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Abstract. In the process of low-light imaging, some part of useful information of an 
image is overwhelmed by a noise. When interference is large, the signal-to-noise 
ratio (SNR) detected in a system is reduced to a very low level. We study the low-
light imaging under condition when the detection SNR is equal to 1 dB. Taking into 
account that the noise is often located in the high-frequency spectral part, we use 
discrete cosine transform (DCT) to remove the noise or, at least, filter out its some 
part. Then we use an algorithm of conditional generative adversarial network 
(CGAN) to improve the image quality. The simulation results testify that the DCT 
and CGAN algorithms combined together improve significantly the restoration 
results and the final quality of images. The latter is high enough, with the average 
peak SNR being higher than 22 dB and the structural similarity index measure 
amounting to about 0.8. 
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1. Introduction 
Digital image is an important means for transmitting information. The images received by final 
customers are often affected by various factors, resulting in their decreasing quality. In particular, 
noise interference affects seriously the image quality during imaging process. At present, the 
researches on the image denoising of additive white Gaussian noise are mature. However, this is 
only partly true of photon-counting imaging systems, e.g. those for medical, remote-sensing, lidar 
and night imagings [1]. In any low-light imaging system, a receiver can only detect a small 
number of photons and the Poisson noise has a strong correlation with the useful signal, a situation 
which is difficult to deal with [2].  

Image denoising is performed either in spatial or transform domains. The spatial-denoising 
methods use mainly some filters to process image pixels, e.g. such common ones as a mean filter, 
a Wiener filter or a bilateral filter [3]. Although this type of methods can remove the image noise 
to a certain extent, the edge information of the image becomes blurred after denoising. According 
to the principles of denoising in the transform domain, different characteristic coefficients of the 
image and the noise are being converted to the transform domain, and then the denoising process is 
performed on them. This technique includes a fast Fourier transform, a discrete cosine transform 
(DCT), a wavelet transform [4], etc. In other words, a noisy image is converted into the transform 
domain for its further processing. By retaining the coefficients of image and filtering out the 
coefficients of noise in the transform domain, one then performs the inverse transform to obtain a 
denoised image. At present, a number of computer technologies have been developed for this aim 



Banglian Xu et al 

Ukr. J. Phys. Opt. 2021, Volume 22, Issue 4 226 

and some novel image-denoising algorithms have been suggested. The examples are denoising 
algorithms based on sparse representation, non-local mean denoising [5], three-dimensional block-
matched filtering [6], etc. These algorithms typically reveal an excellent denoising effect, although 
they are very complex computationally and require sophisticated optimization algorithms. 

In the recent years, deep-learning technologies, flexible neural networks and the facilities to 
learn big data have been applied to the image processing, too. In 2009, Jain [7] et al. have used 
neural networks to obtain relatively good denoising results for different natural images. Burger [8] 
et al. have suggested a multi-layer perceptron method to achieve image denoising. Denoising 
convolutional neural network has been developed by Zhang et al. [9]. It combines a batch 
normalization and a residual learning network. It can be successfully applied to image denoising 
and solve some problems of gradient dispersion and information loss, so that the network can 
converge faster. In 2019, Jia [10] et al. have proposed a fractional optimal control-network model, 
which is designed basing on discretization of fractional differential equations, introduces multi-
scale features and achieves quite good results. Finally Zamir et al. [11] have trained a new image-
denoising network on some realistic synthetic data and achieved a state-of-the-art performance on 
real camera-benchmark datasets. 

Below we will address the problems of the low-light imaging. Under low-light conditions, 
the final quality of images is typically extremely poor and, therefore, the images are to be restored. 
For this purpose, we first build an imaging model, where the noise conforms to the Poisson 
distribution. Then we employ a DCT-based denoising method to enhance the quality of low-light 
images. It considers the characteristics of both the image information and the noise and so filters 
the noise in the transform domain. Finally, we use an algorithm of conditional generative 
adversarial network (CGAN) to improve further the image quality. The technique developed by us 
improves greatly the image quality under the condition of as low signal-to-noise ratio (SNR) as 
1 dB. Therefore, we have testified that the traditional denoising method combined with the deep 
learning method can improve significantly the overall image restoration results. 

