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Abstract. We consider simultaneous diffractions of light by two lobes of sound 
radiation pattern in an acousto-optic modulator which is built on SiO2 single crystal 
and has two-element phased-array transducer with the fixed phase shift  . 
Implementation of this diffraction type greatly improves power efficiency of the 
device. Transducer shaping is used to steer the lobes and satisfy the Bragg’s 
conditions for simultaneous acousto-optic diffractions. The conditions of the 
diffraction are defined and a mathematical model for calculating diffraction 
efficiency is suggested. It is shown that a parallel diffraction regime is almost three 
times more energy-efficient than a serial regime. Several configurations of 
transducer elements’ shape are analyzed. In particular, changes in the dimensions of 
diamond-shaped elements are shown to allow adjusting the operating frequency 
within 23%. An experimental sample of the device is built. 
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1. Introduction 
Use of phased-array transducers is one of the most common ways to improve characteristics of 
acousto-optic (AO) devices [1−5]. Phase manipulation of each transducer cell allows one to 
modify acoustic radiation pattern. Therefore, reduction of side-lobe intensities and beam steering 
can be achieved, thus resulting in expanded dynamic range and bandwidth of AO devices [1−5]. 
Although the best results can be reached when the phase and the amplitude of cells are controlled 
electronically [5], simply connecting piezoelectric cells in a series with the opposite polarities, 
which results in the phase shift  , also increases the bandwidth and the dynamic range [2]. To 
implement this phase shift, a metalized binding layer between a piezoelectric plate and a crystal 
can be used to connect two parts of a transducer in the opposite direction. The electrodes 
delivering a signal are sputtered on a top of the piezoelectric plate, thus realizing two-element 
phased-array transducer with a fixed phase shift  . 

In this simplest configuration, a bottom electrode does not deliver electrical power and all the 
power is delivered through a top electrode, which allows one to satisfy higher power requirements 
for quartz-based AO modulators. A significant disadvantage of such transducers is a presence of 
two acoustic-beam lobes. However, only one of these lobes is normally used in AO interactions so 
that the energy of the other lobe is wasted.  

In the present work, we demonstrate a possibility for simultaneous light diffractions by the 
both acoustic lobes in a quartz AO modulator with a two-element transducer. This diffraction 
occurs under a certain condition that relies upon a link among the sound frequency, the light 
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wavelength, the transducer size and its shape. As the sound frequency and the light wavelength are 
usually fixed, the simultaneous diffraction regime can be achieved by adjusting the size or the 
shape of transducer. Although here we consider only a two-element transducer, our methods can 
be extended to the case of any number of those elements.  

2. Condition of simultaneous diffractions by both side lobes 
The sound-radiation pattern of two-element transducer with the phase shift   consists of two 
directional lobes (see Fig. 1a). The parameters of the incident light and the acoustic frequency can 
be chosen in order to satisfy the Bragg’s condition for the both lobes (see Fig. 1b, c). In this case, 
simultaneous diffractions by the both directional lobes occur. One can see from Fig. 1 that the two 
regimes of simultaneous diffraction are possible: parallel (Fig. 1b) and serial (Fig. 1c) ones. In a 
parallel regime, the incident light beam specified by the wavevector ik  is diffracted by the left 

( LK ) and right ( RK ) sound lobes into the +1st and –1st orders, respectively. In a serial regime, the 
incident beam diffracts into the +1st order and then by the other lobe into the +2nd order. Naturally, 
the lengths of the vectors LK  and RK  and the angle ψ between them depend on the sound 
frequency. Besides, ψ is also affected by the transducer size and shape. Hereby, there should be 
some condition, like the Bragg’s one, which relates the parameters of light, sound and transducer 
to match the vector diagrams in Fig. 1. Let us find this condition.  

 
a)    b)    c) 

Fig. 1. Simultaneous light diffraction by two acoustic lobes: sound radiation pattern (a) and vector diagrams for 
parallel (b) and serial (c) diffractions. The angle ψ between the sound lobes is twice as large as the Bragg’s 
angle B . 

