
 

Ukr. J. Phys. Opt. 2022, Volume 23, Issue 1                   15 

Application of approximating-functions method to the problems 
of planar waveguides with non-magnetic media 

Zolotariov D. 

Independent researcher. Kharkiv, Ukraine;  
ORCID: https://orcid.org/0000-0003-4907-7810  denis@zolotariov.org.ua 

Received: 25.01.2022 

Abstract. We analyze application of a so-called approximating-functions method, a 
special case of a known finite-element method with polynomials of Lagrange type of 
the third order as interpolating functions, to solving electrodynamics problems for 
planar waveguides in the spatial and time domains with Volterra integral equations. 
Our main goal is expanding the field of applicability of the approximating-functions 
method towards three-dimensional problems in the time domain. This should enable 
solving a much wider range of problems, including those involving material media 
with non-stationary and nonlinear properties. We also examine whether our 
approach meets the general convergence criteria imposed by the finite-element 
method. 
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1. Introduction 
Studies of electromagnetic-field propagation in the waveguides with linear or nonlinear materials 
have a fundamental importance. This is because the corresponding processes are used in optical 
communications, nanocomputing and some others modern brunches of technologies, where 
electromagnetic-wave interactions with material media take place in time and in confined spatial 
regions. Modelling these initial–boundary problems requires development of both adequate 
mathematical models and relevant techniques. 

A Volterra integral-equation method represents an approach based on integral equations, 
which is equivalent to the Maxwell’s equations [1, 2]. It is used to solve many electrodynamics 
problems in 1D to 3D space and time domain. Besides of equivalence to the Maxwell’s equations, 
the method reveals a number of advantages: natural description of non-stationary and nonlinear 
features, unified definition of the problems inside and outside of homogeneity approximation for 
material media, and inclusion of both initial and boundary conditions in the same equations. As a 
consequence, this method simplifies essentially the formulation and solution of many problems 
associated with both fundamental studies and modelling of real-life tasks. 

One should also mention the following important features of this method: the form of the 
working equations is the Volterra integral equation of the second kind, which remains the same for 
different media and different laws of parameters’ variation. Moreover, it does not depend on the 
specific feature of initial electromagnetic signal. Then universal modelling algorithms can be 
applied to a wide range of electrodynamics problems [3]. For example, an approximate solution 
can be constructed by a standard method of successive approximations or by a direct numerical-
integration method [4]. Nonetheless, the combined analytical–numerical approximating-functions 
method represents a modern approach to building qualitative solutions. 
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The approximating-functions method is a special case of a known finite-element method, 
which is based on dividing a domain of the problem using a mesh of cells and constructing a 
solution as analytical approximation by Lagrange polynomials in each of the cells. The solution of 
the Volterra integral equation in this case can be reduced to the solution of a system of nonlinear 
algebraic equations. The latter is solved by a standard Newton’s method or any other method 
suitable for a given problem. 

The fundamentals of this method for a general 1D case have been described for the first time 
in Refs. [5, 6]. It has been extended to the 2D case [7, 8] with the purpose of solving the problems 
of electrodynamics by the Volterra integral equation method in 1D space and time. To improve its 
performance and reliability, an approach of building fault-tolerant calculations has been suggested 
in Ref. [9]. Later on, it has been used to build a microservice computing node in a cloud 
application [10, 11]. 

Up to date, the approximating-functions method as a part of the Volterra integral equation 
method has never been applied to modelling the 3D problems concerned with planar waveguides. 
On the other hand, such extension of applicability field of this approach would enable solving a 
much wider range of problems, including those arising for the media with non-stationary 
properties. These problems are the subject of our study. 

2. Problem statement 
Let us consider a planar waveguide composed of a non-magnetic medium with losses. Suppose 
that a signal propagates along a single axis only (z axis, to be specific), with no dependence on the 
transversal (e.g., y) coordinate. According to the Volterra integral equation method [3], a general 
equation for this situation acquires the form 
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where 0E  denotes the undisturbed electric field and P  the polarization of a medium inside some 

slab, which has the electromagnetic characteristics different from those of environment outside 
it, j  is a conductivity current inside the slab,   the permittivity of medium in the environment, 

/v c  , 0  stands for the vacuum permeability, c  the speed of light in vacuum. Here the SI 
system of units is used. The function   is equal to unity inside the waveguide and zero outside it, 

  implies the Hamilton operator, Î  the singular operator,   the Heaviside step function, 

 ', ', 't x z  are the integration variables corresponding to  , ,t x z , 2 2 2( ') ( ')R x x z z     , and 
't t t  . 

