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Abstract. We suggest a fast and efficient method for fusing infrared and visible 
images, which is based on a median filter and an intensity transfer. The median filter 
is used to construct a new two-scale image decomposition and obtain base and detail 
layers. Then a fused base layer is obtained by utilizing an optimization fusion rule 
based on intensity transfer, where the fusion is transformed into matrix operations. A 
fused detail layer is obtained by an improved maximum-selection rule which 
maximizes the details-appearance information with some image-enhancement effect. 
Our experimental results demonstrate that the method can provide a superior 
competitive fusion performance in terms of both subjective evaluation and objective 
metrics, when compared with seven standard state-of-the-art methods. Moreover, 
our method is quite suitable for real-time fusion applications. 
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1. Introduction 
Better characteristics of sensors are almost always achieved at the expense of their more complex 
design and implementation or higher cost [1]. Since infrared (IR) sensors capture primarily 
thermal-radiation information, which is not affected by illumination or disguise, they are useful for 
revealing and highlighting different targets and can work day and night. However, the images 
captured by the IR sensors are not consistent with human visual system too well. Moreover, 
usually they manifest low spatial resolution and lose detailed information about appearance of a 
scene. On the contrary, visual (VIS) images can provide high-quality appearance information 
captured by a VIS sensor, which is perfectly consistent with the human visual system. As a result, 
it would be useful to fuse the IR and VIS images into a composite one, which can provide 
important mutually complementary information. 

Up to now, image-fusion technologies have been widely used in many fields, e.g. in medical 
imaging, object detection, remote sensing and surveillance. Among the well-known fusion methods, 
one can remind of multi-scale decomposition [2], sparse representation [3] and methods based on 
neural networks [4]. The mathematical models underlying these techniques are different. The fusion 
methods relying upon multi-scale decomposition have become prevalent in the past two decades and 
still remain very efficient. They decompose source images into different scales (from fine to coarse) 
and then combine the coefficients of the appropriate subbands using some fusion rules. The methods 
based on sparse representation can be derived from the idea that an image can be represented by a 
linear combination of sparse bases in over-complete dictionaries. Finally, the methods associated 
with neural networks imitate human brain’s perception to deal with information. 

Of course, none of the approaches mentioned above is perfect. The multi-scale 
decomposition-based methods depend significantly on transforms, decomposition levels and 
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wavelet bases. In the frame of sparse representation, constructing appropriate dictionaries which 
have promising representation and high fusion performance is still difficult and time-consuming. 
Designing suitable neural networks and tuning their parameters are complex to implement and 
expensive computationally, especially when it is done using recently developed deep-learning 
based methods. 

In recent years, an edge-preserving filtering has emerged as an effective tool for image 
processing. It can be classified as a multi-scale decomposition. Bilateral filter [5], weighted least-
squares filter [6], guided filter [7] and some others are now commonly used in edge-preserving 
filtering. They can decompose an image into one base layer and one or more detail layers. Notice 
also that some simple filters can be applied to the similar decomposition. For example, Ma et al. 
[8] have used a Gaussian filter to decompose source images and obtain a single base layer and a 
single detail layer. Li et al. [7] have suggested a simple mean filter to achieve the two-scale 
decomposition, while Bavirisetti et al. [9] and Naidu et al. [10] have constructed the same two-
scale image decomposition, using a mean filter, and taken the difference of mean and median 
filtering outputs as a saliency map for the detail layer fusion. Kalaiselvi et al. [11] have employed 
the same median filter in order to construct a two-scale adaptive median filter for denoising. 
Inspired by those methodologies, we have decided to avoid the problems mentioned above. This 
can be achieved when using a median filter to construct a parameterless two-scale image 
decomposition. Then it is combined with intensity transfer and improved maximum-selection 
fusion rules for reducing the computational complexity. 

Note that the intensity-transfer scheme [12] has originally been intended as an image-fusion 
method, which regards the fusion as a minimization problem and solves it by direct matrix 
mapping. A seemingly similar approach is the intensity-transformation function for IR images 
[13]. It behaves like a sigmoid function, shifts or expands the range of dart pixels, and can be 
considered as a preprocessing of fusion. 

The remainder of this article is organized as follows. In Section 2 we briefly review a theory 
of intensity transfer. Section 3 describes the suggested fusion method in detail and the 
experimental results and discussion are presented in Section 4. Finally, we draw the main 
conclusions in Section 5. 

