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Abstract. We suggest a novel infrared-and-visible image fusion method based on 
empirical curvelet transform (ECT) and phase congruency (PC). Since the wavelet 
bases of ECT are not fixed, the ECT is in fact an adaptive multiscale representation 
method, whereas the PC can measure significance of feature pixels. Then a 
combination of the ECT and the PC can efficiently extract and retain the features of 
source images. Our fusion method includes the three following steps: (i) decomposing 
a source images into ECT coefficients, (ii) fusing low-frequency subbands using the 
weighted averaging procedure based on log-Gabor energy taken from the PC theory, 
and fusing high-frequency coefficients using the maximum selection rule based on the 
PC, and (iii) composing the coefficients of all subbands to form a fused image with 
the inverse ECT. The experimental results derived on three image pairs demonstrate 
that our method provides a satisfying visual effect of fusion. Moreover, it outperforms 
a number of traditional methods in terms of different quantitative metrics. 
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1. Introduction 
Image fusion aims at generating a new fused image that complements information concerned with a 
scene under interest. It has been widely used in object detection, security surveillance, remote 
sensing, etc. (see Ref. [1]). In particular, a thermal infrared sensor captures mainly the 
thermal-radiation information of objects in surveillance applications. Then the captured information 
is not affected by illumination and can easily discover and highlight the targets. However, the 
infrared image often has a low spatial resolution, while the appearance information is lost since the 
appearance of objects seldom influences thermal-radiation images [1]. Therefore, it is necessary to 
compose the thermal radiation information and the appearance information into a single image 
which is useful for subsequent computer processing. 

The methods based on multi-scale transform (MST) are well-known in image fusion methods. 
Usually, they involve the three following steps: (i) decomposition, (ii) fusion of representation and 
(iii) reconstruction [2, 3]. Laplacian pyramid (LP), discrete wavelet transform (DWT), 
shift-invariant DWT (SIDWT), contourlet transform (CT) and nonsubsampled CT (NSCT) are 
among the known MSTs approaches. Wavelets and their geometric extensions are useful 
mathematical tools employed in image processing. However, wavelet bases are constructed with a 
prescribed method corresponding to dyadic scale decomposition. It can prove that these bases are 
not the best for representing an image [4]. In addition, infrared and visible images have different 
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characteristics. In an infrared image, thermal-radiation information of a target typically corresponds 
to higher intensities. In contrast, the appearance information in a visible image is expressed by a 
gradient, and larger gradients provide details and more salient information [1]. So, it would not be 
proper to extract different features using the same wavelet bases.  

Unlike the traditional MSTs, the wavelet bases of an empirical curvelet transform (ECT) are 
not fixed. Rather they are dependent on the signals being processed. This makes them optimal for 
decompositions aimed at extracting salient information. To retain the salient information, one needs 
that the fused image keep both the thermal-radiation and appearance information. To this end, a 
novel fusion method based on the ECT is suggested.  

The rest of this article is organized as follows. Section 2 presents the preliminaries of basic 
theories of the ECT and the PC. In Section 3, we describe our fusion method based on the ECT and 
the PC. Section 4 illustrates the fusion experiments performed on publicly available image pairs. 
Here a comparison with several traditional fusion methods is elucidated. Finally, the conclusions are 
drawn in Section 5. 

2. Preliminaries  

2.1.  ECT 
Gilles [5] has proposed a 1D empirical wavelet to extract the amplitude modulated−frequency 
modulated components. Soon afterward Gilles et al. [4] have generalized the above empirical 
scheme to several existing 2D wavelets. One of the relevant successful schemes is the ECT.  

The curvelet transform (CT) has been suggested in Ref. [6]. Its central idea is to construct a 
filter bank in the Fourier domain. The Fourier representation of a single curvelet is given by 

 2 23 4
2 2( )( , ) 2 (2 ) jj j

j W V 
         ,         (1) 

where j  means the wavelet filter at j th scale, ( )W r  and ( )V t  are functions defined over 
compact supports, and ( , )   are the polar coordinates. The empirical extension implies detecting 
the scales and the angles for each polar wedge. Suppose that the number of angular sectors is 
denoted as N  and the number of scales as sN . The low-pass filter 1  can be given by 
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do not overlap. As with the CT, the polar wedge nm  (with n  being the scale index and m  the 
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If we have 1sn N  , then 
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Finally, the polar window mV  is described as  
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where 1 1N     . 

