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Abstract. We offer a method for fusion of infrared and visible images, which is 
based on combination of guided-filter and total-variation methods. For extracting 
and keeping gradient information of the two types of images to a maximal degree 
and preserving thermal targets, a guided filter is used at the first stage in order to 
construct two-scale image decomposition and apply it to the source images. This is 
done for acquiring the layers of base and details, where the details layers can retain 
the gradient information in advance. Then a total-variation model is applied. By 
constraining the fused base layer to have similar intensity distribution with the base 
layer of the infrared image and similar gradient information with the base layer of 
the visible image, one derives the fused image which can simultaneously preserve 
both the thermal-target and gradient information. Both subjective and objective 
evaluations of our experimental data indicate that the combined method suggested in 
this work has a superior performance to a number of known methods. 
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1. Introduction 
Image fusion aims to generate a new image from multi-sensor data, which can provide 
complementary information about a scene [1, 2]. We remind in this respect that an infrared image 
is associated with thermal radiation emitted from a material, which is less affected by illumination 
conditions [1]. In contrast, a visible image contains detailed appearance information about a scene. 
It is sensitive to the frequency-dependent reflection of objects, especially in a low-illumination 
environment. Therefore, the fusion is imperative for subsequent image processing, e.g., in 
intelligent surveillance, target detection and environmental perception [3].  

Many fusion methods have been suggested up to now. Among them, the fusion based on multi-
scale transform is one of the most popular methods. The multi-scale transform generally decomposes 
a source image to obtain one approximate low-pass subband and several high-pass (‘detail’) 
subbands for a subsequent fusion procedure [1, 2]. The canonical multi-scale transform includes the 
methods of Laplacian pyramid (LP), discrete wavelet transform (DWT), curvelet transform (CVT), 
non-subsampled shearlet transform et al. The multi-scale transform-based fusion methods can 
provide excellent performance in many fusion-related situations, although sometimes they introduce 
unexpected effects such as ringing artefacts and, moreover, these methods are time-consuming. 
Furthermore, the fused images often contain different information whenever the fusion of infrared 
and visible images is dealt with. Then it would not be proper to use the same fusion strategies for 
different image features [3]. It is known that infrared images supply a lot of target information, which 
often manifests itself in the form of high intensities. Meanwhile, detailed appearance information in 
visible images can be described by high gradients. Therefore, the fusion process should 
simultaneously preserve both the intensity distribution and the gradient information.  
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To this end, a number of fusion methods based upon a total-variation model have been 
suggested [3, 4]. They use different representations for different types of the source images. In 
particular, Ma et al. [4] have offered a fusion strategy that implies direct transfer of the intensities 
of infrared image and the gradients of visible image into a fused one. In order to fuse source 
images after their detection, the authors of the work [3] have used basically the same procedure as 
that applied in Ref. [4]. They have also extended the appropriate method for fusing undetected 
image pairs. Ma et al. [5] have suggested a multi-scale transform-based method in which a total-
variation model is employed to merge the base layers obtained with a Gaussian filter. Inspired by a 
gradient-transfer approach adopted in Ref. [3–5], we will introduce a new method based on the 
total-variation model. For preserving the gradient information to a maximal degree and achieving 
an edge-preserving function, we will also employ a guided-image filtering. In fact, we will make a 
particular emphasis on preserving the gradients at each stage of our procedures. 

The rest of this paper is organized as follows. Section 2 reviews a theory of guided-image 
filtering. Section 3 presents our fusion method based on both the total-variation model and the 
guided-filter approach. In Section 4 we describe the experiments performed for eight different 
fusion methods. Their comparison demonstrates superiority of our method. Finally, the main 
conclusions are drawn in Section 5. 