As usual for the electromagnetic fields in longitudinally uniform structures, the fields in the 
waveguide can be expanded into their longitudinal and transverse components: 
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Eqs. (2) and (3) describe electromagnetic-field evolution in the time interval  0,t   . If the 

observation point  ,z x  belongs to a waveguide core, they formulate the problem for the field 

inside the slab. Outside the core, the expressions are quadrature formulas for calculating the fields 
in the cladding, taking into account the field in the core. 
Let us assume that the x variable in the slab varies within the range  / 2, / 2x b b  , where b is a 

constant introduced for symmetry purposes only. Then the integration area can be specified by the 

two conditions: 
2 2 2 2( ') ( ') ( ') 0v t t x x z z       and 1  .   (4) 

Fig. 1 presents this area for some point  , ,t x z . As the equation of each circle at the base of 

the cones is 2 2 2 2( ') ( ') ( ')x x z z v t t     , the appropriate moments can be represented through 
it as | ' | / 2v t t b x    and | ' | / 2v t t b x   . 

 
Fig. 1. Cones of integration in a slab. 

For the time moment 0t  , the base of the cone fits completely into the area from Eq. (4) and 
the integration can be performed as if there were no boundaries for x  at all. After the time 
moment 1 ( / 2 ) /t t b x v    , when the base of the cone from Eq. (4) touches the waveguide wall 

' / 2x b , its influence must be included. After the time moment 2 ( / 2 ) /t t b x v    , when it 

also touches the second wall ' / 2x b  , the contributions of both walls arise. 
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Therefore there is no influence of the waveguide walls in the interval  10, t  (see green and 

red cones in Fig. 1). The influence of only one wall must be taken into account in the interval 
 1 2,t t   (an orange cone in Fig. 1), and the influence of both walls is considered in the interval 

 2 ,t t  (a yellow cone in Fig. 1). 

3. Approximating functions 
Similarly to Ref. [3], we construct a mesh of semi-closed cuboids in the space-time cuboid D  
while solving the Volterra integral equation in the 2D space and time area  , ,t x z : 
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where h  is the length of cuboid edge, i.e. a mesh of spacing.  
The solution of the equation can be approximately constructed as a sum of piecewise-smooth 

functions , ,
ˆ ( , , )i j kE t x z , each of which is determined in the corresponding grid cell ijkD :  
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These functions are constructed from the eight approximating polynomials T with the 
corresponding weighting coefficients , ,i j kc : 
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Here the approximating (interpolating) polynomials are presented in the form of Lagrange 
polynomials of the third order at each coordinate point. In general, they can be written as 
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where s  is some variable. These functions satisfy the requirements [12] for the basic functions of 
the finite-element method: they are dimensionless and mutually orthogonal, continuous within the 
cell where they are defined, and their total sum at any vertex of this cell is equal to unity.  

Being defined in the corresponding cuboids, the functions are mutually orthogonal and have 
equal norms in the whole range where the problem is defined:  
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where ip  is the Kronecker symbol and   the constant (the time limit of integration). When we 



Application of approximating-functions 

Ukr. J. Phys. Opt. 2022, Volume 23, Issue 1 19 

have i p , j q  and k l , the integrals take the values of the norm, which equals to  3/ 7h . 

In the alternative cases, the functions under the integrals are products of two incompatible 

functions with different regions of definition, which gives a zero value of the integral.  
The sum of the polynomials taken at any vertex of the mesh cell  , ,i j k  is equal to unity. As 

an example, this can be easily demonstrated for the point  , ,ih jh kh : 
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The calculations are essentially the same at the point   1 , ,i h jh kh , with the only 

difference that we have   0 1 0jT j h   and   1 1 1jT j h  . The relevant proofs for the 

coordinates x and z is also the same.  
For the convergence of the method in the case of approximating polynomials given by Eq. (8), 

it is necessary that the approximated functions  , ,
ˆ , ,i j kE t x z  be specified in the form of 

polynomial of at least degree two and be continuous in between and within the mesh cells. 

Now let us show that  , ,
ˆ , ,i j kE t x z  is continuous on the boundaries of the cells along the 

coordinate x for the two adjacent cells  , ,i j k  and  , 1,i j k : 
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Taking into account that the functions given by Eq. (8) are symmetric with respect to the 
change of variables, one can easily prove that the approximated functions  , ,

ˆ , ,i j kE t x z  are 
continuous on the remaining borders of the cells. 

The properties of derivatives of the approximated functions are worth noting. The modules of 
the first derivatives and the second mixed derivatives are continuous in between the cells. Let us 
prove this for the case of x coordinate: 
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Note that the proof remains the same for the t and z coordinates. 
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The second derivatives are also continuous in between the cells: 
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Finally, the derivatives coincide with each other at the cell boundaries. Due to the symmetry 
of Eq. (8) with respect to the change of variables, this dependence is also preserved for the 
derivatives with respect to t and z. 

The important advantage of these polynomials is that they are defined as a product of 
polynomials, each of which depends only on single variable. This implies relatively easy 
calculations of integrals and derivatives.  

