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Abstract. We improve a known approximating-functions method, a special case of 
finite-element method, in order to solve electrodynamics problems of optical 
reflection and transmission of one-dimensional layers in time domain, using a 
Volterra integral-equation technique. The main purpose of this improvement is 
increasing calculation speed and reducing computer resources, which is especially 
important for the problems of nonlinear media. The method is validated on the 
example of reflection and transmission problems arising for three different types of 
electromagnetic Gaussian-like pulses, which are incident on a material layer with 
second-order nonlinearity inserted in between linear media. 
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1. Introduction 
Interaction of electromagnetic fields with nonlinear or non-stationary media is of fundamental 
importance because it describes the key processes in emerging technologies such as optical 
communications and computers, nanocomputers, etc. In all of these problems, the interactions 
processes with material media take place in a time domain inside some bounded spatial region. 
Modelling these initial–boundary problems requires not only development of adequate 
mathematical models, but also construction of powerful and convenient methods for their solving. 
The most practical of these techniques are numerical or analytical–numerical approaches. 

A Volterra integral-equation method is an approach based on integral equations, which are 
equivalent to the Maxwell’s equations [1, 2]. It has the following important features: natural 
description of non-stationary and nonlinear features of material media, unified definition of the 
problems irrespective of inhomogeneity assumption for these media, and inclusion of both initial 
and boundary conditions in the same equations. A particular form of the appropriate relations is 
the Volterra integral equation of the second kind. The latter is the same for the media of different 
types and different laws of variation of their parameters and, moreover, it does not depend on 
initial electromagnetic signal. 

All of these features simplify significantly problem statement and enables universal 
modelling algorithms for a wide range of electrodynamics problems, many of which have been 
described in Refs. [3, 4]. The most efficient and promising solution is an analytical–numerical 
approach known as a method of approximating functions. It has been suggested in Refs. [5–7] and 
further developed in the works [8, 9].  

The approximating-functions method is a particular case of finite-element method [10], 
which divides the domain of problem definition by means of a mesh of cells, in each of which a 
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function under interest is approximated by Lagrange polynomials. Such a technique reduces the 
problem to solving a system of nonlinear algebraic equations by a standard Newton method [11].  

Within the approximating-functions method, the process of solving an external problem (i.e., 
calculating reflected and transmitted fields outside inhomogeneous region in a medium) is based 
on sequential computation of these fields at all mesh points outside the interval of inhomogeneity. 
Note that some of the relations used in this process, although demanding intense use of 
computational facilities, are common. Their influence increases significantly with increasing 
degree of nonlinearity of the relations used for polarization. 

Separation of such common parts of the problem and calculating them in advance would 
reduce consumption of computer resources and increase computational performance of the 
approximating-functions method. Identifying such parts of the problem and developing the ways 
to calculate them efficiently is the main goal of this study. 

2. Problem statement 
According to the Volterra integral-equation technique [3, 4], the subject is the integral equation 
that describes electromagnetic processes in a one-dimensional space-and-time domain [5]: 
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Here ( , )E    is the electric field inside or outside an inhomogeneity located in the area 

defined by    , 0, [0,1]      in a material medium      , 0, ,       , 0 ( , )E    the 

initial electric field with no inhomogeneity, ( , )P    denotes the polarization of medium located 
inside the inhomogeneity region, which has different electromagnetic characteristics than those of 
the environment located outside of the interval [0, 1],   is the permittivity of the environment, and 

0  the permittivity of vacuum. In Eq. (1), '  stands for the integration variable in the time 

domain, while the integration limits are given by min max(0, )L     and 

min max(0, 1)H     . For convenience, dimensionless variables /vt L   and /x L   are 

introduced, with /v c  , c  being the light velocity in vacuum, L  the spatial width of 
inhomogeneity region, and x  and t  denoting dimensional space and time variables, respectively. 