2. Guided-image filtering 
Our guided-image filter is nothing but an edge-preserving filter presented recently in Ref. [6]. A 
design of this filter starts from maintaining gradients. Its mathematical representation is as follows: 

 Q a I   ,      (1) 

where I  is a guidance image, Q  an output image ( , m nI Q  ), and a  denotes a linear 
coefficient. The idea of this linear model is to ensure that the gradients of the output and guidance 
images are linear. On this basis, it is assumed that Q  is a linear transformation of I  in a local 
window k  with the radius r , which is centred at some pixel k : 

 ,i k i k kQ a I b i     ,     (2) 

with ( ,k ka b ) being constants in k  and i  denoting the pixel index. 

Another assumption is that Q  is a result of the input image ( m nP  ) that subtracts an 

unwanted component ( m nN  ): 
 i i iQ P N  .      (3) 

Here ( ,k ka b ) can be estimated by minimizing the following cost function: 
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where   is a regularization parameter introduced to penalize too large ka ’s.  
The relevant solution is as follows: 
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 k k k kb P a   .       (6) 

Here k  and 2
k  are respectively the mean and the variance of I  in k , and kP  represents 

the mean of P  in k . Then Q  can be calculated according to Eq. (2). Actually, another popular 
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strategy [6] reads as  
 i i i iQ a I b  ,     (7) 

where 1
| |=

i
i kka a   and 1

| |=
i

i kkb b  . In summary, the entire filtering process can be 

denoted as , ( , )rG P I , where the parameters are the same as above.  

3. Fusion method 
In Refs. [3, 4], a minimization based upon the total variation is used directly to solve the problem 
of finding an optimal fused image. However, the information concerning tiny details and edges can 
be ignored in the process of iterative calculations, thus reducing the performance of fusion. The 
appropriate examples will be illustrated in Section 4.2. To avoid unwanted side-effects, we use a 
two-scale image decomposition to preserve the gradient information in advance.  

Similar to a traditional wavelet-based image fusion, our method is divided into four steps: 
(1) performing two-scale decomposition on the source images to get base and details layers, (2) 
fusing the base layers using the total-variation model, (3) fusing the details layers using a 
traditional highly efficient fusion rule of maximum selection, and (4) reconstructing the fused 
image with the base and details layers being combined together.  

3.1. Two-scale decomposition 
The guided-image filter is employed to implement the two-scale decomposition within our fusion 
method. First, the infrared and visible images are decomposed into two-scale representation. Let us 

denote the infrared and visible images respectively as , m nir vi   , while the fused image is 

given by m nf  . The base layer can be obtained as follows:  

 ,= ( , )n r n nB G I I ,      (8) 

where nI  is the source image and nB  the base layer. Note that the parameters ,rG   that appear 

when filtering the input and guidance images are identical. In this case the guided filter behaves as 
a gradient-preserving filter. It can avoid efficiently a gradient reversal, in contrast to bilateral 
filtering [6]. The details layer nD  can be defined as 

 n n nD I B  .       (9) 

3.2. Fusion of base and details layers, and reconstruction 
Note that the base layer contains an overwhelming majority of energy of the image. In especial 
case of the infrared image, it depicts mainly thermal-radiation information of the target under 
interest, of which natural intuition-based notion is the pixels with high intensities. Therefore, 
preserving this thermal-radiation information in the base layer is a top priority in all our efforts. 
This prompts us to formulate the relationship among the base layers of the fused and infrared 
images as an empirical error:  

 1
1( )

p
f f ir p

E B B B
p

  ,     (10) 

where fB  and irB  are the base layers of respectively f  and ir , and || ||p  stands for the pl  norm. 