Since the sum of all polynomials is equal to unity at any vertex of any cell, the coefficients 

, ,i j kc  represent in fact the approximate values of the function Ê  at the vertex  , ,i j k : 
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So, the approximate relations for the longitudinal ( zE ) and transverse ( xE ) field components 
obtained from Eqs. (2) and (3) have the following forms:  
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Substitution of Eq. (17) into Eq. (2) and calculation of the resulting function at the points 

 , ,i j kt x z  ( 0, , 0, , 0,i n j m k p   ) gives a system of nonlinear algebraic equations for the 

weighting coefficients , ,i j kc , which can be solved by the Newton’s method. The problem for 
Eq. (3) is solved in a similar manner, with substitution Eq. (18). 

4. Algorithm for approximation of the cone  
As mentioned above, the area of integration in Eqs. (2) and (3) for the region inside the waveguide 
is bounded in the x coordinate by a cone determined by the inequality given by Eq. (4). The 
approximation for this cone can be constructed basing on this inequality and taking discrete cell 

coordinates  , ,i j kt ih x jh z kh     .  

An example of how to build this approximation for some point  ,,t x z  is illustrated in 
Fig. 2. Here, the time moment t  has to be far enough from 0t    for the cone to intersect with the 
both planes that bound the waveguide along the x coordinate: /2

min
bt  is determined by the 

intersection with the plane / 2x b   and /2
min
bt  by the intersection with the plane / 2x b .  

For clarity, Fig. 2 shows only the approximation of the outer surface of the cone, without its 
inner part, which also constrains the cone along the z axis. Fig. 2 also displays the original cone as 
a semitransparent red surface that extends beyond the x axis of the waveguide. The latter is shown 
to demonstrate the constraints introduced by the waveguide. 

After constructing approximation of the cone, the result is filtered. The filtration is needed to 
remove the situations when the result depends on the approximation step or some other parameter. 
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Then the cone approximation for the levels (or the ‘circles’) it  and 1it   includes the cells with the 
same coordinates  ,x z  lying on the cone surface (i.e., the cuboids located farthest from the centre 
of the cone on a single layer). To simplify the process of solving the problem, these situations 
should be excluded.  

 

Fig. 2. Approximation of integration cone by cuboid 
cells, as performed in the case of integration point 

 ,,t x z  in a slab. 

 
The filtering algorithm is simple. If the approximating cuboid is located on the surface of the 

cone in the layer 1it  , it must be excluded from the layer it . After that, all the levels will include 
no common approximation cuboids on the cone surface. 

An example of this approximation of the cone 
(after filtering at some point  ,,t x z ) is shown be a 

level line graph in Fig. 3. Here the level lines for the 
original cone (black concentric circles in Fig. 3) are also 
shown. For a convenience, each of the level lines is 
presented by the same colour. Namely, the orange 
colour marks the top of the cone and the yellow one its 
base. 

5. Conclusions 
In this work, we present how to extend the approximating-
functions method in order to solve the electrodynamics 
problems that arise for the planar waveguides in the 2D 
space the time domains, using the Volterra integral 
equation method. It is demonstrated that the above 
problem can be divided into two subproblems for the 
longitudinal and transverse coordinates bounding the 
waveguide. Each subproblem can be reduced to solving 
the integral Volterra equation of the second kind. 

 

Fig. 3. Level lines for the cone approximation 
obtained after filtration, and the corresponding 
circles (layers) of the original cone. 
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The domain of integration for each of the equations is given by a cone, which can be 
approximated by cuboids. Then the approximating-functions method can be applied. We also 
present the algorithms needed for constructing the approximation of this cone by the cuboids and 
for filtering the obtained approximation, in order to eliminate complex and ambiguous situations 
that can appear in the process of solving the problem. 

The approximating polynomials chosen as interpolation functions in each cuboid are the 
Lagrange-type polynomials of the third order at each coordinate. We have shown that these 
polynomials satisfy all the requirements for the basic functions imposed by the finite-element 
method and, hence, the associated approximating-functions method. As a consequence, we have 
demonstrated that the polynomials suggested by us satisfy the convergence criteria required by the 
finite-element method. The relationship between the first and second derivatives defined at the 
boundaries of the cuboids is also derived. 

Since the approximating-functions method is a special case of the finite-element method, the 
real accuracy of the obtained solution depends on discretization of the domain where the problem 
is defined: i.e., the more elements, the higher the accuracy of the solution.  
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Анотація. У статті представлено використання методу апроксимуючих функцій - 
особливого випадку методу скінченних елементів з поліномами типу Лагранжа третього 
порядку у якості інтерполюючих функцій, для розв’язання задач електродинаміки в 
плоскому хвилеводі в просторовій та часовій області з використанням інтеграла 
Вольтерра. Основна мета цієї роботи – розширити область застосування методу 
апроксимуючих функцій до тривимірних задач у часовій області, що дозволить вирішувати 
набагато ширший спектр задач, у тому числі задачі із середовищами з нестаціонарними 
та нелінійними властивостями. Запропонований метод перевірено на відповідність 
критеріям збіжності, встановленим методом скінченних елементів. 