The nonlinearity is introduced into Eq. 1 by means of the features of a material layer, which 
are described by the polarization written in a brief form as follows: 

    
1

, ,
n

i
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 .     (2) 

Here the linear properties of the medium inside inhomogeneity region are described by the 
parameter  1 0 1 1     and the relevant permittivity 1 , and the nonlinear properties of the i-th 

order ( 2i  ) are defined by the nonlinear susceptibilities i .  
Eq. 1 describes an internal problem (i.e., a problem inside the inhomogeneity region) 

whenever a given point belongs to the interval  0,1  . Outside of this interval, Eq. 1 represents 
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a quadrature formula for calculating the external field through the internal one. As above, the latter 
for convenience is termed as the ‘external problem’. In the latter case, new upper limits lying 

outside the inhomogeneity region are used: max 1L      and max
H    , which refer 

respectively to the first and second integrals. These upper limits are determined by the point of 
intersection of the integration line for the first (or the second) integral with the upper (or the lower) 
inhomogeneity boundary for the transmitted (or the reflected) wave. In fact, they are equal to the 
lower limits increased by the inhomogeneity width.  

3. Introduction of general expressions for the external problem 
To continue, let us introduce the functions for the first and second parts of Eq. 1 with the upper 

limits max
L  and max

H : 

 

   

   

max

min

max

min

, , , ,

, , , ,

L

L

H

H

L

H

J F F d

J F F d









      


      


     


     





    (3) 

where  

 

   

 
 

1

1

0

, , ,

, 1
.

, 1

n
i

i
i

i
i

F E

i

i

    

  


 




  


 


      (4) 

The general relation for calculating the reflected and transmitted fields is as follows: 

        0
1, , , , , ,
2 L HE E J F J F            .   (5) 

The difference between the cases of calculating the two different fields consists in inclusion 
(or omission) of some terms: the reflected field lacks the first term  0 ,E    and LJ , while the 

transmitted one lacks HJ . Then the final expressions are given by 

    1, , ,
2refl HE J F     ,    (6) 

      0
1, , , ,
2trans LE E J F       .   (7) 

4. Modification of approximating-functions method 
According to the approximating-functions method [5] adopted to solving Eq. 1, we construct a 
mesh of semi-closed squares in the time-and-space rectangle, with the side h of the square: 

     1 , 1 , 0,n-1, 0,m-1ijD ih i h jh j h i j          ,  (8) 

where Τ  denotes a constant (a time limit), whereas n h   Τ  and 1m h     are some constants 
that depend upon the sizes D and h.  

Solution to Eq. 1 can be constructed approximately as a sum of piecewise-smooth functions 

,
ˆ ( , )i jE    each of which is determined in the corresponding grid cell ijD : 
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  . These functions are constructed from the four approximating 
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    with the corresponding weighting 

coefficients ,i jc , where the approximating polynomials T can be represented in the form of 

Lagrange polynomials of the second order. They are continuous with their first derivatives on the 
borders of cells [5]. 

For the external problem, the reflected and transmitted fields are represented in a similar form: 
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where refm  and transm  are the minimal and maximal magnitudes of the spatial variable in the index 

units, and  ,
ˆ ,refl
i jE    and  ,

ˆ ,trans
i jE    have the same form as  ,

ˆ ,i jE   . The final relations for 
calculating the external-problem fields at the mesh points (see Eqs. (6) and (7)) read as 

    1ˆ ˆ, ,
2refl i j H i jE J     ,    (10) 

      0
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where    , ,
ˆ ˆ, , ,L H L HJ J F    , while F̂  is given by Eq. (4) and depends on the approximating 

function  ˆ ,E   . 