Note that 1( )fE B  should be as small as possible.  
On the other hand, the base layer of the visible image is still rich in detailed information. This 

concerns especially the information on contours and edges of background and, probably, some 
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appearance information of targets. This kind of information plays an important role in targets 
location and environmental perception. An explicit way for fusing this details-related information 
is to make the fused base layer have similar gradient information with the visible base layer. As a 
consequence, we choose the following formula to relate the details layers of the fused and visible 
images: 

 2
1( )

q
f vi q

E f B B
q

   .    (11) 

Combing Eqs. (10) and (11), one can form an objective function:  

 
1 2( )= ( )+ ( )

1 1+
p q

f ir f vip q

E f E f E f

B B B B
p q

   
,    (12) 

where   is the parameter introduced for controlling a trade-off between the two terms. The first 
term in the r. h. s. of Eq. (12) requires the fused base layer to have similar pixel intensities with the 
infrared base layer, and the second requires that the base layers have similar gradients. This can be 
regarded as a minimization problem of Eq. (12). 

Now we are to solve this optimization problem. Considering computational complexity and 
feasibility, we set the parameters of the norm in Eq. (12) to unity, i.e. 1p   and 1q  . 
Meanwhile, let we have 

 y f viB B B  .       (13) 

Then the above-mentioned problem can be reduced to 

 *
1 1

arg min ( )
y

y ir vi yy B
B B B B B     .    (14) 

An iteratively reweighted-norm total-variation algorithm [7] can be adopted to solve it. As a 
result, the fused image can be obtained: 

 * * vif yB B B  .      (15) 

In the two-scale decomposition, much of the detailed information about the edges and 
textures is maintained in the details layers. The fusion of the details layers should ensure that the 
information about details is retained and can later be transferred into the final fused image. 
Hereafter, we adopt a simple and efficient fusion rule of maximum selection in order to fuse the 
details layers. It can be expressed as 

 max( , )f ir viD D D .     (16) 

Then the fused image can be reconstructed via 

 * fff B D  .      (17) 

4. Experimental results and discussion 
4.1. Datasets 
We have verified the performance of our fusion method using six image pairs, which are referred to 
as ‘quad’, ‘kayak’, ‘walker’, ‘tank’, ‘bunker’ and ‘lake’ (see Fig. 1). They have been downloaded 
from the Liu’s homepage [8] and the TNO image-fusion dataset [9]. We have compared our method 
with eight typical fusion methods corresponding to the state-of-the-art in the field. These are LP [10] 
and DWT [11] methods, a dual-tree complex wavelet transform (DTCWT) [12], a CVT method [13], 
a multi-resolution singular-value decomposition (MSVD) [14], a fusion method based on guided  
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Fig. 1. Source and fused images: the image pairs termed as ‘quad’, ‘kayak’, ‘walker’, ‘tank’, ‘bunker’ and ‘lake’ 
follow from left to right, whereas the images following from top to bottom correspond to infrared source image, 
visible source image, and the images fused by LP, DWT, DTCWT, CVT, MSVD, GFF, LP-SR and GTF methods 
and our fusion method. 
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filtering (GFF) [15], a Laplacian-pyramid sparse representation (LP-SR) [16], and a gradient-transfer 
fusion (GTF) [17]. All of these methods are implemented in Matlab. They are publicly available at the 
Ma’s homepage [17]. Regarding our sets of parameters, we follow the corresponding original papers. 

In the frame of our fusion method, the radius r and the regularization parameter  of the guided 
filter are set to 8 and 0.42, respectively (see Ref. [6]), while the parameter  is equal to 4. Note that 
the recent GTF method has been proven to retain the largest (or almost the largest) information 
amount of the source images. Then a comparison of our method with the GFT is the most important. 

The fusion results are evaluated using both subjective and objective techniques. The 
objective metrics are given by standard deviation (SD), correlation coefficient (CC), peak signal-
to-noise ratio (PSNR), information entropy (IE), mutual information (MI), and structural-similarity 
index measure (SSIM) [18]. We define these metrics below. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(h) (i) (j) 

Fig. 2 Magnified regions of the ‘quad’ image (see Fig. 1), as extracted from (a) infrared and (b) visible images, 
and the fused images obtained using (c) DWT, (d) DTCWT, (e) CVT, (f) MSVD, (g) GFF, (h) LP-SR, (i) GTF and 
(j) our fusion method. 
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(1) the SD measures overall contrast of the fused image F : 

