V*], e,, and o, imply respectively the strain

and stress tensors, and S is the tensor of elastic compliances. Notice that the acousto-elastic

nmrt
effect is an analogue of elasto-optic (or piezo-optic) effect in optics, whereas the changes in the
AW velocities induced by the stresses 10® N/m? are usually small enough (e.g., ~ 10 m/s —see
Ref. [2]).

The numerical values of the ®;;;,, components for the BK7 glass are not available in the
literature. In our simulations, we have taken the ©,;;,, values that follow from the experimental

data for the AW-velocity changes observed in rocks [2]. As a result, we arrive at ©;;; =100,
B)5; =200, O,y =600, Oy3; =400 and O34 =560. The following relationships among the
tensor components are valid for the isotropic media [14]:

1 1 1
Os64 =§(®111 =205 =05 +20531), Oy =5(®121 ~053), Oss =Z(®111 ~0y). (13)
Thus, the Christoffel tensor components are given by N;; =0.5(C; —Cj5) +Oy40,(X,Y),
N22 =O.5(C11—C12)+®5510-2(X,Y), N33 =C11+®2210-2(X,Y), N23 =N13 =O and
Njp = 056,04(X,Y). Then the AW velocities under the bending stresses can be represented as

1

V3 = (€1 =Cr2) + Oy +®551)02(X,Y)_\/(®441 ~0551) 03 (X,Y) +403,0¢ (X.Y) 2, (14)
2p
1
V3 = (C1=G2)* O +6)551)62()(’Y)+\/(®441 —~0551)” 03 (X, Y) + 403,05 (X, Y) 2, (15)
2p
1 2
Vi =(;(C11 +®22102(X,Y))J , 16)

It is seen that the AW velocities v3, and vj3; become different under the bending stress.

Then we obtain

1
V3 -V =;\/(®441 ~0s51)703 (X,Y) +405,00 (X,Y), (17)

and

(18)

2 2 2 2
Av=v31—v32:l\/(®441_®551) o) (X,Y) +4050 (X, Y) -

2 2p(Cyy -Cr)
Finally, this yields in
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2bhd p(C1—Cy)

Under condition » — 0, the orientation angle of the eigenvectors of the Christoffel tensor

564

with respect to the X axis is given by the formula

2
o
tan2¢4 =——8 =—— tang. 20
¢z o,  dl-d) @ (20)

It is evident that the dependence of ¢ on the azimuthal angle ¢ corresponds to the anisotropic
vortex appearing due to a mixed screw-edge dislocation of the phase front. Under the condition
R /d, (21-d,)=1 (or d, =1-~I*—h? =h? /2] at h? < [*), Eq. (20) can be reduced to

tan2¢ 7 =tang (or {7 =@/2), (21
where d, is the distance on which the mechanical stress must be distributed in order to generate a

purely screw acoustic dislocation. Then Eq. (19) can be rewritten in the form

P X2 +y?
Av=— ;h Osq | (22)
4bh’d, pP(C=Cpp)

Eq. (21) describes a topological defect of orientation of the eigenvectors of the Christoffel

tensor with the strength equal to ¢ = %2 and Eq. (22) implies a conical distribution of the difference
of phase velocities of the AWs. Finally, it is obvious from Egs. (6)—(8) and Egs. (20)—(22) that the
conditions for generating the isotropic optical and acoustic vortices are different.

3. Results and discussion

In case of our particular geometry described above, the isotropic optical vortex should correspond
to the parameter d, = 0.66 mm [5]. The calculated dependences of the rotation angle of optical
indicatrix and the orientation angle of eigenvectors of the Christoffel tensor are shown in Fig. 2.
The angle of optical-indicatrix rotation depends linearly on the azimuthal angle and the orientation
angle of the eigenvectors of the Christoffel tensor oscillates with changing ¢ . The dependence of

the difference of AW velocities on the X and Y coordinates represents a conical surface with a non-
circular cross-section (see Fig. 3a, b), while its optical analogue is a conical surface with the axis
of revolution parallel to the Z axis (see Fig. 3¢, d). Then the optical-polarization singularity would
produce an isotropic singly charged optical vortex nested in the emergent optical beam, while the

AW propagating inside the sample would bear an anisotropic singly charged acoustic vortex.
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Fig. 2. Dependences of rotation angle of optical
indicatrix (circles) and eigenvectors of Cristoffel
04 tensor (triangles) on the azimuthal angle ¢, as
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¢, deg calculated at d = 0.66 mm.
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Fig. 3. Spatial distributions of difference of the AW velocities (panel a) and optical birefringence (panel c), and
their projections on the XY plane (panels b and d, respectively), as calculated at d = 0.66 mm.