5. Separation of common blocks in the expressions 
The form of kernel of Eq. (5) ensures equality of the LJ  or HJ  values at all the points of each 
integration path (a ‘diagonal’ line) of the time-space domain of integration (e.g., in all ‘diagonal’ 
lines shown in Fig. 1). Let us prove this for the case of LJ . Denote the integral and the integration 

limits in LJ  respectively as 
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Then one can rewrite LJ  as 
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Hence, LJ  is a constant at all the points where the conditions const    and 1   are 
valid (i.e., on the boundary 1   and further on), e.g. at the points A, B, C and D in Fig. 1. These 
points represent the lines parallel to the line 1    (see a dashed line on the left side in Fig. 1). 
This also means that the transmitted field is zero at the points 1    (i.e., in the area N on the 

left side in Fig. 1), since in this case the upper limit max
L  in the integral given by Eq. (12) is 

always non-positive. 
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The proof for the case of HJ  integral is the same as for LJ . In other words, the HJ  value 
remains constant at all the points where we have const    and 0   (i.e., in front of the 
inhomogeneity region and on the boundary itself, 0  ). In fact, these are the lines parallel to the 
line     (see a dashed line on the right side in Fig. 1). The reflected field is zero at the points 

    (i.e., in the area N on the right side in Fig. 1) since the upper limit max
H  has always a non-

positive value.  

 

Fig. 1. Integration paths used for calculating integrals LJ  (left) and HJ  (right) in the same one-dimensional 

space-and-time area      , 0, 1, 2      . Solid lines correspond to the regions where the integrals have a 

constant value, dotted lines complement the corresponding solid lines to the opposite boundaries  0,1b   of 

the layers  0,1   (they are introduced for convenience only), N denotes the area where the integrals have a 
zero value, and A, B, C and D are some points lying on a ‘diagonal’ line. 

According to the above analysis, the following must be done in order to build a more 
efficient scheme for calculating the reflected and transmitted fields in the frame of the 
approximating-functions method: (i) the areas of zero-field values should be excluded from the 
calculation process and (ii) one has to calculate LJ  at the points  ,1  only one time (for the 

transmitted field) and HJ  at the points  ,   (for the reflected field), and then save the 

appropriate results. 

Furthermore, the known field Ê  on the inhomogeneity boundaries  0,1b   can give us the 

approximated ˆ
LJ  and ˆ

HJ  values at any mesh points  , bi j  (  0,bj m ). Indeed, Eq. (5) in this 

case has a known left part  ˆ ,i bE   , a known initial field  0 ,i bE    and only one integral ( ˆ
LJ  

or ˆ
HJ ), because the other integral is equal to zero on the appropriate boundary (e.g., ˆ

LJ  is zero 

on the boundary 0b   and ˆ
HJ  on the boundary 1b  ). Therefore, one can simply calculate the 
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 ,
ˆ ,L H i bJ    values ( 0,i n ) and then find the final reflected and transmitted fields, using 

Eqs. (10) and (11). 
The resulting external-problem fields at the discrete mesh points read as 

      0
ˆ ˆ ˆ, ,0 ,0refl i j i j i jE E E         ,   (15) 

        0 0
ˆ ˆ ˆ ˆ, , , ,trans i j i j i j i jE E E m E m            .  (16) 

The final formulae for calculating the coefficients ,i jc  of polynomials entering Eq. (9) are as 

follows: 
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   
    (17) 

Here  0
, 0 ,i j i jE E    (with 0,i n  and ,ref transj m m ) represents a tabular definition of 

the initial-field function, with its values defined at the points of the mesh D. Depending on its type, 
preliminary computation of this table can increase drastically the computation speed, if compared 
with any real-time computations in Eq. (17) (e.g., as it has been described in Refs. [7, 12]). 

The final relations given by Eq. (17) contain only simple arithmetic operations, which are the 
fastest in the calculations performed on computer software (see, e.g., Ref. [13]). Due to 
independent calculations of the transmitted and reflected fields at each point outside of the 
inhomogeneity region, the computational process can be efficiently performed in parallel, which 
also boosts the speed and saves RAM and other computer resources. Moreover, the independence 
mentioned above enables building this process in a fault-tolerant way, thus saving each execution 
result on a fault-tolerant storage resource, like it has been described in Refs. [7, 14]. Finally, this 
circumstance makes it easy to stop or start the algorithm after any manual or accidental shutdown. 