To start, let us remark that the difference between the parallel and serial diffractions consists 
only in the selection of incident light beam. Therefore, the condition we are going to define should 
be the same for the both cases. Let the transducer face be placed in the yz plane and the acoustic 
wave propagate along the x axis. The radiation pattern ( , )I    of transducer can be defined by 
Fourier transform of distribution of the displacement-vector amplitude in the transducer plane 
(here we suppose the amplitude to be constant and unit within the bounds of transducer): 

 
2 2

( ) (sin sin cos )1 1( , ) ,y zj K y K z jK y z

S S

I e dydz e dydz
S S

             (1) 

where S denotes the transducer area, K the acoustic wavenumber, and   and   are respectively 

the azimuthal and zenithal angles (see Fig. 2). Since the light diffraction takes place in the xy 
plane, the acoustic radiation pattern should also be examined in this plane. Thus, assuming 

/ 2   and 0zK  , one can transform the surface integral in Eq. (1) into the interval one (see 
Fig. 2) 
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where the functions   :u y y z  and   :v y y z  determine the transducer shapes above and 

below the y axis, respectively (see Fig. 2).  

 
Fig. 2. Two-element transducer geometry. Hatched are elements with the opposite phase and K denotes 
acoustic wavevector. 

Exploring the extrema of Eq. (2), one can obtain the angle / 2opt   (see Fig. 1a) and the 
acoustic wavevector projection opt

yK  that correspond to the main sound lobes. Due to symmetry of 

our problem, the wavevector projections opt
yK  for the left and right lobes differ by only their 

signs. Further on, we consider only the positive lobe. The opt
yK  value depends on the size and 

shape of transducer and remains independent of the acoustic frequency. One can find from Fig. 1  
that the  Bragg’s condition for the both acoustic lobes is as follows: 

 sin sin .
2 2

opt K
k


       (3) 

On the other hand, we have  

 sin .
opt
yopt K

K
        (4) 

Combining Eqs. (3) and (4) and introducing the notations 2 /K f V  and 2 /k n  , we 
arrive at  

 
2

,opt
y

nVf K


       (5) 

with f being the acoustic frequency, V the phase velocity of sound, n the refractive index of a 
material medium, and  the light wavelength. Eq. (5) summarizes the condition for the 
simultaneous diffraction. 

Let the transducer size defined by the limits of integration a and b in Eq. (2) be fixed, which 
is generally satisfied. Then it would be reasonable to exclude the effect of a and b on the opt

yK  
parameter. The scaling property of the Fourier transform enables rewriting Eq. (2) as 
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Although Eq. (6) contains a and b, it is clear that the functions ( )u a ly  and ( )v a ly  can be 
redefined as ( )u y   and ( )v y   for a normalized coordinate [0;1]y . The appropriate new 
functions describe the transducer shape independent of its dimension along the y axis. Similarly to 
Eq. (2), a corresponding opt

nK  value, which does not depend on the absolute value of l , can be 

found from Eq. (6). The opt
nK  and opt

yK  parameters are related as follows: 

.opt opt
y nK K l       (7) 

One can transform Eq. (5) to obtain 

 
2

.opt
n

nVf K
l

      (8) 

It is worthwhile to note that simultaneous multiplication of the functions ( )u y   and ( )v y   in 
Eq. (6) by a positive constant, which corresponds to scaling of transducer shape along the z axis, 
does not affect the opt

nK  value and, therefore, the directions of the main sound lobes. Hence, the 
opt
nK  value is determined by the transducer shape defined up to a constant factor by the functions 
( )u y   and ( )v y  . Consequently, the variation of transducer shape can be used to satisfy Eq. (8) 

provided that the other transducer parameters (e.g., the acoustic frequency and the size) are kept 
fixed.  

3. Diamond-shaped transducer elements 
Transducer with its elements shaped as a diamonds is commonly used to reduce the level of 
unwanted acoustic side lobes [6, 7]. Apart from acoustic-beam improvement, such a transducer 
shape is convenient for implementing simultaneous diffractions by the two acoustic lobes. 
Variation of the  parameter (see Fig. 3) leads to change in the azimuthal angle / 2opt  . For 

any predefined acoustic frequency, one can select such  that the angle   between the sound  

 

(a) 

  

   (b)    (c) 
Fig. 3. Transducer with diamond-shaped elements: (a) dimensions of elements, (b) dependence of beam-
direction angle opt  on dimension ratio  at the acoustic frequency 50 MHz, and (c) acoustic-frequency 
dependence on . Dimension d is equal 14 mm. Light wavelength is equal to 1064 nm. Note: variation of  
implies only change in h value and the other transducer dimensions are fixed. 
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lobes would satisfy the Bragg’s condition for the both sound lobes. The range of attainable opt  

values at the acoustic frequency 50 MHz is shown in Fig. 3a. Contrariwise, the range of acoustic 
frequencies for which the simultaneous diffraction is possible can be determined using Eq. (8) and 

varying the   value from 0 to 1 (see Fig. 3b). From Eq. (6) one can determine the opt
nK  values at 

0   and 1  . They are equal to   and 2.082  respectively. According to Eq. (8), the ratio 

of the maximum frequency to the minimum one is / 2.082 1.23  . This estimation of attainable 
frequency variation remains general for any acoustically isotropic medium, being independent of 
the parameters of light and material medium. Examples of radiation patterns observed in the cases 
of 1/ 2   and 5/ 7   are shown in Fig. 4. 