The opposite situation is observed at d,= 0.33 mm. Then the dependence of the orientation
angle of eigenvectors of the Christoffel tensor on the azimuthal angle is linear, contrary to the
dependence of orientation angle of the optical indicatrix (see Fig. 4). The appropriate dependences
of the optical birefringence and the difference of AW velocities on the X and Y coordinates are
presented in Fig. 5, together with their projections on the XY plane. The behaviour described above
would mean appearance of an anisotropic optical vortex behind the sample and an isotropic singly

charged acoustic vortex inside the sample.
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Fig. 4. Dependences of rotation angle of optical indicatrix (circles) and eigenvectors of Cristoffel tensor
(triangles) on the azimuthal angle ¢ , as calculated at d = 0.33 mm.
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Fig. 5. Spatial distributions of difference of the AW velocities (panel a) and optical birefringence (panel c), and
their projections on the XY plane (panels b and d, respectively), as calculated at d = 0.33 mm.

The projections displayed in Fig. 3b and Fig. 5d are six-order geometric figures rather than
ellipses (see Egs. (5) and (19)). In order to know at which d values these figures are characterized
by the unit ratio of semi-axes, one can plot the dependences of the acoustic and optical anisotropy

2 2

——— and y, =———— on the distance d over which the mechanical load
dl-d) dl-d)

parameters y, =

is distributed. For this aim, let us rewrite Egs. (5) and (19) with neglecting higher-order » terms

under assumption of » — 0. Then Egs. (5) and (19) would read respectively as

3 277 12 4
fyy = S 7r66\/d @21 -d) r coszgo+h—r2 sin®
bh*d 16 4
, (23)
3 207 12
_3n fl %Jd Q2L=d)” 2 pay2
2bh’d 4
207 1\2 4
Av = 3 3A 7 564\/—0[ (2116 ) r? coszgo+il—6r2 sinzgo
2bh d(P(Cn _C12)) (24)
3R

Oseu\d2 (2 —d)? X2 + h*Y?

86k (p(Cyy —Cpp))?

It is evident that the both relations describe ellipses. Fig. 6 shows the dependences of
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anisotropy parameters y, and y, on the load-distribution distance d. It is obvious that y, and
X, are equal to unity at some specific (though different) d values: we have y, =1 at
d,=0.33mmand y, =1 atd,=0.66 mm.

16000 "

1400- 7
1200- A
10004

15 \
1.0 A
0.0 ] . \A\A\ —n Fig. 6. Dependences of anisotropy

f—2
0.0 0.5 1.0 10 12 14 16 18  parameters y, and ¥, on the distance d
d, mm over which mechanical load is distributed.

Now let us consider a backward collinear AO diffraction of the incident optical wave by the
AW. For the case of AO interaction in the glass-like media, the collinear diffraction cannot be
implemented since the appropriate elasto-optic coefficients (py4, P24, P1s, Pas, Pes and pes) are equal
to zero. However, these coefficients remain nonzero in the crystals belonging to the point
symmetry group 3m (e.g., LiNbO;) or the other symmetry groups that contain the three-fold axes
among their symmetry operations. Note that Egs. (6) and (20) (as well as Egs. (23) and (24))
derived above for the isotropic glass media remain almost the same for the crystals of the
symmetry group 3m. Namely, we have

tan2¢y = _2% _ Ltan 0,

o, dQ2l-d) 05)

3 2 2
P _
iy = o Jd QU-d) 2, iy2
2bh’d 4
_3R(044, = 9s551)
- 3 172
2bh’d (pCyy)
where n, is the ordinary refractive index. The only differences are the effective piezo-elastic

(26)

Av Jd*@I-dP? xX? +1*y?,

coefficient ®44; —®s5; and the elastic stiffness C,,, which replace the coefficients @5z, and
Cy; —Cy, for glasses.