2. Low-light imaging model 
In a low-light imaging system, the noise model should conform with the Poisson distribution, 
where the noise intensity is related to the pixel value of original image. When the illumination gets 
lower, a detector collects still fewer photons, and the Poisson noise becomes more difficult to 
remove. This is why our imaging model considers only the Poisson noise. As a result, our low-
light imaging model is given by  

NPI  ,      (1) 
where I  denotes the image acquired, P  the original image and N  the noise. We remind that the 
noise conforms to the Poisson distribution. Within a period T , its statistical model is given by 
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where r  is the number of photons received by a detector and   the average rate of random 
events. Then the SNR of detection process for the entire system is as follows: 

mean( )PSNR
D

 ,     (3) 

where mean( )P  refers to the original image (i.e., it is the mean value of the signal) and D  is the 

standard deviation of the noise N . 
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3. DCT algorithm 
The basis of the DCT is Fourier transform. Among orthogonal transformations applied to speech 
and image signals, the DCT transformation is considered to be optimal. The DCT and the inverse 
DCT are described respectively by the formulae 
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Here u and v represent generalized frequency variables associated with two dimensions of 
image, ),( vuF  refers to the direct DCT transform and ),( yxf  to the pixel value in the original 
image. Concerning the other notations, M and N imply respectively the row and column sizes of 

),( yxf , and )(uc  and )(vc  are the compensation coefficients that make the DCT-transformation 

matrix an orthogonal one.  

4. CGAN algorithm 
In the present work, we suggest a deep-learning method based on the CGAN algorithm to restore low-
quality images and increase their quality [12]. The CGAN is a novel way to train generative models 
which can be constructed by simply feeding the data to both generator and discriminator. It has a very 
prominent improvement over the original algorithm of generative adversarial network and is more 
efficient than this counterpart. As a consequence, the CGAN plays an important role in many fields like 
image conversion and restoration, video prediction and data enrichment. The network framework 
consists of two parts: a restoration network G  for restoring image quality and a discriminant network 
D  for conditional adversarial learning. For a given data set  (x),T(x)t , the low-quality image ( )t x  

represents an input to obtain a resulting image ( )G x . This algorithm makes ( )G x  as close to the 

original image ( )T x  as possible, thus removing the noise and improving the image quality. 

4.1. Network structure 
The generator uses a known ‘U-Net’ architecture, as shown in Fig. 1. The input image )(xt  is 

encoded and then decoded into the image )(xG . U-Net uses a skip connection method to connect 
the i-th layer and the n-i-th layer, where n is the total number of layers. At the down-sampling end, 
the network takes a 256256 image as an input and processes it in a down-sampling module. One 
of the down-sampling modules includes Conv2D and LeakyReLU activation layers (see Ref. 15). 
The first down-sampling module does not include a normalization layer, and the rest ones include 
the latter in order to prevent gradient explosion and gradient disappearance. After several down-
sampling operations, the size becomes 11512. On the up-sampling side, there are multiple up-
sampling layers. A single up-sampling module includes Conv2DTranspose and ReLU layers (see 
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Ref. 16). Only the first three up-sampling modules include a Dropout [17] layer, with the 
dropout being equal to 0.5. The image sizes for the i-th and n-i-th layers are the same, and the 
information cutting and copying operations at the two ends of the linkage skip the connection. 
They implement a deep neural network layer that crosses the adjacent-layer nodes to perform 
information interaction. This can help the deep neural network to perform feature fusion for the 
multi-scale image features and obtain more accurate output results, thus improving the resolution. 
Finally, the output gives a predicted 256256 image. The discriminator uses a "PatchGAN" 
classifier. In order to better judge a part of the image, the latter is divided into multiple fixed-size 
area blocks, and the true and false values of each area block are judged separately. The average 
value of the regional-block discrimination results is used as a final output value, as demonstrated 
in the discriminator part of Fig. 2. 

 

 
 
 
 
 
 

False/True? 

