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Abstract. We have applied one-dimensional Lie algebraic model to estimate
fundamental vibrations, their higher-order overtones (up to the tenth vibrational
excitation) and combinational bands (up to the fourth excitation) of silylene (SiH,),
difluorosilylene (SiF,) and dichlorosilylene (SiCl,). A vibrational Hamiltonian
maintaining the point symmetry group C,, of each of these silylene molecules is
modelled using three interacting Morse oscillators. Comparison of the calculated
fundamental vibrational energies (the wave numbers) with the available reference
experimental data confirms that our results are consistent with the experiment.
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1. Introduction

Studies of vibrational spectra of molecules is one of the most challenging directions of
contemporary mathematical physics. Development of novel experimental techniques producing
higher-order vibrational excitations in polyatomic molecules requires reliable theoretical methods
for their interpretation. There have been two conventional theoretical frameworks for studying the
experimental data that involves rovibrational spectra of polyatomic molecules. The first approach
is a Dunham expansion [1] which deals with expansion series of energy levels in terms of
rotation—vibration quantum numbers. The Dunham expansion is not advisable for rigorous
modelling due to a number of limitations. First of all, it does not involve a correspondence to the
wave functions of individual states and, hence, operator matrix elements cannot be calculated
directly. Second, the number of parameters required to consider large polyatomic molecules within
the Dunham expansion is large enough and the same is true of the experimental database needed to
optimize these parameters. The latter is not feasible in any practical situation [2].

The second approach, which has been proven to be better than the Dunham expansion, lies in
solving the Schrodinger equation with some potentials using an improved ab initio method [3] and
providing the wave functions to calculate the matrix elements of Hamiltonian. Note however that,
since all the manipulations involved in this approach are either differentiation or integration, it
encounters some problems for the cases of large molecules or highly excited levels.

In our opinion, a one-dimensional symmetry-adapted Lie algebraic model represents,
probably, a more interesting alternative to the conventional techniques mentioned above. lachello
et al. [4] have already applied a U(2) Lie algebraic method to study the vibrational spectra of
small-size molecules. The method has been improved to consider the rotation—vibration spectra of
medium-size molecules, including the case of higher-order overtones [5—12]. It is believed that the
Lie algebraic approach enables estimating the vibrational energies at a less computational cost and
provides higher accurately if compared to the other theoretical techniques.
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The vibrational spectra of silane and its fluoro- and chloro-derivatives represent an
interesting and important topic. Upon decomposition, they form stable SiH,, SiF, and SiCl,
compounds. It would be tempting to find the appropriate vibrational parameters, which are
associated with highly toxic natural phenomena. Up to now, there has been no attempt to calculate
the vibrational energies of these molecules corresponding to higher-order overtones and
combination frequencies. In the present work we apply the Lie algebraic model and calculate the
vibrational energies up to the ninth overtone with tenth vibrational excitation and third overtone
with fourth excitation.

2. One-dimensional Lie algebraic model

Silylene, difluorosilylene and dichlorosilylene are bent triatomic molecules with the equilibrium
structure belonging to the point symmetry group C,,. These molecules are nonlinear and have
three vibrational degrees of freedom, with the symmetry species A; (symmetric stretching), B,
(antisymmetric stretching) and A; (bending). Each of the vibrating bonds in a bent triatomic
molecule XY, (SiH,: X =Siand Y =H, SiF,: X=Si and Y =F, and SiCl,: X =Siand Y = Cl) is
effectively described by a one-dimensional Morse oscillator. The corresponding U(2) Lie algebras
can be assigned as shown schematically in Fig. 1.
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v Fig. 1. Assignment of U(2) Lie algebras to different

Us(2) bonds in XY, molecule.

The two possible chains of dynamical symmetry groups in the XY, molecule, which
correspond to local and normal couplings in the stretching vibrations, are given by
U,2)®U,(2) 2 0,(2)®0,(2) — Local coupling
U,(2)®U,(2) 2 U;,(2) D 0}, (2) — Normal coupling
The Hamiltonian operator describing the vibrational spectra of the two single interacting
bonds (X-Y) in the XY, molecule are expressed mathematically as [13, 14]

n n n
H=E, +Zpl-bl- + z pib; +Zq,-jf,-j . (1)
i=1

i<j i<j
In Eq. (1), E, is the term corresponding to the Schrodinger-equation eigenvalue associated
with the electronic ground state of bond vibrations, which will be used as a zero reference for all
the other excitations, p;,p; and g;are the algebraic parameters, and b; and b; denote the

physically invariant operators of uncoupled and coupled bonds, respectively. Besides, we have

(i) =—4(N v =), @)
<N,-X'Y, vi; N;( Y | |NX Y . ;(-y’vj>

2 (3)
=4[(vl-+ vj) - (v + v, )(NX r NJXY)}.
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The Majorana operator f;;, which contains both diagonal and off-diagonal matrix elements,

l'ja

is used to express the local-mode interactions in pairs. In particular, we obtain

X-Y LA XY X-Y L AarX Y _
<N ’Vi’Nj ’Vj|f;j|Nl ’Vi’Nj ’Vj>_

1

X-y X-v

(Nl- VTN VifEViVj),
1

_[vj (v )N v ) (VT =y +1)T/2,

X-Y XY X-Y . arX-Y _
<Nl- Vi -1LN5 ,Vj+1|fl-j|Nl~ Vi N ,vj>—

_[Vl. (v, + 1) (N =) ) (W, +1)T/2 .