6. Validation of the approach 
Now we will test the accuracy of our technique for a particular case of nonlinear problems and 
compare its computational speed with that typical for unmodified version of the method. A 
particular example used by us is the problem of Gaussian pulses passing through a layer with 
quadratic nonlinearity described by Eq. (2). Here the nonlinear parameter of the layer is 2 1  , 

unless otherwise is stated. We use the electromagnetic parameters 1 11   and 9   respectively 

for the surrounding medium and the layer. The modelling time interval is  0,10   and the wave 

propagation starts from the point 0b  . 
The correctness of our solution has been checked using the two indicators. The first one is 

field continuity that must take place on the boundaries of the layer. This condition is represented 

by the approximate equalities      0
ˆ ˆ,0 ,0 ,0 0reflE E E      and    ˆ ˆ,1 ,1 0transE E    

respectively for the left-hand and right-hand boundaries. The second indicator is energy balance 
that can be checked using the relations taken from Ref. [5]. 

First we model a simple Gaussian pulse    2 2
0, exp( 2 )E           (with 0 1   

being the initial time offset and 0.1  ), using the mesh step h = 0.02. Multiple reflections 
occurring from the layer boundaries and pulse broadening appearing due to nonlinearity of the 
layer medium can be clearly seen from Fig. 2. Hereafter, we do not represent the incident wave in 
the figures in order to visualize better the reflected wave.  



Zolotariov D. 

Ukr. J. Phys. Opt. 2022, Volume 23, Issue 2 92 

 

Fig. 2. Transformation of a simple Gaussian pulse 
by a material medium with quadratic nonlinearity 
(see the text). The process starts on the left 
boundary 0b   at the moment 1  . Left and right 
sides of the figure correspond to evolution of the 
reflected and transmitted fields, respectively, while 
its middle part refers to evolution of the field inside 
the layer with inhomogeneity. 

The amplitude of the wave decreases from positive (a red colour in Fig. 2) to negative (a blue 
colour) values through a zero (a background colour). Here and below, it is understood that, under 
influence of the layer, the wave amplitude inside the layer is much less than those of the incident 
and transmitted waves. In what the first indicator is concerned, the maximal error is equal to 
8.41×10–3% and the median is 7.35×10–4%. The maximum of energy-flow imbalance amounts to 
6.81%, with the median 1.63%. This agrees well with the results reported in Refs. [5, 15]. 
However, the speed of our calculations of the external problem has increased by 26 times, even 
though the approaches [12] have been always employed for increasing the computations speed by 
caching the results obtained for the working relations. The reason is a large difference in 
complexity of the original relations and those suggested in the present work. 

Another pulse      22 2
0 0, exp( 2 )E                  has been modelled, 

using the nonlinear parameter 2 0.3   of the layer and the mesh step h = 0.005. The data of Fig. 3 

testifies still more beam diffusion after each reflection from the layer boundaries and distortion of 
pulse shape occurring due to nonlinearity of the layer medium. Under influence of the layer, the 
wave energy is redistributed in time and, after each reflection, the pulse shape becomes more and 
more similar to that of an Airy pulse [16]. Besides, the speed of wave propagation in the layer 
slows down. Concerning the first indicator, the maximal error is equal to 2.34×10–4% and the 
median value to 1.15×10–5%. The appropriate energy-flow imbalance maximum is 6.1%, with the 
median 1.03%. 