Fig. 2. Discriminator network structure. 

First, the real image of the label and the image obtained by the generator are inputs into the 
discriminator at the same time. The appropriate size is 256256, and the connection is merged. 
After three down-sampling operations with the step size 2, the image block with the dimension 
size 3232256 is obtained and the padding operation is carried out. After two-dimensional 
convolution processing and batch normalization, we obtain an input into the known Leaky ReLU 
activation function. Then it passes the padding operation to become a 3333512 image, and the 
two-dimensional convolution operation finally produces a 3030 patch, to finally discriminate it. 

 
Fig. 1. Structure of generator network. 
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4.2. Loss function 
For network training, a reasonable objective loss function needs to be set. For any general CGAN, 
the adversarial loss function can be defined as 

   )),(,(1log(),(log),( ,, zxGxDEyxDEDGL cczxccyxCGAN ccc
 ,   (7) 

where E denotes mathematical expectation, xc the input GI image, yc is the the ‘Ground Truth’, 
which means real image, z the random-noise distribution, G the information of the generator, and 
D the information of the discriminator. 

Since the network is used to process standard image-mapping problems, our problem is 
transformed into a regression one. The related studies have shown that mixing the CGAN 
objective loss function with some traditional losses (such as those given by L1 and L2 distances) 
provides better results. Therefore, in order to make the low-quality images more similar to the 
target images, a regression loss function is needed to calculate the similarity. Compared with the 
L2 loss, the L1 loss has higher robustness. It is given by 

1,,1 ),()( zxGyEGL czyxL cc
 .     (8) 

In the relevant comparative experiments, it has been deduced that the effect is better when the 
weight parameter of the L1 loss function is  = 100. Therefore, the objective loss function finally 
used in our network reads as 

 *
1arg min max ( , ) ( )CGAN LG D

G L G D L G  , ( 100)  ,   (9) 

where ‘argmin’ and ‘argmax’ represent the variables at which the objective function takes a 
minimum and a maximum, respectively. When argmax over D and argmin over G are obtained, 
the loss function reaches a final convergence. Since the purpose of training the discriminator D is 
to make D as large as possible, its discriminative ability is better. At the same time, the loss 
function of the generator G should be extremely small, so that the distributions of the generated 
and real images become close to each other. 

5. The essence of our method 
Aiming at the low-light imaging, we note that the existence of a large amount of noise leads to de-
graded image quality. We first simulate the noise based on the Poisson distribution and construct 
an appropriate low-light imaging model. Then we use the two main steps to perform the image res-
toration: (i) to remove a large amount of noise in the image, transform it into the frequency domain 
through the DCT, and perform high-frequency shielding for removing some part of the noise and 
(ii) to process the 
image obtained in 
the first step. We in-
put the trained con-
dition to generate 
the adversarial neu-
ral network and esti-
mate the closeness of 
the low-light image 
and the real image. 
The whole process is 
illustrated schema-
tically in Fig. 3. 

 
Fig. 3. Low-light image restoration process. 
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6. Simulation analysis  
In this section we use simulation experiments to study the following: (1) the image quality under 
different detection SNRs, (2) low-light image denoising based on traditional methods, and (3) low-
light image restoration based on the DCT and the CGAN combined together. When evaluating the 
imaging quality, we use an objective evaluation method for the quantitative analysis, with the peak 
SNR (PSNR) unit being dB. The larger its value, the smaller the distortion is. The corresponding 
formula is as follows:  

2

1010log IMAXPSNR
MSE

 
   

 
.    (10) 

Given a clean m n  image I  and a noised image K , one can define the mean-square error 
MSE as 
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where 2
IMAX  is a maximal possible pixel value in the image. If a pixel value is represented as a 

binary n -bit quantity, then we have 2 1n
IMAX   . A structural similarity index measure (SSIM) 

evaluates a similarity of two images and can change in the range [0, 1]. The larger its value, the 
smaller the distortion is. The corresponding formulae read as  
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where ),( yxl  denotes the luminance comparison, ),( yxc  the contrast comparison, ),( yxs  the 
structural comparison, x  and y  are the mean values of respectively x  and y , and x  and y  

the standard deviations of respectively x  and y . Here xy  represents the covariance of x  and 

y , and 1c , 2c  and 3c  are small constants used to avoid a zero denominator. Finally, , ,    in 
Eq. (12) imply the weights of different evaluation factors. 