Here v; and v; are the vibrational quantum numbers respectively of the bonds i and j, and

X-y X-Y X-v X-Y
<N. NV ENET | N v N ,vj>=
“4)

NI-X ¥ and N ]X -r imply the vibron numbers describing the stretching vibrations of the two X-Y

bonds in the XY, molecule. Since the two stretching X—Y bonds are equivalent, the vibron numbers
NI-X Y and N ]X ¥ must be the same. Finally, note that the algebraic parameters and the operators
vary from molecule to molecule.

The vibron number N~ (= NiX T=N ]X 7Y) for the stretching bonds of the molecule can be

calculated using the relation N =w, /w,x, -1, with @, and @,x, being the harmonic and

anharmonic spectroscopic constants of the bond X-Y [15]. Finally, the algebraic parameter p is
estimated from the energy equation for the single-oscillator fundamental mode,

E(V=1)=—4p(NX_Y—1), (5)

and the parameter ¢, from the relation
|E1— By

2N ©

912 =

where E|,E, are respectively the symmetric and antisymmetric vibrational energies of the
molecule. Here the initial p;; values are taken to be zero.

The Hamiltonian for the two stretching vibrations of the XY, molecule reads as
H =Ey+pb +pyby + piobis tqiafin- (7

In Eq. (7), p;,py.po and g, are the algebraic parameters (in em') which can be found

from the available spectroscopic data. The vibrational energies of the molecule can be determined
issuing from the Hamiltonian matrix (i.e., the first two local oscillators):

~4p(N*Y 1) =y (2N 1) 4, N —gN*Y
H= X-Y X-Y X-Y X-Y | ®
S N ~4p(N*Y —1)=dpyy  INFY 1) 4N

The interactions result in three normal-mode (stretching and bending) vibrations, which
correspond to 4;, 4, and /3, i.e. to the symmetry species A; (symmetric stretching), A; (bending),
and B; (asymmetric stretching), respectively.
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3. Results

The parameters of the Hamiltonian obtained on the basis of fitting of the experimental data are
reported in Table 1. The fundamental vibrational energies have been calculated using the
Hamiltonian operator, as explained above. The results obtained theoretically are compared with
the experimental data in Table 2. Finally, the calculated vibrational energies corresponding to the
higher overtones and the combinations are displayed in Table 3 and Table 4, respectively.

Table 1. Algebraic parameters involved in our model (found upon fitting the experimental data).

Parameter SiH, SiF, SiCl,
NXY (stretching) 56 172 246
NYXY (bending) 32 98 152
Py, P, (stretching) —9.0653 -1.2612 —0.5408

p3 (bending) -8.056 -0.6214 —-0.3443

pyo (stretching) 0.0034 0.0055 0.0025
P13, P23 (bending) —0.0239 —0.2143 -1.2913
qyp (stretching) 0.0277 0.0447 0.0203
q13, 923 (bending) 0.9213 1.2361 —0.6542

Table 2. Fundamental vibrational energies (in cm™') obtained from experiments and calculated for
Sin, Sle and SIC12

Vibrational = Symmetry Experimental [16-19] Calculated
mode SiH, SiF,  SiCl,  SiH, SiF, SiCl,
A1 (symmetric) A 199593  855.01 525 1995958 855.114 525.074
4> (bending) A 999.03 345 208 997.237 343.601 206.613
A3 (antisym-
metric) B, 1992.82  870.40 535 1992.856  870.491 535.061
stretching)

Table 3. Vibrational energies (in cm™') corresponding to higher-order overtones.

Vibrational mode Symmetry Vibrational energy
SiH, SiF, SiCl,
1 2 3 4 5
2 A, 3986.130 1706.810 1042.011
22, A, 1986.401 676.263 408.420
273 B, 3973.926 1736.322 1058.105
34 A, 5983.231 2559.112 1563.213
34, A 2931.121 1012.003 613.003
323 B, 5964.198 2591.921 1591.211
42, A, 7975.631 3417.111 2088.315
42, A, 3949.612 1327.891 803.921
473 B, 7952.250 3432.632 2087.093
54 A, 9968.359 4261.103 2603.463
5, A, 4912.261 1684.198 1021.996

Ukr. J. Phys. Opt. 2022, Volume 23, Issue 3 129



1 2 3 4 5

523 B, 9948.129 4302.730 2551.619
64, A 11946.037 5114.585 3109.662
64, A 5909.621 2019.205 1187.173
643 B, 11939.237 5182.774 3161.624
T4 A 13945.410 5963.534 3587.321
T2z A 6906.112 2372.419 1398.254
723 B, 13912.096 6036.138 3670.321
84 A 15921.161 6824.087 4123.519
84, A 7923.536 2709.129 1573.023
813 B, 15891.531 6892.229 4161.855
94, A 17893.204 7631.850 4672.752
94, A 8916.392 3064.005 1723.732
923 B, 17881.582 7741.403 4639.112
104, A 19742.409 8480.612 5173.518
104 A 9923.443 3342.451 1968.374
104; B, 19873.985 3617.722 5114.008

Table 4. Vibrational energies (in cm™') corresponding to combinational bands.