Notice also that, contrary to the case of mechanical torsion [1], bending can produce
anisotropic optical and acoustic vortices. This anisotropy manifests itself as a non-monotonic
change in the phase under helicoidal rotation around the vortex core. The dependences of
orientations of the optical indicatrix and the Christoffel eigenvectors on the azimuthal angle are
defined by the relations

1 1
z5 =Earctan(xo tang), {7 =5arctan(;(a tang), (27)
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Imagine that a right-handed (RH) circular acoustic Gaussian beam is excited in a crystal and
propagates along the Z axis. Then the corresponding displacement vector can be written as
uRH g B}e—ikmz ’ 28)
where Q and K, are respectively the frequency and the wavevector of AW, and u, is the unit
amplitude of displacement vector. This wave is characterized by the spin angular momentum equal
to 7. When the bending stress is applied (see Fig. 1), the AW velocities v;; and v;, become
different and a topological defect of the eigenvectors of the Christoffel tensor with the strength
q =% appears. Then the initial RH-polarized acoustic Gaussian beam can be decomposed into the
RH-polarized Gaussian beam and the left-handed (LH) beam bearing the acoustic vortex. This
process can be described as (see Ref. [1])

Arac (r’Pl ) |:1:|e—iKmZ

uout (

”,QD) = U COS '
i

: (29)

Al (r,P)| 1| ; p

+iuy sinM{ }el arctan( %, tan ¢ )—~iK,.Z

2 =i

Q  Q
V31(I",P1) V32(1",P1)
AWSs which have their polarizations orthogonal (i.e., parallel to the X and Y axes) and propagate

Here AL, (r,P])=[ Jb is the phase difference between the transverse

with the velocities v3(7,F) and v3, (7, F), and u (r,go) denotes the output-AW displacement

vector.
As seen from Eq.(29), the phase of the outgoing AW depends nonlinearly upon the

azimuthal angle. Seemingly, this should lead to dependence of the vortex charge on the angle ¢
. 1

(i.e., I =—arctan(y, tan @) ). However, such a dependence rather means that the phase change has
¢

an oscillating character (i.e., it accelerates and slowdowns periodically), while the phase change is
equal to 2z within the period of AW. Therefore y, and y, represent morphological parameters of
the vortices, which define their internal structure. Hence, an anisotropic vortex with the charge
[=2q=11is generated. Moreover, Eq. (29) describes conversion of the spin angular momentum to
the OAM, since the second term in the right-hand side of Eq. (29) corresponds to the AW with the
helicoidal phase front and the LH polarization (i.e., the spin angular momentum equal to —% and
the OAM equal to 7).

X_ Y Fig. 7. Schematic view of phase-matching conditions
: provided at a backward collinear diffraction: k" and
k® are wavevectors of the incident and diffracted
optical waves, Ky is wavevector of the AW, and k,
and k. denote respectively wavevectors of the
ordinary and extraordinary optical waves (a LiNbO;

crystal is taken as an example).
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Now let us consider a particular case of backward collinear AO diffraction illustrated in
Fig. 7. A linearly polarized incident optical wave with its polarization parallel to the X (or Y) axis
is described by the state vectors

. 1 ) . 0 )
D" =D, (Oj e ? or DI =D, (Je_’k""z . (30)
As a result of bending-induced singularity, we arrive at the Jones matrix [15]

AFO(r,Pl){l O}HSinAFo(r,P])[coﬂ{g sin 202 ]

M(X,Y)=cos
2 0 1 sin2{; —cos2{y

1)

2 . L . . .
where AL, (r,Pl)=7ﬂAnl2b is the bending-induced optical phase difference and D, the unit

electric-induction amplitude. The X- or Y-polarized incident optical waves are decomposed inside
the crystal:

. 2 o .
D(X,Y) = DO COSM{;} e—lkMZ +iDO sin AFO (I",P] ) [COS gz]e_lkmz ’ (32)

sin2¢7
AT _(r,B)| 0] _ AT (7,P)| sin2&5 | _.
D(X,Y)=D, COSM e ®? 1iD, SinM ¢z Rz (33)
2 1 2 —cos2{ 5

