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Abstract. We consider polarization characteristics of a polychromatic wave 
associated with the Stokes parameters and the Jones vector. It is shown that the 
Stokes parameters can fail to describe adequately the polarization state of the wave 
formed as a result of superposition of the waves having different frequencies. To 
characterize this superposition, a modified Jones vector is introduced. Moreover, we 
demonstrate that the common Stokes parameters determine uniquely the spin 
moment of the resulting wave field. 
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1. Introduction 
In the most general case, a wave is considered to be polarized when the tip of its (either electric or 
magnetic) field-strength vector performs a deterministic oscillation, i.e. it moves along some 
trajectory determined in time (see, e.g., Ref. [1] *). If a coherent wave is dealt with, then the 
trajectory represents in general an ellipse (see, e.g., Ref. [2]). Note that, in most cases, such 
representations are automatically extended to a polychromatic wave, which can be considered as a 
superposition of some components having different frequencies. 

However, the above interpretation of the polarization properties of polychromatic waves is 
not always correct [3]. Obviously, if we mean a superposition of waves with a continuous 
frequency spectrum, then this interpretation can be accepted with some reservations. A different 
situation arises if we have a superposition of coupled waves [4] with a rather narrow spectrum or, 
in general, a superposition of coherent waves with different frequencies [5–7]. In this case, the 
trajectory of the tip of the field vector becomes rather complicated [7]. 

Note that traditional polarization characteristics, such as Stokes parameters, can be measured 
for this superposition. It is evident that these time-averaged field characteristics are rigidly related 
to the coherent characteristics of a resulting wave [8, 9]. As a consequence, we will show that, 
even in case of a time-determined trajectory of the field-vector tip, these characteristics can 
correspond to an absolutely depolarized wave. Then the following question arises: What do they 
characterize in this case? 

2. Stokes parameters of a polychromatic wave 
It is known that the Stokes parameters can be expressed in terms of some combinations of the 
intensities corresponding to different polarization projections or as compositions of the 

                                                        
* Note that the number of references devoted to the polarization of electromagnetic waves is huge, 
with no exaggeration. Here and below, we cite only the most fundamental (or, perhaps, the most 
famous) sources, without detracting from any merits of the other authors. 
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corresponding elements of coherence matrix [1, 2, 8]. Then we suggest a following scheme in 
order to determine these parameters for a polychromatic wave that represents a superposition of 
elementary waves with different spectral compositions: 

1. First, instantaneous-intensity components (i.e., instantaneous elements of the coherence 
matrix) are formed, which include both the quantities associated with a single spectral component 
and the corresponding intermodulation terms that contain information about the characteristics of 
various spectral components. 

2. Second, the obtained relations are averaged over a sufficiently large time interval. 
3. As a result, the intermodulation-intensity components of the polychromatic wave 

disappear. For example, it has been shown by Born and Wolf [8] that the resulting elements of the 
coherence matrix are sums of the elementary elements corresponding to each frequency. Due to 
this, the Stokes parameters can be considered as sums of the Stokes parameters of all spectral 
components of the wave [3, 10]. 

Let the paraxial approximation be adopted and the Cartesian components of the field of each 
spectral component be described by the relation 

   Φ ,, lj t r
l lE A r e     

 ,     (1) 

where lA  and Φl  are respectively the amplitude and the phase of a given component (with the 

quantity kz  being assumed to be zero), and ,l x y . 
If the resulting wave is formed as a wave with continuous spectrum, the sum of the 

elementary Stokes parameters  sp iS   is transformed into the integral 

   sp
0

i iS S d   


  ,      (2) 

where     stands for the spectral density that describes the contribution of each elementary 

spectral component. 
Let us consider an example of superposition of two waves with different frequencies. We 

wish to demonstrate that the Stokes parameters of a polychromatic wave, in which the field vector 
performs a completely deterministic motion in time, can correspond to a completely depolarized 
wave. 

