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Abstract. We show that a bending mechanical stress can produce a topological 
defect of orientation of the eigenvectors of Christoffel tensor with the strength equal 
to ½. This implies generation of a singly charged acoustic vortex for transverse 
acoustic waves. In general, this vortex is anisotropic, although it can be transformed 
into isotropic one at some geometrical parameters of distributed mechanical load. 
The acoustic vortices generated by the bending stresses can be produced even in 
isotropic solid-state media. Using the example of crystals belonging to the point 
symmetry group 3m, we also consider the process of backward collinear acousto-
optic diffraction for the case of interactions of optical and acoustic waves that bear 
bending-generated topological defects of their phase fronts. It is demonstrated that, 
in the case of linearly polarized incident optical wave, a vector beam with a unit 
polarization order is generated in the crystals. Acousto-optic interaction of this 
vector beam with the acoustic beam bearing a singly charged anisotropic vortex 
produces a diffracted optical wave that bears a vortex, too. The embedded 
topological defect of the phase front associated with this vortex has the strength 
given by a sum of strengths of the topological defects of the incident optical wave 
and the acoustic wave. The diffracted optical beam represents an anisotropic vortex 
beam with the orbital angular momentum (OAM) equal to 2ħ. When both the 
acoustic wave and the incident optical wave nest the bending-induced singly 
charged anisotropic vortices, the diffracted optical wave would also bear a vortex. 
Its charge is a linear combination of the charges referred to the acoustic and incident 
optical waves, which involves the parameters of acoustic and optical anisotropies. 
When the signs of OAMs of the interacting acoustic and optical waves are the same, 
the diffracted optical wave bears a doubly charged anisotropic optical vortex. At 
some specific anisotropy parameters, it can be transformed into isotropic vortex. 
Finally, the topological defects embedded in the interacting waves annihilate and the 
diffracted optical wave becomes vortex-free when the signs of OAMs of the 
interacting waves are opposite. 

Keywords: acoustic vortices, bending stresses, acousto-optic diffraction 

UDC: 535.012+534.2 

1. Introduction 
In our recent work [1] we have shown that mechanical torsion stresses can impose acoustic 
singularities of the eigenvectors of Christoffel tensor due to a piezo-acoustic effect [2, 3]. This 
produces a singly charged acoustic vortex beam propagating inside a crystal. We have also 
demonstrated that the process of backward collinear acousto-optic (AO) interaction of a linearly 
polarized incident optical wave with a torsion-induced acoustic vortex wave in crystals is 
accompanied by generation of a vector beam with a unit polarization order. AO interaction of this 
vector beam with the acoustic beam bearing a singly charged vortex results in a vortex-bearing 
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diffracted optical wave. It has an embedded topological defect of its phase front, the strength of 
which is given by the sum of strengths of topological defects of the incident optical wave and the 
acoustic wave (AW). Then the diffracted optical beam would also bear a vortex with the orbital 
angular momentum (OAM) equal to 2ħ [4]. If the torsion-induced circular optical vortex wave 
interacts with the acoustic vortex wave of the same chirality, the diffracted optical wave would 
bear a doubly charged vortex. In the case of AO interaction of the waves with the opposite 
chiralities and the vortices having the opposite signs of their charges, the latter vortices would 
annihilate in the process of AO diffraction so that the diffracted optical wave becomes vortex-free. 

Notice that the effects described above can occur in the crystals that belong to the point 
symmetry groups 3m, 32, 3m , 3, 3 , 23, m3, 432, 43m  and m3m, provided that the torsion 
moment is applied along the three-fold symmetry axis. This limits the kinds of material media 
where the effect can be observed to the crystals having one or more three-fold axes among their 
symmetry elements. On the other hand, we have shown [6] that mechanical bending of solid-state 
media can also produce polarization singularities nested in optical beams and corresponding singly 
charged optical vortices. In general, these vortices are anisotropic [6], i.e. the relevant optical field 
contains a mixed screw-edge dislocation of its phase front [7]. At some values of geometric 
parameters, the vortex can be transformed into isotropic one. 