Notice that Egs. (32) and (33) contain the two terms. The first term describes the wave with
the incident polarization and the second one corresponds to the optical vector beam with the unit
polarization order. In general, this vector beam is close to the elliptical one [16]. Following from
Eq. (29), the displacement vector of the AW bearing the vortex is given by the relation

LH AT, (ra A )|: 1 :|ei arctan( y, tan@)—iK, Z . (34)

u™" =ugsin ]
—i

The strain-tensor components caused by this AW read as

9] 9]
e4=zez3=( uy | Oty

Al (r’ A ) ¢ arctan( y, tan@)—iK, Z
oZ oY ’

j =-K,.eysin
(35)
oy | Ous

e =2ej3 =(GZ aXj=—il('aceo sin

with ej being the unit strain. Then the electric-field components of the diffracted wave for the

ATy, (r’ A ) ¢ arctan(y, tan @)—iK . Z
b

cases of X- and Y-polarized incident optical waves can be written respectively as

£ - _ipy sin AT, (r, B ) sin AT, (7’, A ) 1] ei[arctan(;(“ tan g )+arctan( y, tan @)—(k" +K,, )Z} (36)
2 i
and
£ - _prasin AT, (r, B ) sin AT, (7’, A ) 1] ei[arctan(;(“ tan p)+arctan( y, tan @)—(k" +K,, )Z} 37)
2 i ’

with p;, being the elasto-optic coefficient. Note that Dy, e, and the corresponding unit parameter
referred to K, are not written down in Egs. (36) and (37) for the reasons of brevity.

One can see that the electric fields of the diffracted optical waves correspond to the RH-polari-
zed waves containing a topological defect of their phase fronts. Its strength is given by a sum of the
strengths of defects referred to the optical wave and the AW, which involves the both anisotropy

1
parameters: ¢ = E(arctan (%, tan )+ arctan( z, tan go)) . In other words, these waves bear a doubly
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. . 1 .
charged optical vortex with the OAM equal to [ = —(arctan( X, tan @)+ arctan ( y,, tan go)) Fig. 8
¢

displays dependences of the phase of this vortex, 6 = arctan(y, tan¢)+arctan(y, tan¢@), on the
azimuthal angle ¢, as calculated at different anisotropic parameters y, and y,. Each dependence

corresponds to some distance d taken from Fig. 6.
800-

° Xg=0.08, xg=024

400 s %0198, 30817

7 X025, x=1

° AgT03BA, (=149,

200 ’ ¢ %0581, %2070
" X057, X239

© X X

* X219, xa787

0] 100 200 300 400

Clece

Fig. 8. Dependences of phase & of the vortex on the azimuthal angle ¢, as calculated at different anisotropic

parameters y, and y,.

Since the phase is changed by 4w at the azimuthal change of 27 (see Fig. 8), the diffracted
optical wave bears a doubly charged optical vortex and the strength of topological defects
embedded in the acoustic and optical beams are summed up. It is also noteworthy that the
dependences of the phase on the angle ¢ are nonlinear and have a step-like character. This means

that the optical vortex is anisotropic. The dependence of the phase on the angle ¢ acquires a linear
character at some specific values of the anisotropic parameters (e.g., y, =0.531 and y, ~2.076

at d=0.47 mm). Then the vortex nested in the diffracted optical beam becomes isotropic. Notice
that, in our recent work [1], we have not considered a vector character of the optical beam
appearing under condition of linearly polarized incident optical beam. This has resulted in an error
corrected later in Ref. [4].

If the incident AW is LH-polarized, it excites the acoustic vortex wave with the RH
polarization and the OAM [ = -7 . In the case of AO interaction of the optical wave described by
Egs. (30), (32) and (33) with this AW, the diffracted optical wave represents a circular wave with
the LH polarization and the OAM equal to [ =-2%.