2. Intensity transfer 
The intensity transfer [12] has been proposed for fusion of IR and VIS images in order to meet the 
requirements of preserving thermal objects and keeping background information. In this scheme, 
the fusion is formulated as a minimization problem, i.e. 

* 2 2
2 2

2 2

arg min || || || ||

arg min (( ) ( ) ),p p p p pp

W or

w

   

   
x

x

x x u x v

x u x v
   (1) 

where u, v  and 1mnx   are the vector forms of respectively IR, VIS and fused images, and 2|| ||  

denotes the 2l -norm. Here mn mnW   is the diagonal weight matrix and pw  the diagonal entry 

of W  at the position p , which is calculated as 

| log( ) |p pw S ,     (2) 

with pS  being the element of spatial-saliency map [14]. The latter can be obtained from the image 
statistics: 



 

Ukr. J. Phys. Opt. 2022, Volume 23, Issue 3 157 

255
0 ( )p V pVS N I V  ,     (3) 

where VN  represents the total number of pixels in image I  of which intensity values are equal to 
V , while pI  is the intensity value of pixel in the image I  at the position p . 

To solve the optimization problem for x , we assume that the derivative of 
2 2
2 2|| || || ||W  x u x v  in Eq. (1) is equal to zero. Then we have 

* 1( ) ( )II W W  x u v .     (4) 

where mn mnII   is a unit matrix. 

3. Fusion method 

Basically, our fusion method consists of three steps: two-scale image decomposition, fusion, and 
reconstruction. First, the decomposition is achieved by median filtering and then the obtained base 
and detail layers are fused using specific fusion rules. At last, the fused image is reconstructed 
issuing from the fused base and detail layers. 

The median filtering is a nonlinear spatial smoothing operation, in which each output pixel 
takes the median value of its 3-by-3 neighbourhood. This approach is more efficient than the 
convolution whenever one of the purposes is to preserve edges. As a consequence, the technique is 
also suitable when constructing a two-scale image decomposition. Compared with the mean filter 
[7, 9] or the Gaussian filter [8] also used in the two-scale decomposition, our approach is more 
advantageous for preserving gradient information in the base layer. 

Assume that the two detected source IR and VIS images are denoted respectively as ir  and 
m nvi  and the fused image is given by m nf  . Then the base layer can be obtained by the 

median filtering:  
= ( )n nB median I ,     (5) 

where nB  denotes the base layer, nI  the source image, { , }n ir vi  represents the IR (or VIS) 
image, and ( )median   implies the median filtering. 

After that, the detail layer can be obtained by subtracting the base layer nB  from the 

corresponding source image. This can be expressed as 

n n nD I B  ,     (6) 

where nD  denotes the detail layer. 
In this two-scale decomposition, the base layer contains the most energy of the source image, 

and the detail layer contains mainly the information on the appearance of details. Note that no 
parameters are required in the process of decomposition, whereas the classical algorithm of 
median filtering is robust and can be implemented at high speed [15]. 

In the fusion of base layers, the ideal result is transferring the object information in the source 
image such as contour, location and background, to the fused base layer. So the latter should 
simultaneously approximate the base layers of the IR and VIS images. Then we employ the 
intensity-transfer scheme studied in Section 2 as a fusion rule for the base layers. We arrive at the 
optimization problem which can be formulated as follows:  

2 2
2 2min ( )= || ( ) ( ) || || ( ) ( ) ||

f
f f ir f viB

J B vec B vec B W vec B vec B   ,  (7) 

where ,f irB B  and m n
viB  denote the base layers respectively of the fused, IR and VIS 
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images, ( )vec   is the vec-operator applied to the matrix, which stacks the columns into a vector, 

and ( )J   is the cost function of the above optimization problem. 

Let we have for simplicity ( )fvec Bx , ( )irvec Bu  and ( )vivec Bv . Then Eq. (7) can be 
substituted by 

* 2 2
2 2arg min ( )= || || || ||J W   

x
x x x u x v .   (8) 

In its form, this relation it is the same as Eq. (1). Now let the derivative of ( )J x  be equal to 
zero. Solving the equation for x , we obtain Eq. (4). Then *x  is reshaped to the size of fB  and 

denoted as ˆ
fB . 