 
Fig. 4. Radiation patterns obtained for the cases of two differently shaped transducers. Acoustic wave 
propagates along the x axis in a SiO2 crystal. The acoustic frequency is equal to 50 MHz. The difference 
between the lobe directions 1 and 2 is 5×10–4 rad. This corresponds to opt

nK  change of 18% in the case 2, 

when compared with the case 1. 

4. Diffraction efficiency 
To calculate the diffraction efficiency, a matrix formalism described in Ref. [8] has been used. The 
concept of this method is that each transducer element forms a separate AO cell, whose output 
light amplitudes represent input ones for a following cell (see Fig. 5). The relation between the 
complex amplitudes of the input and output lights in each cell is represented by a matrix. 
Therefore, the light amplitudes after passing all AO cells can be found by a chain product of the 
corresponding matrixes. 

1, 1, 1 1, 1 1,

2, 2, 1 2, 1 1 2,

3, 3, 1 3, 1 3,
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Fig. 5. Illustration of matrix representation 
of AO interactions. 
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Fig. 6. Vector diagram of AO interaction within a 
single cell. 

Let us consider AO interaction within a single cell. In our case, there are three light beams. 
Their interaction diagram is illustrated in Fig. 6. We are not obliged to specify either parallel or 
serial diffractions, since the physical coupling between the light beams is the same in the both 
cases. According to Ref. [9], this coupling is described as  

     1 1 1exp exp .
2

p
p p p p

dС q C j y C j y
dy

                 (9) 

Here pС  is the complex amplitude of the p-th light beam, , 1,p p y p yk k    the mismatch 

parameter,   the phase of sound, /aq P S  the coupling factor, and aP  and S are respectively 

the acoustic power and the area of transducer element. With the reference to Fig. 6, Eq. (9) can be 
rewritten as 
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    (10) 

where the substitution  expq i q   has been made. Using Fig. 6 and assuming K k , one 

can obtain the relationship 2 2 2 2 / 2k k K K k     . In common with the work [8], we 

transform Eq. (11) in the way that provides necessary phase relationships at the right edge of the 
cell and makes the system of Eqs. (10) simpler: 

    1 1 2 2 3 3exp , , exp .C A j y C A C A j y        (11) 

Substitution Eq. (11) into Eq. (10) gives the following coupled-mode equations: 
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Here the lower subscript i  defines the corresponding AO cell and the coordinate iy  corresponds 

to the position within the i th cell with respect to its left edge. Let us remind that the output light of 
( 1)i  th cell is input for the i th cell. Then the boundary conditions for Eq. (12) are as follows: 

1
1, 1, 1 1 1 1

1
2, 2, 1 1 1 2

1
3, 3, 1 1 1 3

( 0) ( ) ,

( 0) ( ) ,

( 0) ( ) .
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i i i i i
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i i i i i
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
  

   

   

   

    (13) 

The solution of Eq. (12) with the boundary conditions Eq. (13) can be put into matrix form, 
thus relating the output amplitudes to the input ones in all of the diffraction orders: 
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Defining the matrices i  for all the AO cells, one can calculate the final output-light 
amplitudes in the following way:  

      
1 1

2 1 1 1 1 1 1 2

3 3

, , ... , .

out in

out in
n n n n n n

out in

A A

A q L q L q L A

A A
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   
   
      
   
   
   

   (15) 

Here the amplitudes in
iA  describe the incident light and specify the diffraction regime. When 

2 1inA   and 1,3 0inA  , the parallel diffraction occurs. On the contrary, the diffraction becomes 

serial whenever we have the relations 1 1,inA   2,3 0inA   or 3 1,inA   1,2 0inA  . Note that the zero-

order diffraction corresponds to the subscript i for which we have 1in
iA  . 