6.1. Imaging under different detection SNRs 
In this section we study the performance of a low-light imaging system and its imaging quality 
under different detection SNRs. The influence of the detection SNR on the imaging quality can be 
quantitatively analyzed in this way. Below, we select five different original pictures and perform 
imaging under the detection SNRs equal to 1, 3, 5, 7 and 10 dB. The appropriate results are shown 
in Fig. 4. One can see that the image quality is extremely poor when the detection SNR is only 
1 dB. For example, the image of a Man under this condition has both outlines and details very 
blurred. It is almost impossible to identify a person and a background. With improving detection 
SNR, the quality of images becomes higher and higher (see Fig. 4 from left to right). 

Fig. 5 shows the PSNR and SSIM curves obtained for the five image groups corresponding to 
different SNRs. It is evident from Fig. 5a that the SSIM values for the Bird, Frog, Horse and Man 
images are very close (~ 0.3) when the detection SNR amounts to 1 dB. With increasing SNR, the 
SSIM reveals an upward trend and reaches 0.9 at 10 dB. The SSIM values for all of the Hawk 
images remain rather low under the same detection SNRs (about 0.1 lower on average, if 
compared with the other four images). 
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Fig. 4. Five sample images observed at different detection SNRs shown in the legend. 

The PSNR values calculated for different images are quite different under the same detection 
SNRs (see Fig. 5b). This is because different types of the images have different information and so 
different final quality. When the detection SNR for the same group of images gradually increases, 
the PSNR also increases. When the detection SNR becomes 10 dB, the PSNR value improves by 
about 14 dB on average, if compared to the initial case of 1 dB. Fig. 5 testifies a great effect of the 
detection SNR upon the image quality, especially in case of the lowest level, 1 dB. 

 (a) (b) 
Fig. 5. SSIM (a) and PSNR (b) curves calculated for the five groups of images shown in Fig. 4. 

6.2. Image-denoising analysis based on DCT 
It is well known that the discrete Fourier transform is a complex and low-speed operation. 
Although the fast Fourier transform can increase the operation speed, it is rather inconvenient in 
image coding, especially in real-time processing. These shortcomings can be removed when using 
the DCT. In addition to general orthogonal-transformation properties of the DCT, the basis vector 
of its transformation matrix is very similar to the eigenvector of Toeplitz matrix, which embodies 
relevant characteristics of human language and image signals. In this section, we first use the DCT 
denoising method to process a part of noise. This is done in three steps: 
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(1) Perform the DCT transformation on the image to be processed and convert it into the 
frequency domain. Note that panels (b) and (e) in Fig. 6 show respectively a low-light image to be 
processed and a corresponding DCT-coefficient image; 

(2) Process the coefficients in the frequency domain. Panels (a) and (d) in Fig. 6 correspond 
respectively to the original image and its coefficient map in the frequency domain. It is obvious 
that most of the energy in the original image is concentrated in the upper left corner, which means 
that the image information corresponds mainly to the low-frequency region. For the image that 
contains a lot of noise (see Fig. 6b), the energy distribution is rather messy (see Fig. 6e) and some 
energy is located in the high-frequency region. Therefore a high-frequency shielding is required. 

(3) The coefficient diagram after high-frequency shielding is shown in Fig. 6f. Here the low-
frequency part is retained. After DCT, a processed low-light image can be obtained (see Fig. 6c). 

 
Fig. 6. Schematic diagram of DCT denoising algorithm (see explanations in the text). 