In Eq. (4), there is a single unknown parameter, W , which is crucial in the calculation of the 
fused result. A spatial-saliency map based on the image statistics (i.e., Eqs. (2) and (3)) has been 
utilized in Ref. [12] to obtain W . However, this process involves large amount of calculations. 
Actually, the performance of the spatial-saliency map is very similar to image enhancement 
conducted in experiments. Therefore, to accelerate the fusion process with no loss of object 
information, we adopt a simple adaptive scheme that implies using directly the IR image as the 
saliency map: 

irS I .      (9) 
The reason for this procedure is that, in the fusion process, the object information is primarily 

conveyed by the IR image. 
Afterward, one can obtain W  as 

( )S normalize S ,     (10) 

| log( ) |W S ,     (11) 

where ( )normalize   is the normalizing operation aimed to scale the entries of the matrix to the 

region [0,1] . 

As a result of action of the median filter used in the two-scale decomposition, the coefficients 
of the detail layers can be either positive or negative, which usually provides redundant or 
complementary information according to whether their signs are the same or not. Accordingly, we 
improve the common maximum-selection rule. If the signs of the coefficients of the two detail 
layers are the same at the same position, then the result is summation of the two coefficients. The 
advantage of doing so is that the detail information can be ‘enhanced’. If the signs are opposite, 
then the result is the coefficient with larger absolute value. The relevant expression is as follows: 

( , ) ( , ) sgn( ( , )) sgn( ( , ))
( , ) ( , ) sgn( ( , )) sgn( ( , )) ( , ) ( , )

( , )

ir vi ir vi

f ir ir vi ir vi

vi

D i j D i j if D i j D i j
D i j D i j if D i j D i j and D i j D i j

D i j otherwize

 
  



,  (12) 

where fD  represents the fused detail layer and ( , )i j  the pixel coordinate. 

Finally, the fused image is reconstructed by simply summing the fused base and detail layers: 
ˆ

f f fI B D  .     (13) 

4. Experimental results and discussion 

This section describes experimental settings, fusion results and a comparison of performances of 
different fusion methods. All the experiments have been carried out on a laptop characterized by 
Intel i5-6200U CPU and 8GB RAM. 
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tank bunker lake trench soldier 

Fig. 1. Ten pairs of standard IR and VIS source images ‘quad’, ‘uncamp’, ‘kayak’, ‘boat’, ‘walker’, ‘tank’, 
‘bunker’, ‘lake’, ‘trench’, ‘soldier’ (see the text): the first and second rows correspond to IR and VIS images, 
respectively. 

Several widely used image pairs of standard IR and VIS images have been employed to 
conduct our experiments. They are referred to as ‘quad’, ‘uncamp’, ‘kayak’, ‘boat’, ‘walker’, 
‘tank’, ‘bunker’, ‘lake’, ‘trench’ and ‘soldier’ (see Fig. 1). All of these images have been obtained 
from the website imagefusion.org or the TNO image fusion dataset [16]. 

In order to demonstrate the efficiency of our fusion method, seven reference methods which 
provide the state-of-the-art results have been used for comparison. These are a dual-tree complex 
wavelet transform (DTCWT) [17], a curvelet transform (CVT) [18], a multi-resolution singular-
value decomposition (MSVD) [19], a guided filter-based fusion (GFF) [7], a Laplacian pyramid 
with sparse representation (LP-SR) [3], a gradient transfer fusion (GTF) [20], and an intensity 
transfer and direct matrix mapping (IT-DMM) [12]. These methods have been implemented  
in Matlab. The codes of the first six methods are publicly available at the Ma’s homepage [21], 
while the last method has been coded by us according to the lines reported in the work [12].  
The parameters involved in the reference methods have been set according to the original works 
[3, 7, 12, 17–20]. 