Let we ascribe the Stokes parameters to the superposition of two arbitrarily polarized waves 
with different frequencies. To do this, we use the relationship between the Stokes parameters and 
the components of the coherence matrix (see, e.g., Ref. [8]). It is known that the components of the 
coherence matrix read as follows: 
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Here Φ ,  1, 2, ,il i l x y   are the initial phases of the wave components involved in the 
superposition. 
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Let us make some transformations and average the above relations over a significantly long 
time interval. The latter can be shown to correspond to the beat period [4]: 

22
Δω Δ

m m
bT

c c
 


   ,     (5) 

where Δω  denotes the difference between the circular frequencies of the waves, m  the smallest 
of the wavelengths, and Δ  the corresponding difference in wavelengths. Then the resulting 
Stokes parameters can be written as 
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,    (6) 

where 1  and 2  are the phase differences between the orthogonal components of the first and 
second waves. 

Below we will consider in a more detail some special cases following from Eqs. (6). 

2.1. Linearly orthogonally polarized beams 
Let one of the waves be polarized along the x-axis and the other along the y-axis: 

1 1 1

2 2 2

, 0

0,  
x y

x y

A A A

A A A

 

 
.     (7) 

In accordance with Eqs. (6), the Stokes parameters of this superposition acquire the form 
2 2

0 1 2

1
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3

0
0
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S
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 




.     (8) 

In other words, the Stokes parameters of this superposition correspond to the parameters 
typical for a completely depolarized wave. Therefore, we have to apply another type of description 
of the polarization characteristics, the Jones matrix formalism. Moreover, we will have to 
introduce some changes to the latter approach, when compared with its common version. 

In the definition of Jones vectors, the temporal part in the exponential form j te   is omitted 
(see, e.g., Ref. [1]). However, since we now deal with superposition of the waves with different 
frequencies, we will preserve this exponential term and introduce a modified (time-dependent) 
Jones vector for each of the waves: 

xj t

y

U
J e

U
  

  
 


,      (9) 

where Φ an    ,dl
l lU A e l x y   imply the complex amplitudes of the Cartesian wave components. 

Hence, we introduce a modified Jones vector as a sum of vectors of the type of Eq. (9), which 
corresponds to superposition of the waves with different frequencies: 

mod
i

N N
ixj t

i
iyi i

U
J J e
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Here iJ


 are the modified Jones vectors corresponding to each of the waves with specific 

frequencies and N  stands for the number of these waves. 
Suppose that the first and second waves in our case are polarized linearly and orthogonally. 

To be specific, we assume  

1 1,  0,x yA A A   2 20, ,x yA A A      (11a) 

1 2Φ 0,  Φ ,x y        (11b) 
where   denotes the difference between the initial phases of the orthogonal waves. Then the 
modified Jones vector becomes either 

1 2

Δω
ω ω 2

2
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or 

 

1 2ω ω Δω
2 2

mod Δω

1j t j t

j tJ Ae e
e



 
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
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Eq. (12b) can be interpreted as follows. The phase difference between the x - and y -

components of the resulting wave varies with changing frequency and time accordingly to the 
factor Δωt . The azimuth of the vector remains constant, regardless of ∆, i.e. the ‘instantaneous 
ellipticity’ of the resulting wave changes under condition of invariable azimuth, and the tip of the 
electric-field strength vector really moves in a complicated manner. 

An even more transparent interpretation of the modified Jones vector arises when the 
superposition of orthogonal circularly polarized waves is dealt with, as will be shown below in 
Subsection 2.2. 

2.2. Circularly orthogonally polarized beams 
For simplicity, we assume that the modules of amplitudes of the first and second waves are the 
same ( ilA A ) and the phases of the x -components of these waves are zero. The second 
requirement is easily met by simply shifting time readings. Then the modified Jones vector of the 
resulting wave can be written as 

1 2 1 2Δ Δ ω ω
2 2
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1 2
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2 2
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t
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
,  (13) 

where Δω  = 1 2ω ω  and Δi  denotes the phase difference between the x - and y -components of 
the first and second waves. 