In the case of AO interaction involving the RH-polarized incident optical wave,

1| _gn
DRH =D0|:.:|e_lk Z’ (38)
1

and the LH-polarized AW (see Egs. (34) and (35)), the electric induction of the optical wave inside
the crystal can be described by the sum of two terms:

ATl Pl o in
D(r,p)=D, COSM{}eﬂk Z 1+iD, sin y

AT, (r,P]){l
14

:| ei arctan( y, tan @ )—ik"Z . (39)
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The second term in the right-hand side of Eq. (39) represents the LH-polarized wave that
bears a singly charged vortex. Then the electric field of the diffracted wave can be written as

7AYo (”a s ) sin AT, (’"s R ) |:1:| ei(arctan(;(u tan ¢ )-+arctan( z, tan @) )-i(k" +K,.)Z (40)
2 i ’

As seen from Eq. (40), the RH-polarized diffracted optical wave bears a doubly charged

anisotropic vortex.

In case when the incident optical wave is RH-polarized (and the excited AW is LH-
polarized), the topological defects embedded in the incident acoustic and optical beams would
annihilate and the diffracted optical wave becomes vortex-free. Then the phase is given by the
relation 6 = arctan(y, tan¢)—arctan(y, tan @) . The dependences of the phase of this wave on the

azimuthal angle ¢ calculated at different anisotropic parameters y, and y, are illustrated in

Fig. 9. One can see that the phase oscillates around a zero value and the phase increment is equal
to zero when the azimuthal angle changes by 2zn. In general, these oscillations are not harmonic. It
is only at the anisotropy parameters y, =0.531 and y, =2.076 (taken at d = 0.47 mm) that the

dependence of the phase on the angle ¢ becomes sinusoidal. Note also that the dependences of the

phase on the azimuthal angle presented in Fig. 9 do not correspond to the screw dislocation of the
phase front. They are close to the two edge dislocations crossed at the right angle.

3 | %c=006 xg=024
4 |+ %o=0.088, x=0.367|
—— Xo=0.198, 70817
— %0025, xz=1
+ %o=0.364, Xz=1.4HA
—— Xo=0.531, xa72075
—— Xo~0.57, Xg=2.399
— xo=1, Xxa=4
— X219, X587
O 6 120 180 240 300 30 420

(deg

Fig. 9. Dependences of phase 6 of the diffracted wave (see Eq. (40)) on the azimuthal angle ¢ , as calculated

at different anisotropic parameters y, and yx,, .

4. Conclusions

In the present work, we have shown that the bending mechanical stresses can generate the
polarization singularity for transverse acoustic waves (i.e., the topological defect of eigenvectors
of the Christoffel tensor with the strength equal to '%). In its turn, this results in induction of the
singly charged acoustic vortices. The properties of such vortices have been analyzed. In particular,
we have demonstrated that, in general, they are anisotropic. Nonetheless, the vortices can be
transformed into isotropic ones at some specific geometrical parameters of distributed mechanical
loading. It is very important that the acoustic vortices generated through the bending stresses can
be produced even in isotropic solid-state media.

The process of collinear backward AO diffraction has been considered for the case of
interaction of optical waves with the AWs that bear bending-generated topological defects of the
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phase front. This has been done on a specific example of crystals belonging to the point symmetry
group 3m. We have shown that the vector beam with the unit polarization order is generated in the
crystals in case of the linearly polarized incident optical beam. The AO interaction of this vector
beam with the acoustic beam bearing the singly charged anisotropic vortex produces the diffracted
optical wave which is also vortex-bearing. The embedded topological defect of the phase front of
this wave has the strength given by the sum of the strengths of topological defects of the incident
optical wave and the AW. Then the diffracted optical beam represents the anisotropic vortex beam
with the OAM equal to 2.