Maybe, the most important characteristic of this method of generation of optical vortices is 
that bending stresses can induce polarization singularities in the crystals of arbitrary symmetries 
and even in isotropic glasses. In the present work, we analyze the possibilities for generation of 
acoustic polarization singularities and acoustic vortices through application of mechanical bending 
to glass-like media. The other subject of this work is a potential transfer of acoustic OAM from 
acoustic to optical beams, which takes place in the course of AO diffraction in crystals. 

2. Method of analysis 
Let us consider a parallelepiped-shaped optical sample prepared from BK7 glass. The latter is 
characterized by the refractive index n = 1.52 [8] and the piezo-optic coefficient 

12 2
66 11 12 1.591 10 m /N         [9] at the wavelength 632.8 nm   of optical 

radiation. The sizes of the beam-like glass sample are taken to be b = 3.0 mm, h = 3.22 mm and 
l = 16.0 mm.  

 

 

 
 

 
 
 
Fig. 1. Scheme of application of mechanical load 
distributed over distance d on an upper sample 
surface. 

Let a distributed load P1 = 20.0 N be applied along the X axis (see Fig. 1). Suppose that a 
glass beam is placed on two cylindrical rods, with the distance between the rods being equal to 
16.0 mm. Let the load distributed over the distance d on the upper surface be applied to the glass 
beam (see Fig. 1) and the optical and acoustic waves propagate along the Z axis. Then we have in 
the region / 2 / 2d Y d    (see Refs. [10, 11] for more details): 
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where M is the bending moment and Q the transverse mechanical force. The corresponding stress 
components read as 
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while the optical-indicatrix rotation angle and the optical birefringence are given by 
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At the polar coordinate 0r  , Eq. (4) reduces to 
2
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The above dependence of the angle o
Z  on the azimuthal angle   corresponds to a so-called 

anisotropic vortex that appears due to a mixed screw-edge dislocation of the phase front. Under the 

condition 22 / (2 ) 1o oh d l d   (or 2 2 22 /od l l h h l     at 2 22h l ), Eq. (6) yields in 

tan 2 tano
Z   (or / 2o

Z  ),    (7) 
i.e. we deal with a pure screw dislocation of the phase front. It gives rise to the isotropic vortex 
having the unit charge. Here the notation od  is introduced to indicate the distance at which the 
pure screw dislocation of the optical wavefront is achieved. Under the same conditions, the spatial 
distribution of optical birefringence is given by a conical surface: 

3
2 21

12 663
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n Pln X Y
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   .     (8) 

The Young and Poisson coefficients for the BK7 glass are equal respectively to 
82.0 GPaE   and 0.206   [12], and the density amounts to 32510 kg/m   [13]. The 

appropriate elastic-stiffness coefficients can be calculated using the well-known relations 

12 (1 2 )(1 )
EC 

 


 
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

.   (9) 

They are equal to 11 91.81 GPaC   and 12 23.82 GPaC  . Finally, the AW velocities vmn (with 
the indices m and n corresponding respectively to the directions of propagation and polarization of 
the AW) can be found from the elastic-stiffness coefficients via the Christoffel equation: 

2vijkl j k l mn iC m m p p .      (10) 

Here ijklC  is the elastic-stiffness tensor written in tensor notation, jm  and km  imply the unit 

wavevectors of AWs, and lp  and ip  the unit vectors of AW polarizations. The quantity 
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il ijkl j kN C m m      (11) 

in Eq. (10) represents a second-rank Christoffel tensor. We note that the AW velocities calculated 
for the BK7 glass are equal to 33v 6048 m/s  and 31 32v v 3680 m/s  . 