Although in our case the transducer consists only of two elements, Eq. (15) may contain 
more than two matrices i . The additional matrices appear when taking into account the distance 

between transducer elements or the shape. The zones with no sound also can be described by the 
matrix i  assuming 0iq  .  
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Eq. (15) represents a solution of a one-dimensional diffraction problem and does not involve 
any transducer shape that differs from rectangular. Non-rectangular transducers can be considered 
as those in which the length of the AO interaction changes along the direction perpendicular to the 
diffraction plane [10]. Then the transducer can be divided into thin longitudinal strips (see Fig. 7).  

 
Fig. 7. Dividing laser beam into thin strips. Laser beam propagates along y axis. 

For every strip, the partial light intensity is calculated with Eq. (15). The total light intensity 
is a sum of all the partial components:  

      

2
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where r  is the light-beam radius. 
Now let us consider the parallel diffraction regime. The transducer contains two rectangular 

elements placed next to one another, with the length of each element being equal to L. As the 
phase shift between the elements is  , the coupling factors are 1q q  and 2q q  . Using the 

corresponding initial amplitudes in Eq. (15), one can obtain the intensity of the zero-order beam: 
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  (17) 

When we have 2 / 2    , Eq. (17) has a null corresponding to a maximal diffraction 

efficiency. The optimal values of the mismatch parameter   and the coupling factor q  are then 
given by 

/ 2 / 2 ,
/ 2 / 2 .

L L
qL q L
   

 
  
  

         (18) 

The optimal value L  is assumed to be the same for the both parallel and serial regimes. 

Fig. 8 demonstrates a dependence of zero-order intensity on qL  at the L  value defined by 

Eq. (18). It is evident that the optimal acoustic power is almost three times larger in the serial 
regime when compared to the parallel one. Thus, the parallel regime proves to be more efficient. 
Below we will consider only this case. 
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Fig. 8. Output intensity of a zero-order light depending on qL value. Red and blue lines correspond to parallel 
and serial regimes, respectively. The ratio of positions of ‘minimum points’ is equal to 1.69, which corresponds 
to the power ratio 2.87. 

5. Acoustic-field distribution 
The diffraction efficiency has been calculated in Section 4, using the most common model of a 
‘sound column’. It implies a plane acoustic wave with a uniform amplitude bounded by a 
transducer aperture. Such a model is close to considering AO interaction in the near field in the 
sense that the acoustic wavefront remains planar. However, it accounts for no inhomogeneity of 
the acoustic amplitude, which is always present in the near-field region, thus resulting in 
overestimated diffraction efficiency. 

To study the effect of acoustic-amplitude variations, we have examined the acoustic-field 
distributions for four different transducer configurations (see Fig. 9). Fig. 10 depicts the results of 
numerical calculations for some 3D amplitude distributions of acoustic beam in SiO2 crystals. A 
transducer is placed in the yz plane and radiates a 50 MHz longitudinal acoustic wave along the x axis. 

 

 
Fig. 9. Transducer configurations for which 3D sound-field distribution is computed. 

Three configurations of transducers have been realized in the experiment where two-
dimensional projections of some acoustic field are experimentally visualized using the AO 
technique [11] (see insets in Fig. 10). The acoustic field calculated for the fourth configuration 
with a rectangular transducer is provided for comparison.  
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Fig. 10. Amplitude distributions of longitudinal ultrasonic wave in SiO2 crystals. Acoustic frequency is 50 MHz. 
Color palette and transparency settings for 3D images are arbitrarily adjusted for better visualization of the field. 
Grayscale inserts show experimentally visualized sound fields.  

The acoustic-field calculations have been performed using a planar-wave decomposition 
method that takes acoustic anisotropy into account [12−14]. This method involves Fourier 
decomposition of the acoustic-displacement field within the radiation (i.e., transducer) plane in 
order to represent it as a sum of plane waves. The acoustic displacement at any point of half-space 
can be found by summing up all of the plane waves with the corresponding phase incursions.  

It is evident from Fig. 10 that the acoustic beams radiated by neighbouring transducer 
elements do not intersect. Furthermore, the acoustic beam in the xy cut (i.e., the plane of AO 
interaction) is almost non-divergent because of high anisotropy of the crystal. The Fresnel region 
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where the acoustic wave has almost plane wavefront stretches over approximately 3 mm from the 
transducer plane. Away from these 3 mm, the acoustic field forms the main divergent lobe wherein 
the divergence is mostly present only in the xz plane. The distribution of the displacement 
amplitude in the beam cross-section is strongly non-uniform due to diffraction and crystal 
anisotropy. Also, it is skewed along the y axis. The non-uniformity and skewness are not taken into 
consideration in the model of ‘sound column’, which is a significant drawback of this model. 