If we take into account that 1 2Δ Δ
2 2
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   and 1 2Δ Δ 0

2


 , Eq. (13) can be transformed to 
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
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with   Δω 
2

t t  . 
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Eq. (14) can be interpreted as the Jones vector of linearly polarized wave with the azimuthal 

angle  t  and the frequency 1 2ω ω
2
 . In other words, the instantaneous polarization azimuth 

 t  changes over time. Then the field vector carries out clockwise (or counter-clockwise) 

circulation when the   term in Eq. (14) has the sign “+” (or “–”). 

Hence, the following general conclusion follows from our consideration: the common 
methods used for describing polarization characteristics in the analysis of superposition of coupled 
waves are not suitable if one has to describe adequately the polarization state of the resulting wave. 
The way out of this situation can be the approach based on the modified Jones vector. However, 
the question of what the Stokes parameters characterize in the case of superposition of waves with 
different frequencies still remains open. It will be addressed below. 

3. Stokes parameters and spin angular momentum of a polychromatic wave 
It is known [11–14] that, in the monochromatic case, the spin angular momentum of a wave is 
determined by the gradient of coordinate distribution of its local fourth Stokes parameter. Then the 
transverse components xP  and yP  of the time-averaged Poynting vector can be conditionally 

divided into orbital ( orbxP  and orbyP ) and spin ( spin  xP  and spin yP ) parts [14, 15]: 

orb spin

orb spin

x x x

y y y

P P P

P P P

  


 
,     (15) 

where the terms responsible for the magnitude of the spin angular momentum are determined by 
the relation 

3 3
spin spin,  

16 16x y
S Sc cP P

k y k x 
 

 
 

.   (16) 

Here k implies the wave number. In other terms, the spin component of the Poynting vector is 
also determined by the gradient of the fourth Stokes parameter. 

For the polychromatic wave, the situation remains similar since, when the Poynting vector is 
averaged over any time interval longer than the beat period, the components of this vector are 
simple sums of the elementary components [16]: 

1 2
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x x x

y y y
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  
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,      (17) 

where 1 2andl lP P  (  ,l x y ) are the Poynting components of the first and second waves. 

Basing on the relation (16), one can state that the spin components of the resulting Poynting 
vector read as 
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where 2i
i

i
k

c
 


   and 3  iS

l



 ( 1, 2, ,i l x y  ) are the corresponding derivatives of the fourth 

Stokes parameter of the first and second waves. 
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The spin components of the polychromatic wave can be transformed into the integrals 
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
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 




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Hence, one can state that, in the case of the polychromatic wave, the Stokes parameters 
characterize the magnitude of the spin angular momentum of the wave rather that the polarization 
state of the latter. For instance, the results obtained in Section 2 for the superposition of linearly 
polarized waves with different frequencies (when the Stokes parameters correspond to a 
depolarized wave) indicate nothing but the fact that the spin moment of this superposition is zero. 

4. Conclusions 
Basing on the results obtained in the present work, one can arrive at the following main 
conclusions. 

1. The common methods employed to describe the polarization characteristics of 
superpositions of the coupled waves (e.g., the approach based on application of the Stokes 
parameters) are not always suitable for adequate description of the polarization state of the 
resulting waves. 

2. The way out of this situation can be the approach based on the modified Jones vectors. 
3. The Stokes parameters of the polychromatic wave can fail when describing the 

polarization state of the wave. However, these parameters are uniquely related to the magnitude of 
the spin angular momentum of this wave. In this sense, their physical interpretation is hardly 
related to the trajectory described by the tip of the field-strength vector. Instead, the Stokes 
parameters can be ascribed to the nature of circulation the wave carries out. 
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Анотація. Розглянуто поляризаційні характеристики поліхроматичної хвилі, пов’язані з 
параметрами Стокса та вектором Джонса. Показано, що параметри Стокса не можуть 
адекватно описати стан поляризації хвилі, утвореної в результаті суперпозиції хвиль з 
різними частотами. Для характеризації такої суперпозиції введено модифікований вектор 
Джонса. З іншого боку, ми демонструємо, що загальновідомі параметри Стокса 
однозначно визначають спіновий момент результуючого хвильового поля. 