The changes in the elastic stiffnesses (or the AW velocities) occurring under mechanical 
stress (or strain) are known as an acousto-elastic effect [2, 3]. They are described by the relation 

ijkl ijklmn mn ijklmn nmrt rt ijklrt rtC e S        ,  (12) 

where ijklC  denotes the increment of elastic stiffnesses, ijklmn  and ijklmn  are the sixth-rank 

polar tensors with the internal symmetry [[V2]2][V2], mne  and rt  imply respectively the strain 

and stress tensors, and nmrtS  is the tensor of elastic compliances. Notice that the acousto-elastic 
effect is an analogue of elasto-optic (or piezo-optic) effect in optics, whereas the changes in the 
AW velocities induced by the stresses 106 N/m2 are usually small enough (e.g., ~ 10 m/s –see 
Ref. [2]). 

The numerical values of the ijklrt  components for the BK7 glass are not available in the 

literature. In our simulations, we have taken the ijklrt  values that follow from the experimental 

data for the AW-velocity changes observed in rocks [2]. As a result, we arrive at 111 100  , 

121 200  , 221 600  , 231 400   and 134 560  . The following relationships among the 
tensor components are valid for the isotropic media [14]: 
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1 1 1Θ Θ 2Θ Θ 2Θ , Θ Θ Θ , Θ Θ Θ .
8 2 4

         (13) 

Thus, the Christoffel tensor components are given by 11 11 12 441 20.5( ) Θ ( , )N C C X Y   , 

22 11 12 551 20.5( ) Θ ( , )N C C X Y   , 33 11 221 2Θ ( , )N C X Y  , 23 13 0N N   and 

12 564 6Θ ( , )N X Y . Then the AW velocities under the bending stresses can be represented as 
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It is seen that the AW velocities 32v  and 31v  become different under the bending stress. 
Then we obtain  

2 2 2 2 2 2
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Finally, this yields in  
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Under condition 0r  , the orientation angle of the eigenvectors of the Christoffel tensor 
with respect to the X axis is given by the formula 
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It is evident that the dependence of a
Z  on the azimuthal angle   corresponds to the anisotropic 

vortex appearing due to a mixed screw-edge dislocation of the phase front. Under the condition 
2 / (2 ) 1a ah d l d   (or 2 2 2 / 2ad l l h h l     at 2 2h l ), Eq. (20) can be reduced to 

tan 2 tana
Z   (or / 2a

Z  ),    (21) 

where ad  is the distance on which the mechanical stress must be distributed in order to generate a 
purely screw acoustic dislocation. Then Eq. (19) can be rewritten in the form 
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Eq. (21) describes a topological defect of orientation of the eigenvectors of the Christoffel 
tensor with the strength equal to q = ½ and Eq. (22) implies a conical distribution of the difference 
of phase velocities of the AWs. Finally, it is obvious from Eqs. (6)–(8) and Eqs. (20)–(22) that the 
conditions for generating the isotropic optical and acoustic vortices are different. 

3. Results and discussion 
In case of our particular geometry described above, the isotropic optical vortex should correspond 
to the parameter do = 0.66 mm [5]. The calculated dependences of the rotation angle of optical 
indicatrix and the orientation angle of eigenvectors of the Christoffel tensor are shown in Fig. 2. 
The angle of optical-indicatrix rotation depends linearly on the azimuthal angle and the orientation 
angle of the eigenvectors of the Christoffel tensor oscillates with changing  . The dependence of 
the difference of AW velocities on the X and Y coordinates represents a conical surface with a non-
circular cross-section (see Fig. 3a, b), while its optical analogue is a conical surface with the axis 
of revolution parallel to the Z axis (see Fig. 3c, d). Then the optical-polarization singularity would 
produce an isotropic singly charged optical vortex nested in the emergent optical beam, while the 
AW propagating inside the sample would bear an anisotropic singly charged acoustic vortex. 