Below we analyze the denoising effects of different traditional methods. The object under test 
is again detection of low-light images with the low SNR, 1 dB. We will compare the DCT 
denoising with the three standard image-denoising algorithms denoted commonly as Statisticsfilt, 
Wnfilt and Meanfilt. These algorithms have a sufficient denoising effect and their running time is 
about 1 s. Notice that the non-local mean denoising algorithm cannot remove a serious Poisson 
noise. Moreover, it also loses some original information so that its results are not good. The three-
dimensional block-matched filtering algorithm and the other related algorithms do not result in 
outstanding denoising effect. Moreover, the appropriate calculations are cumbersome and the time 
cost is high. Therefore these methods are not suitable for pre-processing undertaken prior to deep 
learning. For this reason we perform no further comparison for these methods. 

As seen from Fig. 7, Statisticsfilt, Wnfilt and Meanfilt reveal some denoising and filtering 
capabilities. Obviously, the processed images become smoother, though they still remain 
somewhat blurry. Statisticsfilt is slightly better than Wnfilt and Meanfilt. Among all of the 
methods, the DCT denoising algorithm manifests the best performance. It is seen from Fig. 7 that 
this method removes more Poisson noise, while the quality of the processed images is significantly 
improved when compared to the initial 1 dB image.  

Comparing Fig. 8a with Fig. 8b, one concludes that the SSIM for the Hawk map after 
denoising by each method is about 0.3 and the corresponding results are rather close to each other. 
In addition, the DCT has obvious advantages in denoising performance, being followed by the 
Statisticsfilt method. The Wnfilt and Meanfilt methods reveal a similar denoising effect. When 
compared with the 1 dB image, the SSIM value for the image denoised by the DCT method 
increases by more than 100% and the corresponding PSNR value increases by more than 90%. 
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Fig. 7. Comparison of different denoising algorithms applied after pre-processing. 

(a) 

(b) 

Fig. 8. Histograms of PSNR (a) and SSIM 
(b) values calculated for the images of 
Fig. 7 after denoising performed by 
different methods (see the legend). 
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6.3. Restoration based on DCT and CGAN  

Now we discuss the CGAN network model built under the framework of Tensorflow 2.0 [18], 
which runs on a Python 3.7 platform. The training adopts an alternate training method of generator 
and discriminator. Further on, we use a known MSRA data set [19] as a basis. In order to construct 
the data set, we have selected 5000 images from MSRA. These original images are taken as 
{ ( )}T x . As above, the low-quality image data set 1{ ( )}t x  is generated one-to-one through a low-
light imaging. The image-detection SNR used in our simulations is again equal to 1dB. The 
processed data set 2{ ( )}t x  is obtained through the DCT denoising processing. We have obtained a 

data set 2{ ( ), ( )}t x T x  composed of 5000 pairs of images. Finally, 3000 image pairs have been 
selected as a training set, 1000 pairs as a verification set and 1000 pairs as a test set. 

In the training process, we have employed the batch size 32 and the buffer size 400. A known 
Adam’s optimization method has been used to optimize all the networks in the generator, with the 
batch size set to 4 and the initial learning rate set to 0.0002. When testing, only the generation 
network is needed. Therefore, we input directly the low-quality images into the generation network 
for calculations and then obtain the restored images. 

 

Fig. 9. Behaviour of loss function value 
observed during training. The upper and 
lower curves correspond respectively to 
generator and discriminator loss functions. 

Fig. 9 displays a change in the loss functions occurring with increasing number of training 
rounds during the training. Our simulation experiments demonstrate that the test effect becomes 
fairly good whenever the number of training rounds reaches ~ 200. Therefore we set this number 
to be 200 further on. It is seen from Fig. 9 that the initial value of the generator loss function is 
larger because there is a large gap between the input image and the target original image. As the 
number of trainings increases, the generator loss value oscillates slightly and decreases steadily, 
thus reaching gradually a convergence. The advantage of the loss function is a combination of 
adversarial and regression losses. The value of the discriminator loss function remains relatively 
stable, with only slight fluctuations, and it finally converges to the region [0, 1]. 