 
1
21 1

1 1 1 1( ) ( ( , ) ) , ( , )m n m n
mn mni j i jSD F F i j u u F i j   
         ;   (18) 

(2) the CC quantizes correlation between the fused image F  and the infrared image I : 
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where   implies the mean value; 
(3) the PSNR is defined by the relation 
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;  (20) 

(4) the IE reflects the average amount of information contained in the fused image: 

 1
20( ) ( ) log ( )L

iIE F p i p i
  ,     (21) 

where L  is the total number of gray levels and ( )p i  the normalized image histogram; 
(5) the MI measures similarity of the intensities of the images: 

 ,
,,

( , )
( , ) ( , ) log

( ) ( )
I F

I Fi f
I F

p i f
MI I F p i f

p i p f
 ,    (22) 

where ,I Fp  is the jointly normalized histogram of the images I  and F , Ip  and Fp  are the 
normalized histograms of I  and F , and i  and f  represent the pixel values of I  and F , 
respectively;  

(6) the SSIM for the infrared ( I ) and fused ( F ) images is defined as  

 1 2
2 2 2 2

1 2

(2 )(2 )
( , )

( )( )
I F IF

I F I F

u u C C
SSIM I F

u u C C


 

 


   
,    (23) 

where uI and uF denote the mean value of I  and F . I, F are the standard deviation of I  and 
F , respectively, and IF is the covariance of I  and F , and 1C  and 2C  constants that serve to 
avoid any instability in the relation given by Eq. (23).  

Of course, the larger the fusion metrics, the better the fusion quality is. 

4.2. Subjective evaluation 
To compare visual appearances of the fused images intuitively, we show all the source and fused 
images in Fig. 1. For each column in Fig. 1, the first two images (i.e., the images in the first and 
second rows) are the original infrared and visible images, respectively. The rest are the fused 
images obtained by different methods (see the legend). One can conclude from Fig. 1 that, roughly 
speaking, all the nine methods reveal comparable (and quite good) performances. For example, the 
information about all pedestrians, cars, traffic lights and trashcans in the initial ‘quad’ images is 
transferred fairly well into the fused images. 

To facilitate further observation of the fusion effects, a specific region of the ‘quad’ images is 
extracted and magnified in Fig. 2. The location of this region is shown in the infrared ‘quad’ image 
(see Fig. 1). One can see from Fig. 2 that the figures of two pedestrians in Fig. 2j can be more clearly 
distinguished, and their edges are clearer than those in the other images. The pedestrians in the rest of 
images have different degrees of blur, which is probably accompanied by low intensities. This is not 
good for targets detection. In particular, one can observe that the image of Fig. 2i obtained by the 
GTF method has lost a lot of detailed information. Similar conclusions can also be inferred with the 
other image groups, although we omit the corresponding discussion for conciseness.  
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4.3. Quantitative evaluation 
The data of objective comparisons of the nine fusion methods is gathered in Table 1, where the 
highest values corresponding to the best results are indicated in bold for each metric and each 
image group. For convenient observation of the data, we plot them in Fig. 3 as line charts 
categorized by different metrics. As seen from Table 1 and Fig. 3, our combined method may not  
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Fig. 3. Line charts of the fusion results with respect to the metrics (a) SD, (b) CC, (c) PSNR, (d) IE, (e) MI and 
(f) SSIM. Data concerns the image pairs ‘quad’, ‘kayak’, ‘walker’, ‘tank’, ‘bunker’ and ‘lake’. Abbreviations in the 
legend correspond to different fusion methods, where our combined method is denoted as ‘Proposed’. 

provide the best result for each metric, although it does achieve the upper-class performance. More 
specifically, from the viewpoint of average of the metric data for the six image pairs, our method 
is superior to the other methods with respect to the CC, PSNR, MI and SSIM metrics. Concerning  
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Table 1. Objective data of image fusion for different pairs of images, as obtained by different methods. 