 

 
 
 
 
 
 
 

Fig. 2. Dependences of rotation angle of optical 
indicatrix (circles) and eigenvectors of Cristoffel 
tensor (triangles) on the azimuthal angle  , as 
calculated at d = 0.66 mm. 
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Fig. 3. Spatial distributions of difference of the AW velocities (panel a) and optical birefringence (panel c), and 
their projections on the XY plane (panels b and d, respectively), as calculated at d = 0.66 mm. 

The opposite situation is observed at da = 0.33 mm. Then the dependence of the orientation 
angle of eigenvectors of the Christoffel tensor on the azimuthal angle is linear, contrary to the 
dependence of orientation angle of the optical indicatrix (see Fig. 4). The appropriate dependences 
of the optical birefringence and the difference of AW velocities on the X and Y coordinates are 
presented in Fig. 5, together with their projections on the XY plane. The behaviour described above 
would mean appearance of an anisotropic optical vortex behind the sample and an isotropic singly 
charged acoustic vortex inside the sample. 

 

Fig. 4. Dependences of rotation angle of optical indicatrix (circles) and eigenvectors of Cristoffel tensor 
(triangles) on the azimuthal angle  , as calculated at d = 0.33 mm. 
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Fig. 5. Spatial distributions of difference of the AW velocities (panel a) and optical birefringence (panel c), and 
their projections on the XY plane (panels b and d, respectively), as calculated at d = 0.33 mm. 

The projections displayed in Fig. 3b and Fig. 5d are six-order geometric figures rather than 

ellipses (see Eqs. (5) and (19)). In order to know at which d values these figures are characterized 

by the unit ratio of semi-axes, one can plot the dependences of the acoustic and optical anisotropy 
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 on the distance d over which the mechanical load 

is distributed. For this aim, let us rewrite Eqs. (5) and (19) with neglecting higher-order r  terms 

under assumption of 0r  . Then Eqs. (5) and (19) would read respectively as 
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It is evident that the both relations describe ellipses. Fig. 6 shows the dependences of 
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anisotropy parameters a  and o  on the load-distribution distance d. It is obvious that a  and 

o  are equal to unity at some specific (though different) d values: we have 1a   at 
da = 0.33 mm and 1o   at do = 0.66 mm. 
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Fig. 6. Dependences of anisotropy 
parameters a  and o  on the distance d 
over which mechanical load is distributed. 

Now let us consider a backward collinear AO diffraction of the incident optical wave by the 
AW. For the case of AO interaction in the glass-like media, the collinear diffraction cannot be 
implemented since the appropriate elasto-optic coefficients (p14, p24, p15, p25, p64 and p65) are equal 
to zero. However, these coefficients remain nonzero in the crystals belonging to the point 
symmetry group 3m (e.g., LiNbO3) or the other symmetry groups that contain the three-fold axes 
among their symmetry operations. Note that Eqs. (6) and (20) (as well as Eqs. (23) and (24)) 
derived above for the isotropic glass media remain almost the same for the crystals of the 
symmetry group 3m. Namely, we have 
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where no is the ordinary refractive index. The only differences are the effective piezo-elastic 
coefficient 441 551Θ Θ  and the elastic stiffness 44C , which replace the coefficients 564Θ  and 

11 12C C  for glasses. 
Notice also that, contrary to the case of mechanical torsion [1], bending can produce 

anisotropic optical and acoustic vortices. This anisotropy manifests itself as a non-monotonic 
change in the phase under helicoidal rotation around the vortex core. The dependences of 
orientations of the optical indicatrix and the Christoffel eigenvectors on the azimuthal angle are 
defined by the relations 

 1 arctan tan
2

o
Z o   ,  1 arctan tan

2
a
Z a   ,   (27) 
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Imagine that a right-handed (RH) circular acoustic Gaussian beam is excited in a crystal and 
propagates along the Z axis. Then the corresponding displacement vector can be written as 