2.2. PC and log-Gabor energy 
The PC has been defined by Morrone et al. [7]. For 2D images, the concept has been improved using 
log-Gabor wavelet filters for each pixel, whereas the implementation has been specified in 
Refs. [8, 9]. The 2D version is defined as 
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Here o  corresponds to orientations, n  is the index of scales, ( , )oW x y  the weight 
function, ( , )noA x y  the amplitude, ( , )no x y  the phase-deviation measure, oT  the estimated noise 
influence, and   a small constant. 

In its implementation, the log-Gabor filter ( , )u v  allows for constructing the filters with 
arbitrarily large bandwidths. The definition is as follows [10]: 
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where   and 2  are the parameters of angular interval, 1  is set to be 0.55 to obtain two 

bandwidths, and   is the central frequency. Then, a series of ( , )nos x y  and ( , )noh x y parameters 
(i.e., the real and imaginary parts of the output, respectively) can be obtained with different scales of 
the log-Gabor filter:  
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Here ( , )x y  denotes the space coordinates, ( , )u v  are the frequency coordinates, and   and 

1  are respectively the Fourier and inverse Fourier transforms.  
The local energy for a given orientation can be obtained via 
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Eventually, the log-Gabor energy is defined as  
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where  
( ) ( ) ( )so no ox s x E x  ,                 (11) 

( ) ( ) ( )ho no ox h x E x  .                (12) 
The weight function ( )oW x  used in Eq. (1) is given by the relation 

 0

1( , )
1 exp ( ( , ) )oW x y

x y c 


  
,           (13) 

where   and c  are constants, and 0 ( , )x y  is given by  
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Here N  denotes the total number of scales and max ( , )A x y  is the maximum amplitude. 

3. Our fusion method 
Based on the above theory, the ECT and the 2D PC can be efficiently applied to the problem of 
image fusion. The ECT can provide adaptive representation of source images, while the 2D PC can 
measure a significance of feature points [9]. Then the combination of the ECT and the 2D PC would 
extract efficiently the features of the source images. 

The fusion method based on the ECT and the 2D PC includes the following three steps. 
(1) Decompose both source images, an infrared image A and a visible image B, using the ECT. 

Then the coefficients of the two images are obtained as  , ,
,,i j i jA A

kL H   and  ,,
,, i ji j BB

kL H  , where L  

represents the low-frequency coefficient and ,kH   denote the high-frequency subband coefficients 
for decompositions in k  levels and   directions.  

(2) Compose the coefficients for the low- and high-frequency subbands basing on some rules:  
(a) The low-frequency subband aggregates most of the energy of image, which indicates that 

the averaging rule weighted by the energy could be suitable for fusing. In this work, we obtain the 
energy definition in an alternative way, using the theory of PC. In other words, the log-Gabor energy 
is used as an activity measure to merge the low-frequency coefficients. The log-Gabor energies of 
the low-frequency subbands for the A and B images are denoted as ( , )ALGE i j  and ( , )BLGE i j , 
respectively. The adopted weighted-averaging rule based on the log-Gabor energy can be 
represented as follows: 
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where C  is a small constant, ,i jw  the decision map, and ,Fi jL  the fused low-frequency coefficient.  
(b) The high-frequency subbands reflect mainly the information on image details, and the PC is 

suitable to measure the significance of feature pixels. Therefore we adopt the maximum-selection 
rule based on the 2PC  value in order to compose the high-frequency coefficients: 
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(3) Use the wavelets obtained from the ECT on the infrared image to perform the inverse ECT 
on the fused coefficients and form a fused image F.  
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4. Experimental results 
Now we test the performance of our fusion method using three publicly available image pairs. 
Moreover, we compare the appropriate results with those obtained using the traditional fusion methods. 
These are the fusion methods based upon LP [11], DWT [11], SIDWT [11], CT and NSCT. 