Additionally, there is a pronounced modulation of sound amplitude along the x axis. The 
origin of this modulation is not clear for us, and the same refers to its absence in the case of 
symmetric diamond-like shaping. Most probably, the effect is caused by destructive interference of 
partial acoustic waves in a strongly anisotropic medium. The modulation period (approximately 
0.9 mm) is the same for all the AO-cell configurations considered by us, excluding the case of 
symmetric diamond shaping. A modulation seen in the experimental patterns is caused by a 
different effect: this is interference of light transmitted and reflected off the side crystal faces. This 
optical interference might prevent us from detecting the sound-amplitude modulation obtained in 
the calculations.  

6. Comparison of experimental and theoretical results  
Fig. 11 demonstrates dependences of the calculated and experimentally measured diffraction 
efficiencies on the acoustic power, as obtained in the case of parallel diffraction at the light 
wavelength 632.8 nm with the light polarization oriented along the z axis. The acoustic frequency 
is selected according to the transducer shape. 

  

 

Fig. 11. Dependences of output intensities for a zero-
order light on acoustic power: r denotes a laser-beam 
radius. Solid lines represent theoretical calculations 
for different laser-beam radii and dots correspond to 
experimental results. 
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It is seen from Fig. 11 that the maximal diffraction efficiency (i.e., the lowest intensity of the 
output zero-order beam) increases with decreasing cross-section of light beam. This behaviour 
occurs due to inhomogeneity-driven reduction of AO-interaction length [10]. The 100% diffraction 
efficiency is achievable only in the case of equal interaction lengths for all the partial components 
in Eq. (16), the same way as in the case of rectangular transducers. The beam-radius reduction 
leads to decreasing difference between the interaction lengths of the partial components, resulting 
in higher diffraction efficiency. However, a substantial reduction in the beam radius can impose a 
negative effect, since a very thin light beam effectively feels any transducer shape as a rectangular 
one. In such a case the optimal acoustic frequency differs from that defined for a specifically 
shaped transducer. 

There is a single marked disagreement between the theoretical and experimental traces. 
While the general trends for the traces are similar, the experimental ones seem to suffer from 
insufficient acoustic power. This might be caused by the losses acquired during electro-acoustic 
transformation or, alternatively, by some effects of non-uniformity of the acoustic field that appear 
due to sound diffraction, which has not been taken into account. 

7. Conclusion 
The concept of simultaneous AO diffractions by two acoustic lobes in AO cells with shaped multi-
element phased-array transducers has been considered. The conditions of such diffraction mode 
have been defined and a mathematical model for diffraction efficiency, which is based on the 
assumption of ‘sound column’, has been developed. In particular, the AO cells based on SiO2 
single crystals with two-element phased-array transducers and a fixed phase shift of   have been 
examined.  

Calculations of the acoustic-field distribution in the SiO2 crystals have shown that, in the 
operational region, the acoustic wavefront remains planar, thus allowing the assumption of ‘sound 
column’ to be valid. It is shown that the parallel diffraction regime is almost three times more 
energy-efficient than the serial regime. Additionally, transducer-shaping technique can be 
efficiently used to steer the lobes satisfying the condition of simultaneous AO diffractions, when 
the acoustic frequency and the other parameters of the AO cell are kept fixed. Particularly, the 
diamond shape has allowed us to adjust the operating frequency within 23%. 
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Анотація. Розглянуто одночасну дифракцію світла на двох пелюстках діаграми 
направленості звукового випромінювання в акустооптичному модуляторі, що побудований 
на монокристалі SiO2 і має двоелементний фазований перетворювач із фіксованим зсувом 
фаз  . Впровадження такого типу дифракції значно поліпшує енергоефективність 
пристрою. Зміну форми перетворювача використано для керування пелюстками та 
задоволення умов Брегга одночасної акустооптичної дифракції. Визначено умови дифракції 
та запропоновано математичну модель для розрахунку її ефективності. Показано, що 
паралельний режим дифракції майже втричі енергоефективніший, ніж послідовний 
режим. Проаналізовано кілька конфігурацій форм елементів перетворювача. Зокрема, 
показано, що зміна розмірів ромбовидних елементів дає змогу регулювати робочу частоту 
в межах 23%. Створено експериментальний зразок пристрою. 