The main experimental results are shown in Fig. 10. Here we compare the 1 dB image, the 
image processed using the DCT denoising procedure alone and the restored image processed by 
the combination of the DCT denoising and the CGAN network, as suggested in our study. It is 
evident that the image quality at 1 dB is extremely poor and most of the information is submerged 
by the noise. After the DCT denoising algorithm is applied, some information of the target image 
can be seen and its main content can be identified, although this result is far from satisfactory. To 
further restore it, we employ the CGAN-network method. The results confirm that our combined 
method can achieve good enough results. The restored images are very close to the original ones, 



Low-light image restoration 

Ukr. J. Phys. Opt. 2021, Volume 22, Issue 4 235 

whereas the noise is almost completely removed. Nonetheless, there are some details that have not 
been fully restored (e.g., the legs of a frog and the wings of an eagle – see the lowest row of 
images in Fig. 10). 

 

Fig. 10. Images restored by different methods referred to in the legend. 

(a) 

(b) 

Fig. 11. Histograms of PSNR (a) and SSIM 
(b) values calculated for the images 
processed and restored by different methods 
(see the legend). 

Finally, we evaluate the imaging results, using the PSNR and SSIM histograms (see Fig. 11). 
It is evident that the images obtained after DCT denoising has higher PSNR and SSIM values. The 
improvement is nearly equal to 100%. Table 1 shows the average PSNR and SSIM values derived 
for different processing and restoration methods. The combination DCT+CGAN improves greatly 
the restoration effect. When compared with the case of 1 dB image, the PSNR increases by about 
15 dB and the SSIM by about 0.5. Comparison with the DCT-processed image demonstrates the 
increase in both the PSNR (about 8 dB) and the SSIM (~ 0.3). Due to our method, the average 
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PSNR value of the final image is as high as ~ 22.8 dB and the SSIM value is ~ 0.8. This implies 
that our method enables one to achieve a good enough processing and restoration effects. 

Table 1. Average PSNR and SSIM values obtained with different processing and restoration 
methods 

Method 1 dB Statisticsfilt Wnfilt Meanfilt DCT DCT+CGAN 
PSNR, dB 7.786 11.636 8.510 8.681 14.743 22.830 

SSIM 0.265 0.481 0.427 0.441 0.573 0.796 

7. Conclusion 
It is a general knowledge that the images resulted from low-light imaging situations contain a lot 
of noise and their quality is extremely poor. In the present work we simulate low-light imaging 
basing on the Poisson-distributed noise. The lower the system-detection SNR, the worse the image 
quality is. We have concentrated on the image restoration performed under the condition of 1 dB 
SNR. We have suggested using a combination of the DCT denoising algorithm and the CGAN 
processing network. Taking into account the nature of the noise under the above conditions, we 
transform the image into the frequency domain by the DCT and perform the high-frequency 
shielding.  

First, different denoising and preprocessing algorithms have been analyzed. It has been found 
that our method has a better performance and lower time cost, when compared with the commonly 
known denoising algorithms. Then we use the CGAN algorithm to improve further the image 
quality. As a result, our method restores the images with greatly improved quality. In particular, 
the average PSNR and SSIM parameters characterizing our method are respectively over 22 dB 
and about 0.8. 
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Анотація. У процесі формування зображень при слабкому освітленні деяка частина 
корисної інформації зображення перекривається шумом. Коли перешкоди значні, 
відношення сигнал/шум (ВСШ), виявлене в системі, зменшується до дуже низького рівня. 
Ми вивчаємо зображення при слабкому освітленні за умови, коли ВСШ детектування 
дорівнює 1 дБ. Беручи до уваги, що шум часто знаходиться у високочастотній частині 
спектра, ми використовуємо дискретне косинусне перетворення (ДКП), щоб видалити шум 
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або, принаймні, відфільтрувати його частину. Потім використано алгоритм умовної 
генеративної змагальної мережі (УГЗМ) для подальшого поліпшення якості зображення. 
Результати моделювання засвідчують, що поєднання алгоритмів ДКП і УГЗМ значно 
поліпшує результати відновлення та кінцеву якість зображень. Остання стає досить 
високою, так що середнє пікове ВСШ перевищує 22 дБ, а показник структурної подібності 
становить приблизно 0,8. 