When both the incident optical wave and the AW nest bending-induced singly charged
anisotropic vortices, the diffracted optical wave would also bear the vortex. Its charge is given by a
linear combination that involves the charges corresponding to the AW and the incident optical
waves and the parameters of acoustic and optical anisotropies. When the signs of the OAMs of the
interacting AW and the optical wave are the same, the diffracted optical wave bears the doubly
charged anisotropic optical vortex. It can be transformed into the isotropic vortex at a specific
balance of anisotropy parameters. Finally, when the signs of the OAMs are opposite, the
topological defects embedded in the interacting waves annihilate and the diffracted optical wave
becomes vortex-free.
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Anomauia. Ilokaszano, wo MexaHniune HANPYIHCEHHA 32UHY MOXMCE CHPUYUHUMU NOABY
mononoziunoeo depexmy opicumayii énrachux eexkmopie menzopa Kpicmogpens 3 cunow %. Ie
o3Hauac 2emepayiio 0OHO3APIOHO20 AKYCMUYHO20 BUXOPY OJsi NONEPEUHUX AKYCTNUYHUX XGUTb.
3acanom yetl euxop € auizomponHum, XxXoua npu OeAKUX 2COMEMPUYHUX NAPAMEmpPax
PO3N00INEHO20 MEXAHIYHO20 HABAHMAIICEHHS GIH MOJICe MPAHCHOPMYBAMUC 8 i30MPONHULL.
Axycmuuni euxopu, nopooxtceHi 6HACIIOOK Oil HANPYHCEHb 32UHY, MONCYINb POPMYBAMUCS HABIMb
6 I30MponHUX meepoomiibhux cepedoguwax. Ha npuxnadi xpucmanis, wo nanedcamos 00 epynu
MOUK080i cumempii 3m, Mu mako’c po3naAHYIU Npoyec 360POMHOI KONIHeapHOoi aKycmoonmuuHoi
ougppakyii O 6UNAdKy 63aEMO0Il ONMUYHUX MA AKYCTMUYHUX X8Ulb, SKI HeCymb 2eHepO6aHi
32UHOM MONOoJNo2iuni depekmu ixnix ¢pazosux gponmie. [loxazano, wo y eunaoxky nadaroyor
ONMUYHOI X6Uni 3 JIHIHOIO NONAPU3AYIEIO 8 KPUCMANAX 2eHEePYEMbCA 6eKMOPHUNL NYYOK 3
OOUHUYHUM NOPSIOKOM NOJsipu3ayii. AKycmoonmuyna 63aEmMoo0isi Yb02o 6eKMOPHO20 NYYKd 3
AKyCMUYHUM NYYKOM, SKULL Hece OOHO3APSIOHUN AHI30MPONHUL GUXOD, NOPOONCYE OUPPaAc06any
ONMUYHY XBUITIO, SIKA MAKOXC Hece suxop. Boyodosanutl mononoziunuil depekm gpazo6o2o ¢ponmy,
NO8 A3aHULL 3 YUM BUXOPOM, MAE CULY, 5IKA GUSHAYAEMBCS CYMOIO CUN TMONOA0IYHUX Oedexmis
nadarouoi onmuyHOl Xeuni ma akycmuunoi Xxeuunl. Jugpacosanuil onmuuHuii nyyoK €
AHI30MPONHUM BUXPOBUM NYUKOM 13 opOimansHum Kymosum momenmom (OKM), wo dopisuioe 2h.
Konu i akycmuuna xeuns, i naoaiowa onmuyHa Xeuisi Micmsamo IHOYKOBAHI 32UHOM OOHO3APSIOHI
anizomponni euxpu, ougpazosana onmuuna xeuns maxoxc nece suxop. Hozo 3apao e niniiinoro
KOMOIHayielo 3apsaodie, NOG SI3aHUX I3 aKyCMUYHOW mMa NAoAiodolo ONMUYHON XGUISMU, SIKd
BKIIOYAE napamempu aKycmuunoi ma onmuyroi aunizomponii. Axwo snaxu OKM e3aemoodiouux
aKycmu4noi ma onmuynoi Xeuib 00HAKOGI, MO OUPpazo6ana ONMUYHA XBUIsL Hece HOOBIUHO
3apsooicenuti  anizomponuull  onmuuHuil  euxop. Ilpu Oesxux cneyuiunux napamempax
anizomponii 6in Mmodxce Oymu nepemeopeHull Ha izomponuull euxop. Hapewmi, mononoziuni
Odehexmu, 3aKna0eHi y 63A€MOOI0UL XU, AHI2IIIOIOMb, A OUPPAL08AHA ONMUYHA XEUNSL CMAC
be3z6uxposoio, axuo snaxu OKM 63aemM00il0uux X6uib NPOMuiedlcHi.
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