Im
ag

e 
pa

ir 
Metric LP DWT DTCWT CVT MSVD GFF LP-SR GTF Our 

method 

SD 0.1068 0.0816 0.0896 0.0895 0.0843 0.1268 0.1438 0.1168 0.1293 
CC 0.7354 0.7505 0.7041 0.7027 0.7369 0.7192 0.7549 0.9179 0.9264 

PSNR 16.8605 16.8823 16.6966 16.6901 16.8356 19.6416 20.2037 25.7695 24.7179 
IE 6.2486 5.9035 5.9963 6.0041 5.9474 6.5308 6.8285 6.6205 6.6791 
MI 1.0567 1.4381 1.1119 1.0638 1.2569 1.1210 1.6057 1.7065 2.0464 

‘q
ua

d’
 

SSIM 0.7813 0.7890 0.7725 0.7637 0.7828 0.8676 0.8722 0.8324 0.8630 
SD 0.1435 0.1199 0.1281 0.1284 0.1218 0.1363 0.1560 0.1279 0.1444 
CC 0.6924 0.6868 0.6904 0.6879 0.6863 0.8262 0.6321 0.8661 0.8893 

PSNR 18.5532 18.9828 18.8703 18.8342 18.9457 21.4558 17.5008 23.0821 23.4614 
IE 7.0598 6.7989 6.9125 6.9277 6.8302 7.0926 7.1498 6.9670 7.1281 
MI 0.8528 1.0376 0.8316 0.7934 0.9260 1.3207 0.8142 1.1196 1.8933 

‘k
ay

ak
’ 

SSIM 0.8166 0.8064 0.8105 0.8009 0.7995 0.8573 0.8055 0.6608 0.7915 
SD 0.1406 0.1215 0.1278 0.1381 0.1238 0.1721 0.2079 0.2162 0.2123 
CC 0.5668 0.6385 0.6078 0.5222 0.6290 0.1119 0.2549 0.9763 0.9372 

PSNR 12.1325 12.3824 12.2688 11.9130 12.3495 9.0668 10.9668 26.3891 21.9325 
IE 7.1111 6.9016 7.0098 7.0967 6.9576 7.0685 7.6058 7.5417 7.5275 
MI 1.1558 1.5988 1.1999 1.0929 1.3424 0.6798 1.2581 1.7105 2.5964 

‘w
al

ke
r’

 

SSIM 0.5626 0.6507 0.5122 0.4849 0.5953 0.3547 0.5816 0.5846 0.7306 
SD 0.2078 0.1516 0.1868 0.1882 0.1544 0.2178 0.2557 0.2070 0.2148 
CC 0.3261 0.3872 0.3274 0.3295 0.3709 0.1482 0.0629 0.6701 0.8157 

PSNR 10.5287 11.5988 10.9380 10.9265 11.5072 7.8642 6.1425 15.3354 16.6872 
IE 7.4373 7.1933 7.4104 7.4118 7.2426 7.7879 7.9218 6.3849 7.1670 
MI 0.4579 0.6300 0.4870 0.4716 0.5253 0.5927 0.4582 0.4256 0.9084 

‘ta
nk

’ 

SSIM 0.1974 0.2261 0.1582 0.1589 0.1912 0.2596 0.1734 -0.0090 0.3740 
SD 0.1262 0.1003 0.1102 0.1110 0.1030 0.1379 0.1474 0.1206 0.1304 
CC 0.4003 0.4643 0.4248 0.4257 0.4539 0.1124 0.2260 0.8138 0.8662 

PSNR 17.2464 18.5553 17.9664 17.9451 18.4013 12.6440 13.8197 22.7737 23.2483 
IE 6.9858 6.6989 6.8118 6.8129 6.7388 7.4778 7.4723 6.7806 6.8423 
MI 0.1610 0.2227 0.1688 0.1692 0.1876 0.0900 0.1369 0.6009 1.2340 