First we evaluate the fusion performance in a subjective manner. Due to the space 
constraints, we report only on the fused images obtained for the image pairs ‘quad’, ‘uncamp’ and 
‘soldier’ (see Fig. 2, Fig. 3 and Fig. 4, respectively). Further on, the fused images obtained by the 
seven reference methods DTCWT, CVT, MSVD, GFF, LP-SR, GTF and IT-DMM are compared 
with that obtained by our method. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 2. Fusion results for a ‘quad’ image pair obtained by the DTCWT (a), CVT (b), MSVD (c), GFF (d), LP-SR 
(e), GTF (f) and IT-DMM (g) reference methods and our method (h). 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 3. Fusion results for an ‘uncamp’ image pair obtained by the DTCWT (a), CVT (b), MSVD (c), GFF (d), LP-
SR (e), GTF (f) and IT-DMM (g) reference methods and our method (h). 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 4. Fusion results for a ‘soldier’ image pair obtained by the DTCWT (a), CVT (b), MSVD (c), GFF (d), LP-SR 
(e), GTF (f) and IT-DMM (g) reference methods and our method (h). 
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One can see from Fig. 2 that, perhaps, the poorest fusion effect is provided by the GTF 
method (Fig. 2f). Here the detailed information about pedestrians, cars, store and so on is 
smoothed out, and only the outline information of the object is retained. Similar situations take 
place in Fig. 2c, Fig. 2d, and Fig. 2g, although the degree of smoothing-out effect is not so serious. 
On the whole, the patterns observed in Fig. 2a and Fig. 2b look dark and the contrast is low. This 
implies that the object information is not prominent and conducive to subsequent processing (e.g., 
target detection). Concerning the last two images (Fig. 2e and Fig. 2h), it looks like the 
corresponding methods are roughly characterized by the same (and high) performance. A more 
careful observation testifies that Fig. 2h can reveal more detailed information than Fig. 2e. 

To make further comparison of the visual appearance, a number of important local regions of 
the fused images corresponding to the ‘quad’ source pair have been extracted and magnified in 
Fig. 5. Now it becomes evident that our fusion method achieves the best visual effect. 

Similar conclusions can also be drawn in case of the fused images displayed in Fig. 3 and 
Fig. 4. In other words, the fused images obtained by our method contain clearer object information 
with higher contrast and more detailed information. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 5.  Magnified local regions of the fused images of a ‘quad’ pair obtained by the DTCWT (a), CVT (b), MSVD 
(c), GFF (d), LP-SR (e), GTF (f) and IT-DMM (g) reference methods and our method (h). 

Still there is no standard fusion metric that can measure the fusion performance alone, and no 
specific metric has been definitely proven to be better than the others. Hence, we will use several 
metrics such as spatial frequency (SF) [22], information entropy (IE) [23] and universe image-
quality index (UIQI) [24] to evaluate the fusion performance in an objective manner. The metrics 
adopted by us are defined as follows: 

 
 

1
2

1
2

1
2

1 21
( 1) 1 1

1 21
( 1) 1 1

2 2

( ( , 1) ( , ))

( ( 1, ) ( , ))

( ) ( )

m n
m n i j

m n
m n i j

RF F i j F i j

CF F i j F i j

SF F RF CF


  


  


  


   

  



 

  ,  (14) 
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1
20( ) ( ) log ( )L

iIE F p i p i
  ,    (15) 

2 2 2 2
22( , ) AF A F

A F A F

AFUIQI A F
A F

  
   

  
 

,   (16) 

where A  and F  are respectively the IR and fused images, L  represents the gray level, ( )p i  the 
histogram of intensity i , A  and F  denote respectively the mean values of A  and F , and A , 

F  and AF  imply the variances of A  and F  and covariance of A  and F , respectively. 
In addition, we have also used the running time as a metric that measures the computational 

complexity of the fusion methods. To avoid the influence of running environment on the running 
time, we have calculated the running time by taking the average of 10 executions of each method 
in seconds. 

The results of fusion evaluation are illustrated in Table 1. Here only the results concerned 
with the fused images ‘quad’, ‘uncamp’ and ‘soldier’ are presented for brevity. The best value in 
each row of Table 1 is marked in bold. 

Table 1. Comparison of different fusion metrics for the fused images ‘quad’, ‘uncamp’ and 
‘soldier’, as obtained by the DTCWT, CVT, MSVD, GFF, LP-SR, GTF and IT-DMM reference 
methods and our method. 