Combinational band Vibrational energy
SiH, SiF, SiCl,

1 2 3 4
At 2 2992.169 1197.879 726.532
At 23 3988.842 1725.649 1060.155
At 23 2989.070 1213.256 736.519

22 22, 5972.452 2382.237 1445.275
20 +22; 7960.083 3443.176 2100.136
205+ 223 5960.245 2411.749 1461.369
32+ 3%, 8914.271 3570.279 2171.060
32+ 35 11947.457 5151.077 3154.444
32+ 35 8895.238 3603.088 2199.058
42, + 42, 11925.161 4744.166 2892.256
42, + 423 15927.908 6849.787 4170.252
42, + 423 11901.780 4759.687 2885.858
A+ 24 5982.116 2561.968 1567.105
A+ 22, 3982.278 1530.541 928.338
A+ 273 5969.912 2591.480 1578.023
Ayt 22, 4982.344 2049.575 1243.469
Ayt 22, 2982.506 1018.122 604.702
Ayt 273 4970.140 2079.087 1259.563
A3+ 24, 5979.014 2577.345 1577.092
A3+ 22, 3979.175 1545918 938.326
A3+ 273 5966.809 2606.857 1593.186
A+ 34 7979.217 3414.270 2088.307
A+ 32, 4926.998 1866.281 1132.921
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1 2 3 4

A+ 34; 7960.184 3447.079 2116.305
Ay + 34 6979.446 2902.1392 1764.671
Ayt 34; 3927.226 1355.412 809.285
Ayt 34; 6960.412 2935.440 1792.669
A3+ 34 7976.115 3429.521 2098.294
A3+ 34; 4923.895 1882.412 1142.909
A3+ 34; 7957.082 3462.439 2126.292
A+ 44 9971.617 4272.252 2613.409
A+ 44, 5945.488 2182.813 1323.839
A+ 44; 9948.236 4287.79 2612.187
A+ 44, 8971.845 3759.876 2289.773
Ayt 44, 4945.716 1669.777 1000.203
Ayt 44; 8948.464 3775.397 2288.551
Az + 44, 9968.514 4287.646 2623.396
A+ 44, 5942.386 2197.546 1333.827
Az + 44; 9945.133 4303.167 2622.174

4. Conclusion

We have calculated the vibrational energies of silylene, difluorosilylene and dichlorosilylene,
using the one-dimensional Lie algebraic model. Our results indicate that the model based upon the
Lie algebra represents a successful technique. We have found that the calculated energies agree
well with the fundamental experimental references. For instance, the root-mean-square deviations
obtained for the both stretching and bending fundamental vibrational energies are equal to 1.03,
0.81 and 0.80 cm™ respectively for SiH,, SiF, and SiCl,.

As a consequence, one can believe that the approach adopted in the present work can predict
accurately the vibrational energy levels for the small and medium-size molecules, as well as the
higher-order overtones and the combinational bands. In particular, we have calculated the higher-
order vibrational energies up to the ninth overtone with tenth vibrational excitation and third
overtone with fourth excitation.
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Anomauin. Mu 3acmocysanu 00Ho8UMIpHY aneedpaiuny mooens JIi 00 oyiHOK GYHOAMEHMANTbHUX
KONUBAHL, A MAKONC IXHIX 00epmoHie Suujo20 NOpsaoKy (axc 00 0ecimozo KOMUBAIbHO20
30y00icenHst) ma KoMOIHayitinux cmye (00 wemeepmozo 30y0dxcenHs) Ons cuiineny (SiH,),
ougpmopcunineny (SiF,) ma ouxnopcunineny (SiCly). Konusanvruil 2amitemonian, skuil ympumye
moukogy epyny cumempii Cy, KOJNCHOI 3 YUX MONEKYN CUNLEHY, 3MOOENIbOBAHO 3d OONOMO20I0
mpbox 63aemooiouux ocyunamopie Mopse. TlopieHsanHs po3paxoeanux HAMu QYHOAMEHMATbHUX
KOUBANbHUX eHEeP2Il (XGUNbOBUX YUCET) I3 HASABHUMU eKCREPUMEHMATLHUMU O0BIOKOBUMU OAHUMU
niomeepoNCye, Wo Hauti pe3yiomamu 000pe y3200HCYIOMbCs 3 eKCNEPUMEHIMOM.
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