‘b
un

ke
r’

 

SSIM 0.3800 0.6253 0.3865 0.3902 0.5208 0.2504 0.3487 0.4230 0.5980 
SD 0.1091 0.0949 0.1027 0.1021 0.0968 0.1530 0.1553 0.1586 0.1660 
CC 0.4218 0.4568 0.4211 0.4245 0.4485 0.3455 0.1593 0.9466 0.9653 

PSNR 16.5844 17.0016 16.6715 16.7019 16.9265 11.3373 13.8871 25.7726 25.9680 
IE 6.6811 6.5352 6.6210 6.6208 6.5693 7.3712 7.2908 6.6236 6.6313 
MI 0.2817 0.3851 0.2992 0.2958 0.3315 0.2709 0.2767 1.0828 1.7805 

‘la
ke

’ 

SSIM 0.6031 0.7722 0.5964 0.5998 0.7007 0.4718 0.5792 0.6563 0.7662 
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the SD and the IE, the results of our method are only somewhat worse than those of the LP-SR 
method. Of course, none of the metrics can be treated as absolutely better than the others, so that 
we utilize multiple metrics to judge about the fusion performance. It is also worth mentioning that, 
in every metric, the results of our method are basically better than those of the recent GTF method. 

Summing up the subjective and objective evaluations, one can conclude that our fusion 
method keeps efficiently the thermal-radiation information and, moreover, preserves the 
transferred gradient information. In addition, it achieves a superior performance if compared to the 
eight common fusion methods, which reflect the state-of-the-art in the field.  

5. Conclusions 
In this work we propose a novel method for fusing infrared and visible images, which is based on 
the combined approach of guided filtering and the total-variation model. Inspired by the known 
gradient-transfer approach, we preserve the gradients prior to each fusion stage. In the first step of 
the two-stage decomposition, the guided filter is employed to preserve the gradient information in 
the base layer of infrared image to a maximal degree. Then fusion of the base layers takes place. 
After that the total-variation minimization makes the fused base layer have similar gradient 
information to the base layer of visible image, while we approximate the base layer of infrared 
image. After that, fusion of the details layers adopts the classic maximum-selection rule to 
maximize the detailed information of fused image. 

In our experiments, eight common methods corresponding to the state-of-the-art in the field 
of image fusion (namely, the methods of LP, DWT, DTCWT, CVT, MSVD, GFF, LP-SR and 
GFF) are used. The appropriate results are compared with those of our method both in terms of 
subjective and objective techniques. The objective measures include the well-known SD, CC, 
PSNR, IE, MI and SSIM metrics. The results obtained by us demonstrate that our method can 
achieve superior performance in terms of both human visual perception and the objective fusion-
quality metrics.  
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Анотація. Запропоновано метод злиття інфрачервоних і видимих зображень, який 
базується на підходах керованої фільтрації та повної варіації. Для здобуття та 
максимального збереження градієнтної інформації двох типів зображень та збереження 
теплових цілей на першому етапі використовують керований фільтр, щоби побудувати 
двомасштабну декомпозицію зображення та застосувати її до вихідних зображень. Це 
роблять для одержання базового шару і шарів деталей, де шари деталей можуть 
заздалегідь зберігати інформацію про градієнти. Потім застосовують модель повної 
варіації. Обмежуючи злитий базовий шар так, щоб він мав подібний розподіл 
інтенсивності до базового шару інфрачервоного зображення та подібну інформацію про 
градієнт до базового шару видимого зображення, можна одержати злите зображення, 
яке одночасно зберігає інформацію і про термічні цілі, і про градієнти. І суб’єктивне, і 
об’єктивне оцінювання наших експериментальних даних свідчать про те, що комбінований 
метод, запропонований у цій роботі, виявляє вищу ефективність порівняно з низкою 
відомих методів. 


