Peculiarities of acousto-optic diffraction at circularly polarized
acoustic waves. Determination of elasto-optic coefficients coupled
with shear waves

Kostyrko M., Orykhivskyi 1., Skab I. and Vlokh R.

O. G. Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79005 Lviv,
Ukraine, vlokh@ifo.lviv.ua

Received: 07.10.2020

Abstract. We develop a new approach for determining some of elasto-optic
coefficients (p; with i=1...6 and j=4, 5) basing on Dixon—Cohen method and
acousto-optic diffraction at circularly polarized acoustic waves. Particular cases of
crystals that belong to trigonal system and some symmetry groups of tetragonal and
hexagonal systems are analyzed. We find that the effective elasto-optic coefficients
are different for the alternative cases of diffractions at either right- or left-handed
circularly polarized acoustic waves that propagate along Z axis in crystals. One can
determine in this way the coefficients pss and pss at the anisotropic diffraction in the

crystals belonging to point symmetry groups 4, 4/m, 4, 6, 6/m and 6. For the

crystals belonging to symmetry groups 32, 3m and 3m, it is possible to determine
the coefficients pi4 and p4s respectively at the isotropic and anisotropic diffractions.
Finally, for the crystals described by the groups 3 and 3, one can determine
separately the four coefficients pas, pas, p2s and pi4 following from the anisotropic-
diffraction data and the two coefficients pis+ and p»s following from the isotropic-
diffraction data.
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1. Introduction

Acousto-optic (AO) diffraction is a well known phenomenon, which consists in interaction of
optical wave with the phase grating of refractive index caused by acoustic wave (AW) via elasto-
optic effect [1]. The efficiency of AO Bragg diffraction is given by the relation
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n’L

=——FM,P, . 2
2/0H cos®, @

n

Here 4, is the wavelength of optical radiation in vacuum, ®, the Bragg angle, P the power of

the AW, L the length of AO interaction, H the width of piezoelectric transducer, and M, the AO
figure of merit. In fact, the diffraction efficiency is proportional to the AW power, where the
proportionality coefficient is just the AO figure of merit. The latter is defined by a set of
constitutive coefficients:
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where n, and 7, denote the refractive indices of respectively incident and diffracted optical
waves, P, implies the effective elasto-optic coefficient (EEC), v the AW velocity, and p the

material density. The other parameters entering Egs. (1) and (2) are geometric or they depend on
the acoustic and optical wavelengths, together with phase-matching conditions [2].

Hence, the efficiency of AO diffraction depends mainly on the material properties. Basing on
Egs. (2) and (3), Dixon R. W. and Cohen M. G. have developed an AO method for determining
elasto-optic coefficients [3]. In general, it involves the studies of efficiency of AO diffraction in a
given material with respect to the efficiency referred to some standard material. For example, one
can determine the elasto-optic coefficients p, (with i,j = 1, 2, 3) using the diffraction at

longitudinal AWs, while the coefficients p, (i =4, 5, 6) can be measured basing on the

diffraction at transverse AWs. The other coefficients are usually combined with each other so that
they can be evaluated when utilizing a number of interaction geometries and different crystal cuts.
As an example, the coefficients p,,, p,s, p,, and p,s are usually superimposed with the other
coefficients even for such high-symmetry optically uniaxial crystals as those belonging to the point
symmetry groups 3 and 3.

Notice that excitation of circular AWSs produces shear mechanical deformations. For instance,
the deformation components es and es arise when the AW propagates along Z axis. These

components can lead to AO coupling that depend upon the elasto-optic coefficients p,; (i=1...6

and j =4, 5). Recently, we have reported that the case of diffraction of circularly polarized optical
waves at AWs in optically active crystals represents a separate area of acousto-optics [4—6]. In
particular, when the circular optical waves represent eigenwaves in a material medium, one can
consider the isotropic and anisotropic types of AO coupling between two left-handed (LH) (or
right-handed (RH)) optical waves or, alternatively, between the RH and LH optical waves. This
situation can happen, e.g., in the crystals that belong to gyrotropic cubic point symmetry groups or
at the optical wavelength that corresponds to a so-called isotropic point in anisotropic crystals [7].
If the isotropic approximation [6] holds true, the same situation can also be realized in the vicinity
of optic axes.

From this point of view, the situation described above is very similar to the AO interaction
between linearly polarized optical eigenwaves, i.e. the interaction between the two ordinary (or
extraordinary) waves or between the ordinary and extraordinary waves, under condition that the
AWs are circularly polarized. As far as we know, the diffraction at the circular AWs has not yet
been analyzed in the literature. In the present work, we will show that, in crystals of some
particular symmetries, the diffractions occurring at the RH and LH AWs can differ from each
other. Moreover, we will demonstrate that it is possible to determine some of the elasto-optic
coefficients with the Dixon—Cohen method, when using the circular AWs.