0
1

aciK ZRHu u e
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 
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 
,     (28) 

where   and Kac are respectively the frequency and the wavevector of AW, and u0 is the unit 
amplitude of displacement vector. This wave is characterized by the spin angular momentum equal 
to  . When the bending stress is applied (see Fig. 1), the AW velocities v31 and v32 become 
different and a topological defect of the eigenvectors of the Christoffel tensor with the strength 
q = ½ appears. Then the initial RH-polarized acoustic Gaussian beam can be decomposed into the 
RH-polarized Gaussian beam and the left-handed (LH) beam bearing the acoustic vortex. This 
process can be described as (see Ref. [1]) 
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Here 1
31 1 32 1

Г ( , )=
v ( , ) v ( , )ac r P b

r P r P
  

  
 

 is the phase difference between the transverse 

AWs which have their polarizations orthogonal (i.e., parallel to the X and Y axes) and propagate 
with the velocities 31 1v ( , )r P  and 32 1v ( , )r P , and  ,outu r   denotes the output-AW displacement 
vector.  

As seen from Eq. (29), the phase of the outgoing AW depends nonlinearly upon the 
azimuthal angle. Seemingly, this should lead to dependence of the vortex charge on the angle   

(i.e., 1 arctan( tan )al  


 ). However, such a dependence rather means that the phase change has 

an oscillating character (i.e., it accelerates and slowdowns periodically), while the phase change is 
equal to 2π within the period of AW. Therefore a  and o  represent morphological parameters of 
the vortices, which define their internal structure. Hence, an anisotropic vortex with the charge 
l = 2q = 1 is generated. Moreover, Eq. (29) describes conversion of the spin angular momentum to 
the OAM, since the second term in the right-hand side of Eq. (29) corresponds to the AW with the 
helicoidal phase front and the LH polarization (i.e., the spin angular momentum equal to   and 
the OAM equal to  ). 

 

 
 
 
 
 
 

Fig. 7. Schematic view of phase-matching conditions 
provided at a backward collinear diffraction: kin and 
kd are wavevectors of the incident and diffracted 
optical waves, Kac is wavevector of the AW, and ko 
and ke denote respectively wavevectors of the 
ordinary and extraordinary optical waves (a LiNbO3 
crystal is taken as an example). 
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Now let us consider a particular case of backward collinear AO diffraction illustrated in 
Fig. 7. A linearly polarized incident optical wave with its polarization parallel to the X (or Y) axis 
is described by the state vectors 

1
1
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 or 2
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.    (30) 

As a result of bending-induced singularity, we arrive at the Jones matrix [15] 

   1 1 cos 2 sin 2ΔΓ ΔΓ1 0
( , ) cos sin

0 12 2 sin

, ,

2 cos 2

o o
Z Zo o
o o
Z Z

r P r
M Y i

P
X

 

 

  
    

    
, (31)  

where  1 12
2Δ ,Γ Δo r P n b


  is the bending-induced optical phase difference and D0 the unit 

electric-induction amplitude. The X- or Y-polarized incident optical waves are decomposed inside 
the crystal: 
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Notice that Eqs. (32) and (33) contain the two terms. The first term describes the wave with 
the incident polarization and the second one corresponds to the optical vector beam with the unit 
polarization order. In general, this vector beam is close to the elliptical one [16]. Following from 
Eq. (29), the displacement vector of the AW bearing the vortex is given by the relation 
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The strain-tensor components caused by this AW read as 
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with e0 being the unit strain. Then the electric-field components of the diffracted wave for the 
cases of X- and Y-polarized incident optical waves can be written respectively as  
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and 
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with 14p  being the elasto-optic coefficient. Note that D0, e0 and the corresponding unit parameter 
referred to Kac are not written down in Eqs. (36) and (37) for the reasons of brevity.  