 Metric DTCWT CVT MSVD GFF LP-SR GTF IT-DMM 
Our 

method 

SF 0.0474 0.0474 0.0391 0.0477 0.0506 0.0370 0.0435 0.0703 

IE 5.9963 6.0041 5.9350 6.5308 6.8285 6.6205 5.6679 6.3289 

UIQI 0.6325 0.5999 0.6106 0.6787 0.6739 0.6048 0.2048 0.6337 ‘q
ua

d’
 

63
2

49
6 

Time, s 0.4462 1.6652 0.6840 0.5531 0.1932 7.6043 0.4237 0.1393 

SF 0.0408 0.0414 0.0336 0.0384 0.0476 0.0333 0.0342 0.0677 

IE 6.3632 6.3910 6.2495 6.3778 7.0171 6.6779 6.7134 6.6913 

UIQI 0.4054 0.4154 0.4599 0.4689 0.4263 0.2323 0.2080 0.4700 

‘u
nc

am
p’

 
36

0
27

0 

Time, s 0.1392 0.5686 0.2088 0.1208 0.0549 1.2873 0.1309 0.0497 

SF 0.0526 0.0526 0.0425 0.0548 0.0565 0.0463 0.0423 0.0653 

IE 7.0105 7.0116 6.9441 7.3549 7.5273 6.7850 7.2972 6.9236 

UIQI 0.1992 0.2149 0.3342 0.0543 0.2427 0.2254 0.1227 0.2037 

‘s
ol

di
er

’ 
76

8
57

6 

Time, s 0.6395 2.3300 0.9347 0.8030 0.2371 8.8869 0.6034 0.2117 

Regarding the ‘quad’ image group, our method provides the two best values in terms of the 
SF and the running time, although it is not the best according to the IE and UIQI metrics (see 
Table 1). Nonetheless, the scores of our method are very close to the best ones. This indicates that 
the method proposed in this work provides at least a quite competitive performance. Similar 
conclusions can also be drawn from the data referred to the ‘uncamp’ and ‘soldier’ image groups. 

For still better comparison and more precise conclusions, the scores of fusion performances 
corresponding to all 10 fused images are plotted as line charts in terms of each fusion metric (see 
Fig. 6). The appropriate data confirms the above conclusions.  
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(a) (b) 

  
(c) (d) 

Fig. 6. Quantitative comparisons of SF (a), IE (b), UIQI (c) and running time (d) for the eight fusion methods 
applied to 10 groups of images. 

In summary, both the subjective and objective evaluations make it evident that the method 
proposed in this work can quickly and efficiently solve the problems of fusion. It demonstrates 
superior or, at least, quite competitive performance, if compared to the common state-of-the-art 
methods. As a consequence, our method can be applied for real-time fusion. 

5. Conclusion 
We suggest a new two-scale method for fusing IR and VIS images, which is based upon the 
median filter and the intensity-transfer approach. Inspired by the method of two-scale image 
decomposition developed in the previous works, we use the median filter to implement a new two-
scale decomposition, which proves to be simple, efficient and parameterless. Afterwards, the fused 
base layer is obtained by utilizing a novel optimization fusion rule based on the intensity transfer. 
This enables us to approximate simultaneously the IR and VIS images. Then the fusion is 
transformed into matrix operations. The fusion of the detail layers adopts an improved maximum-
selection rule to maximize the information about details, with some image-enhancement effect. 

In our experiments, we have compared seven common and state-of-the-art fusion approaches 
(DTCWT, CVT, MSVD, GFF, LP-SR, GFF and IT-DMM) with our method. The results of fusion 
have been compared both subjectively and objectively on a number of standard IR-and-VIS image 
pairs. The objective metrics include the SF, the IE, the UIQI and the running time. The results 
obtained by us indicate that our method can, in principle, achieve a superior performance in terms 
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of both the human visual perception and the objective metrics. Furthermore, our method is 
computationally efficient and parameterless (or adaptive), which makes it quite suitable for real-
time fusion applications. 
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Анотація. Запропоновано швидкий та ефективний метод злиття інфрачервоних і видимих 
зображень, який базується на медіанному фільтрі та передачі інтенсивності. Медіанний 
фільтр використовують для побудови нової двомасштабної декомпозиції зображення та 
отримання базового шару та шарів деталей. Потім злитий базовий шар одержують за 
допомогою оптимізаційного правила злиття, заснованого на передачі інтенсивності, де 
злиття зводиться до матричних операцій. Об’єднаний шар деталей одержують за 
допомогою вдосконаленого правила максимального вибору, яке максимізує інформацію про 
зовнішній вигляд деталей із деяким ефектом покращення зображення. Наші 
експериментальні результати демонструють, що такий метод може забезпечити вищу 
продуктивність злиття з точки зору і суб’єктивних оцінок, і об’єктивних показників у 
порівнянні з сімома стандартними сучасними методами. Крім того, запропонований 
метод цілком підходить для злиття зображень у реальному часі. 