4.1. Setups of fusion methods 
For the MST-based methods mentioned above, classical steps discussed in Section 1 are followed. 
Besides, a classical averaging scheme is employed for the corresponding low-frequency subbands. 
The maximum-selection scheme is used for the high-frequency subbands. The decomposition levels 
are set to be 3. The codes of the LP-, DWT- and SIDWT-based methods are obtained from a Rockinger 
image-fusion toolbox [11]. For the CT and NSCT methods, we use the wavelet bases ‘9-7’ and ‘pvka’ 
respectively on the pyramid decomposition stage and the directional decomposition stage.  

4.2. Fusion metrics 
In our experiments, both qualitative and quantitative comparisons are conducted on different fused 
images. The quantitative evaluation is performed using the five metrics: standard deviation (SD), 
average gradient (AG), spatial frequency (SF), information entropy (IE), and mutual information 
(MI). The definitions of these metrics are given below:  
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(with ( , )F i j  being the pixel intensity of the fused image), 
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(with ( )p i  representing the probability of gray value i  of pixel and L  being the total number of 
gray level), 
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(with RF  and CF  being respectively the row and column frequencies), 
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(with ,I Fh  denoting the jointly normalized histogram of the images I  and F , Ih and Fh  being the 

normalized histograms of I  and F , and 1i  and 2i  representing the pixel values of I  and F , 
respectively).  

Finally, the MI used by us is the average value: 
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4.3. Fusion results and comparisons 
To get an intuitive impression of the performance of our fusion method, we have performed the first 
experiment on the infrared-and-visible image pair ‘e518’ with the size 512512 (see Fig. 1a,b). 
Fig. 1c−h show the appropriate fused images obtained with different fusion methods known from 
the literature. It is evident that each of the methods provides somewhat different though roughly 
similar visual perceptions. However, the fused image shown in Fig. 1h, which has been obtained 
with our method, is much clearer than the other images. Similar to the original infrared image, it 
reveals high intensity, which is beneficial when representing the image features. 

            (a)             (b) 

            (c)             (d) 

            (e)             (f) 

            (g)             (h) 
Fig. 1. Infrared and visible source images ‘e518’ and the corresponding fused images: (a) infrared source image, 
(b) visible source image, and (c)−(h) fused images obtained using the fusion methods based on LP, DWT, SIDWT, 
CT and NSCT, and our fusion method, respectively. 

The second experiment has been performed on the image pair ‘7118a’ with the size 512512. 
Fig. 2a−h display the appropriate source and fused images. When compared with the traditional 
fusion methods, our method takes a lead in the visual effects and preserves the information on details. 
Although there are shadows in the sky, the people, the ship, the coastline, and the boundary of the 
sea and sky in the image are prominent.  
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            (a) 
            (b) 

            (c) 
            (d) 

            (e) 
            (f) 

            (g) 
            (h) 

Fig. 2. Infrared and visible source images ‘7118a’ and the corresponding fused images: (a) infrared source image, 
(b) visible source image, and (c)−(h) fused images obtained using the fusion methods based on LP, DWT, SIDWT, 
CT and NSCT, and our fusion method, respectively. 

To verify further our method, we have also conducted the experiment with a pair of multimodal 
medical images with the size 256256 (see Fig. 3a,b). In particular, Fig. 3a displays a computed 
tomography image, which represents mainly the information concerned with bones. Fig. 3b is a 
magnetic resonance image, which reflects clearly the information on soft tissues. The fused images 
obtained with different fusion methods are displayed in Fig. 3c−h. One can conclude that the 
intensities of the brain tissue regions in Fig. 3c−g are lower than that seen in Fig. 3b, while the image 
in Fig. 3h shares a similar intensity with the source images. This is why our fusion method works 
better in preserving the original visual information. 

The quantitative comparison of different fusion methods applied to the above three image pairs is 
illustrated in Table 1. Here the best figures are marked in bold for each metric (i.e., for each column). 
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Following from the above data, one concludes that, in most of cases, our fusion method provides the 
best results for the metrics SD, AG, SF, IE and MI. Although it does not yield the best parameters for a 
few experiments and a few parameters (e.g., the SF data for the ‘e518a’ pair, the MI data for the 
‘7118a’ pair, and the SF data for the medical images), there are no significant differences between the 
parameters of our method and the best parameters. Hence, we believe that the performance of our 
method in these exceptional cases is almost the same as the performance of its best rivals.  