One can see that the electric fields of the diffracted optical waves correspond to the RH-polari-
zed waves containing a topological defect of their phase fronts. Its strength is given by a sum of the 
strengths of defects referred to the optical wave and the AW, which involves the both anisotropy 

parameters:     1 arctan tan arctan tan
2 o aq      . In other words, these waves bear a doubly 
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charged optical vortex with the OAM equal to     1 arctan tan arctan tano al    


  . Fig. 8 

displays dependences of the phase of this vortex, arctan( tan ) arctan( tan )o a      , on the 

azimuthal angle  , as calculated at different anisotropic parameters o  and a . Each dependence 
corresponds to some distance d taken from Fig. 6. 

 
Fig. 8. Dependences of phase δ of the vortex on the azimuthal angle  , as calculated at different anisotropic 

parameters o  and a . 

Since the phase is changed by 4π at the azimuthal change of 2π (see Fig. 8), the diffracted 
optical wave bears a doubly charged optical vortex and the strength of topological defects 
embedded in the acoustic and optical beams are summed up. It is also noteworthy that the 
dependences of the phase on the angle   are nonlinear and have a step-like character. This means 

that the optical vortex is anisotropic. The dependence of the phase on the angle   acquires a linear 

character at some specific values of the anisotropic parameters (e.g., 0.531o   and 2.076a   
at d = 0.47 mm). Then the vortex nested in the diffracted optical beam becomes isotropic. Notice 
that, in our recent work [1], we have not considered a vector character of the optical beam 
appearing under condition of linearly polarized incident optical beam. This has resulted in an error 
corrected later in Ref. [4]. 

If the incident AW is LH-polarized, it excites the acoustic vortex wave with the RH 
polarization and the OAM l   . In the case of AO interaction of the optical wave described by 
Eqs. (30), (32) and (33) with this AW, the diffracted optical wave represents a circular wave with 
the LH polarization and the OAM equal to 2l    . 

In the case of AO interaction involving the RH-polarized incident optical wave, 
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1 inRH ik ZD D e
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,     (38)  

and the LH-polarized AW (see Eqs. (34) and (35)), the electric induction of the optical wave inside 
the crystal can be described by the sum of two terms: 
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The second term in the right-hand side of Eq. (39) represents the LH-polarized wave that 
bears a singly charged vortex. Then the electric field of the diffracted wave can be written as 
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,  (40)  

As seen from Eq. (40), the RH-polarized diffracted optical wave bears a doubly charged 
anisotropic vortex. 

In case when the incident optical wave is RH-polarized (and the excited AW is LH-
polarized), the topological defects embedded in the incident acoustic and optical beams would 
annihilate and the diffracted optical wave becomes vortex-free. Then the phase is given by the 
relation arctan( tan ) arctan( tan )o a      . The dependences of the phase of this wave on the 

azimuthal angle   calculated at different anisotropic parameters o  and a  are illustrated in 
Fig. 9. One can see that the phase oscillates around a zero value and the phase increment is equal 
to zero when the azimuthal angle changes by 2π. In general, these oscillations are not harmonic. It 
is only at the anisotropy parameters 0.531o   and 2.076a   (taken at d = 0.47 mm) that the 

dependence of the phase on the angle   becomes sinusoidal. Note also that the dependences of the 
phase on the azimuthal angle presented in Fig. 9 do not correspond to the screw dislocation of the 
phase front. They are close to the two edge dislocations crossed at the right angle. 

 
Fig. 9. Dependences of phase δ of the diffracted wave (see Eq. (40)) on the azimuthal angle  , as calculated 

at different anisotropic parameters o  and a . 

4. Conclusions 
In the present work, we have shown that the bending mechanical stresses can generate the 
polarization singularity for transverse acoustic waves (i.e., the topological defect of eigenvectors 
of the Christoffel tensor with the strength equal to ½). In its turn, this results in induction of the 
singly charged acoustic vortices. The properties of such vortices have been analyzed. In particular, 
we have demonstrated that, in general, they are anisotropic. Nonetheless, the vortices can be 
transformed into isotropic ones at some specific geometrical parameters of distributed mechanical 
loading. It is very important that the acoustic vortices generated through the bending stresses can 
be produced even in isotropic solid-state media.  