Finally, we have modelled the pulse        2 2
0 0, cos exp 2E                 

with the normalized frequency 10   and the mesh step h = 0.005 (see Fig. 4). The speed of the 

wave propagation in the layer slows down, too. The reflected wave and, especially, the transmitted 
wave lose the initial structure of the incident wave and acquire a ‘sawtooth’ shape. The wave 
propagation in Fig. 4 starts from the point 1    for easier observation of decreasing rate for the 

wave amplitude after each re-reflection inside the layer. The maximal error for the first indicator is 
equal to 3.18×10–4% and the median to 1.01×10–6%. Finally, the maximal energy-flow imbalance 
amounts to 5.23%, with the median 1.07%. 
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Fig. 3. Transformation of single-cycle Gaussian 
pulse by a material medium with quadratic 
nonlinearity (see the text). The process starts on the 
left boundary 0b   at the moment 1  . Left and 
right sides of the figure correspond to evolution of the 
reflected and transmitted fields, respectively, while its 
middle part refers to evolution of the field inside the 
layer with inhomogeneity. 

 

Fig. 4. Transformation of a multiple-cycle Gaussian 
pulse by a material medium with quadratic 
nonlinearity (see the text). The process starts at 

1    from the left at the moment 0  . Left and 
right sides of the figure correspond to evolution of the 
reflected and transmitted fields, respectively, while its 
middle part refers to evolution of the field inside the 
layer with inhomogeneity. 

7. Conclusions 
We have developed the approach to improve the computational efficiency of the approximating-
functions method, which is based upon the Volterra integral-equation approach. It can be 
successfully applied when solving one-dimensional space-and-time electrodynamics problems of 
nonlinear material media. In the frame of this method, one replaces the process of calculating the 
reflected and transmitted fields lying in front and behind the inhomogeneity region in a medium by 
a much simpler algorithm and simple relations. The algorithm modified in this manner still 
remains mathematically equivalent to the original version of the method. 

We have proved that, in order to determine the field outside of the inhomogeneity region, it is 
necessary to know only the field values at its boundaries and the initial field outside. The former 
fields can be obtained when solving the problem inside the inhomogeneity region, whereas the 
latter field can be calculated in real time – or calculated in advance and then stored. To solve the 
problem, one still has to calculate the initial field outside of the inhomogeneity region. This means 
that there is no additional computational load when we apply the approach developed in the 
present work. The process suggested by us for computing the outside field exploits pre-computed 
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values for specific mesh points, instead of permanently evaluating some complex expressions. 
This efficiently saves RAM and other computer resources. 

Our final numerical–analytical relations contain only simple arithmetic operations, which are 
the fastest for the calculations based on computer software. Due to independence of the calculation 
of the outside fields at each mesh point, the computing process can be efficiently done in parallel. 
This enables building it in a fault-tolerant way, which makes easy stopping or starting the 
algorithm after any manual or accidental shutdown. 

We have applied our approach to solve a number of specific physical problems. These are 
transformations of different Gaussian-like pulses by a material layer manifesting second-order 
nonlinear properties. The estimation of calculation errors reveals high efficiency of our method. 
Namely, the speed of calculations of these known problems has been increased by 26 times. Of 
course, the actual rate of increase in the speed in any practical situation would also depend on the 
nonlinearity of medium in the inhomogeneity region, the time interval under test, the number of 
parallel threads employed during computations, the programming language, and some other 
characteristics of a computing system. 
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Анотація. Удосконалено відомий метод апроксимуючих функцій, який є частковим 
випадком методу скінченних елементів, із метою розв’язування електродинамічних задач 
оптичного відбивання та пропускання одновимірного шару в часовій області, 
використовуючи методику інтегрального рівняння Вольтерра. Основною метою цього 
вдосконалення є підвищення швидкості обчислень і пониження витрат ресурсів 
комп’ютера, що особливо важливо для задач нелінійних середовищ. Метод перевірено на 
прикладі проблем відбивання та пропускання, що виникають для трьох різних типів 
електромагнітних ґаусових імпульсів, які падають на шар матеріалу з нелінійністю 
другого порядку, вставленим поміж лінійними середовищами. 