 

            (a) 
            (b) 

            (c) 
            (d) 

            (e) 
            (f) 

            (g) 
            (h) 

Fig. 3. Medical source images and the corresponding fused images: (a) computed tomography image, (b) 
magnetic resonance image, and (c)−(h) fused images obtained using the fusion methods based on LP, DWT, 
SIDWT, CT and NSCT, and our fusion method, respectively. 

Issuing from the experimental results, the conclusion can be drawn that our method preserves 
well both the thermal-radiation information and the appearance information, i.e. it highlights the 
most important information on the target. Moreover, our method outperforms the traditional fusion 
methods in both qualitative and quantitative characteristics.  
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Table 1. Quantitative comparison of fusion results obtained for the images ‘e518’ and ‘7118a’ and 
the medical images. 

Image Method ( )SD F   ( )AG F   ( )SF F  ( )IE F   ( , , )MI A B F  
LP 0.1437 0.0519 0.0496 7.0598 0.8428 

DWT 0.1311 0.0471 0.0473 6.9458 0.7869 
SIDWT 0.1331 0.0479 0.0472 6.9574 0.8629 

CT 0.1304 0.0468 0.0474 6.9511 0.7654 
NSCT 0.1293 0.0465 0.0458 6.9232 0.8310 

e518 

our method 0.1482 0.0540 0.0444 7.1104 0.8759 
LP 0.0702 0.0239 0.0203 6.1023 0.8068 

DWT 0.0673 0.0228 0.0193 6.0355 0.8329 
SIDWT 0.0684 0.0232 0.0203 6.0558 0.8854 

CT 0.0695 0.0234 0.0201 6.0878 0.7404 
NSCT 0.0670 0.0227 0.0190 6.0268 0.8750 

7118a 

our method 0.1079 0.0398 0.0211 6.7877 0.3487 
LP 0.2022 0.0701 0.0768 6.1477 0.3093 

DWT 0.1635 0.0558 0.0712 6.1780 0.2777 
SIDWT 0.1702 0.0586 0.0737 6.0855 0.3010 

CT 0.1600 0.0547 0.0708 6.2897 0.2659 
NSCT 0.1600 0.0550 0.0692 6.1931 0.2954 

medical 

our method 0.2268 0.0816 0.0699 6.8854 0.3274 

5. Conclusion 
In the present study, a novel fusion method based on the ECT and the PC approaches has been 
developed. The wavelet bases of the ECT are not fixed, whereas the PC is a dimensionless quantity 
which can measure the significance of feature pixels. In the fusion process, our fusion algorithm 
relies on the weighted averaging rule based upon the log-Gabor energy for the low-frequency 
subbands and on the maximum selection rule based upon the PC for the high-frequency subbands. 

The performance of our method has been tested on three image pairs. It has been compared 
with a number of traditional fusion methods, which are based on LP, DWT, SIDWT, CT and NSCT 
approaches. We conclude from the fusion results that our method outperforms the other methods in 
both visual perception and different quantitative measures. 
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Анотація. Запропоновано новий метод злиття інфрачервоних і видимих зображень, 
заснований на емпіричному кервлет-перетворенні (ЕКП) і фазовій конгруентності (ФК). 
Оскільки бази вейвлетів ЕКП не є фіксованими, то ЕКП фактично є адаптивним методом 
багатомасштабного представлення, тоді як ФК може вимірювати значущість піксельних 
ознак. Тоді поєднання ЕКТ і ПК дасть змогу ефективно видобувати та зберігати 
особливості вихідних зображень. Наш метод злиття включає такі три етапи: 
(1) розкладання вихідних зображень на коефіцієнти ЕКП; (2) злиття низькочастотних 
піддіапазонів за допомогою зваженої процедури усереднення на основі лог-габорівської 
енергії, взятої з теорії ФК, і злиття високочастотних коефіцієнтів із використанням 
правила максимального вибору, заснованого на ПК; (3) складання коефіцієнтів усіх 
піддіапазонів для формування злитого зображення за допомогою зворотного EКП. 
Експериментальні результати, одержані на трьох парах зображень, демонструють, що 
наш метод забезпечує задовільний візуальний ефект злиття. Більше того, він перевершує 
результати низки традиційних методів з точки зору різних кількісних показників. 