The process of collinear backward AO diffraction has been considered for the case of 
interaction of optical waves with the AWs that bear bending-generated topological defects of the 
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phase front. This has been done on a specific example of crystals belonging to the point symmetry 
group 3m. We have shown that the vector beam with the unit polarization order is generated in the 
crystals in case of the linearly polarized incident optical beam. The AO interaction of this vector 
beam with the acoustic beam bearing the singly charged anisotropic vortex produces the diffracted 
optical wave which is also vortex-bearing. The embedded topological defect of the phase front of 
this wave has the strength given by the sum of the strengths of topological defects of the incident 
optical wave and the AW. Then the diffracted optical beam represents the anisotropic vortex beam 
with the OAM equal to 2ħ. 

When both the incident optical wave and the AW nest bending-induced singly charged 
anisotropic vortices, the diffracted optical wave would also bear the vortex. Its charge is given by a 
linear combination that involves the charges corresponding to the AW and the incident optical 
waves and the parameters of acoustic and optical anisotropies. When the signs of the OAMs of the 
interacting AW and the optical wave are the same, the diffracted optical wave bears the doubly 
charged anisotropic optical vortex. It can be transformed into the isotropic vortex at a specific 
balance of anisotropy parameters. Finally, when the signs of the OAMs are opposite, the 
topological defects embedded in the interacting waves annihilate and the diffracted optical wave 
becomes vortex-free. 
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Анотація. Показано, що механічне напруження згину може спричинити появу 
топологічного дефекту орієнтації власних векторів тензора Крістофеля з силою ½. Це 
означає генерацію однозарядного акустичного вихору для поперечних акустичних хвиль. 
Загалом цей вихор є анізотропним, хоча при деяких геометричних параметрах 
розподіленого механічного навантаження він може трансформуватися в ізотропний. 
Акустичні вихори, породжені внаслідок дії напружень згину, можуть формуватися навіть 
в ізотропних твердотільних середовищах. На прикладі кристалів, що належать до групи 
точкової симетрії 3m, ми також розглянули процес зворотної колінеарної акустооптичної 
дифракції для випадку взаємодії оптичних та акустичних хвиль, які несуть генеровані 
згином топологічні дефекти їхніх фазових фронтів. Показано, що у випадку падаючої 
оптичної хвилі з лінійною поляризацією в кристалах генерується векторний пучок з 
одиничним порядком поляризації. Акустооптична взаємодія цього векторного пучка з 
акустичним пучком, який несе однозарядний анізотропний вихор, породжує дифраговану 
оптичну хвилю, яка також несе вихор. Вбудований топологічний дефект фазового фронту, 
пов’язаний з цим вихором, має силу, яка визначається сумою сил топологічних дефектів 
падаючої оптичної хвилі та акустичної хвилі. Дифрагований оптичний пучок є 
анізотропним вихровим пучком із орбітальним кутовим моментом (ОКМ), що дорівнює 2ħ. 
Коли і акустична хвиля, і падаюча оптична хвиля містять індуковані згином однозарядні 
анізотропні вихри, дифрагована оптична хвиля також несе вихор. Його заряд є лінійною 
комбінацією зарядів, пов’язаних із акустичною та падаючою оптичною хвилями, яка 
включає параметри акустичної та оптичної анізотропії. Якщо знаки ОКМ взаємодіючих 
акустичної та оптичної хвиль однакові, то дифрагована оптична хвиля несе подвійно 
заряджений анізотропний оптичний вихор. При деяких специфічних параметрах 
анізотропії він може бути перетворений на ізотропний вихор. Нарешті, топологічні 
дефекти, закладені у взаємодіючі хвилі, анігілюють, а дифрагована оптична хвиля стає 
безвихровою, якщо знаки ОКМ взаємодіючих хвиль протилежні. 