2. Results and discussion

Let us consider propagation of a circularly polarized AW along the acoustic axis in a crystal. For
example, this can be a direction of four-fold symmetry axis in paratellurite. The transverse AWs
propagating along this direction (i.e., along the Z axis) have the same velocities that do not depend
on the orientation of displacement vector in the XY plane. Hence, these waves suffer no linear
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acoustic birefringence. The circular acoustic birefringence, which is caused by the acoustic
activity, can be ignored since it cannot manifest itself in our case. When the incident optical wave
propagates along the X (or Y) axis and diffracts at a thick acoustic grating in tangential Bragg

regime, one can consider the two alternative interaction planes, XZ and YZ (see Fig. 1).

<vY

(b)

Fig. 1. Schematic view of AO interactions in optically positive crystals, which arise in the cases of isotropic (a)
and anisotropic (b) diffractions.

The components of deformation tensor for the RH and LH AWs can be represented by the
systems of equations
el =—¢,cosS el =¢, cosd @

e =e,sind e = e sins
where ¢, is the unit amplitude of deformation and & its phase. In the case of isotropic diffraction
inside the XZ and YZ interaction planes, the EEC is determined by the elasto-optic coefficients pi4,
Pis, P24, P2s, p3s and pss, which are equal to zero for the symmetry group 422. Thus, the isotropic
AO interaction (see Fig. la) with the circular AW in this experimental geometry cannot be
implemented in the paratellurite crystals.

Consider now the anisotropic diffraction (see Fig. 1b) of the ordinary incident optical wave at
the RH AW inside the XZ interaction plane. Then the system of equations for the electric-field
components of the diffracted wave can be written as

{El = AB,D, = (poe,” + peses )D, =0 (5)
Ey=AB,,D, = (p44efH + p4565RH )D, = p,,sinéD,
where AB, denotes the increment of optical impermeability tensor and D, is the unit electrical

induction of the incident optical wave. After averaging the phase over period (& =7 /4), one gets

2
the EEC equal to p,, =§ P> since the relations pas, pes, pes=0 hold true. Under the same

diffraction conditions, we still have the same EEC for the case of LH AW.
At the anisotropic diffraction of ordinary incident optical wave at the RH AW inside the
interaction plane YZ, the electric field of the diffracted optical wave reads as
{Ez =AB, D, = (pye;"” + peses D, =0
E;=AB; D, = (p54e4RH + psseSRH )D, =—psscos6D,

D

Since we have pg =p,,, the EEC is equal to p, == P4 The EEC obtained for the

(6)

2
alternative case of diffraction at the LH AW is equal to p,, = % P44 1.€. the module of the EEC

remains the same. Hence, the EEC modules are the same for the XZ and YZ interaction planes in
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TeOs. In other words, these parameters are invariant under changing sign of the circular AW.
Nonetheless, the AO figures of merit can differ for the cases of diffractions at the LH and RH
AWs, since these waves differ by their propagation velocity due to acoustic activity. Then it is not
necessary to excite the circular AW for determining the p44 coefficient or, in some other terms, it is
enough to excite one of the transverse waves. The same is true for the symmetry groups 4/mmm,

4mm, 42m, 622, 6mm, 6/mmm and 6m2 that belong to either tetragonal or hexagonal systems.
Let us now consider the crystals belonging to the symmetry groups 4, 4/m, 4, 6, 6/m and 6,

and the case of anisotropic diffraction in the geometry illustrated in Fig. 1b. The electric field of
the diffracted wave is given by

NG
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when the optical wave diffracts at the RH AW inside the XZ plane. The diffraction at the LH AW
under the same conditions yields in the relation

E,; =AB;,D, = (P44efH +P456§H )D, =

2
E, =AB,,D, = (pe," + pyses )D, = 7(1744 +p45)D; . (®)
: 2 . :
Then the EEC is equal to p, =7( Dy —Pss) in the first case, while we have

2 .
Doy =T(p44+ Ps;s) in the second case. Hence, the two above measurements can enable

determining separately the coefficients pis and pss. Moreover, here the diffraction efficiencies
differ for the cases of diffractions at the RH and LH AWs, since they are determined by different
EECs.

Let us consider the diffraction at the circular AW in the crystals that belong to the trigonal

groups 32, 3m and 3m . The electric field of the optical wave diffracted at the RH AW in the case
when isotropic interaction between the ordinary optical waves occurs inside the XZ plane is as
follows:

E,=AB,D, = (p24efH +p2565RH )D, = _gpMDZ’ Py = _gpm -

The EEC modules remain the same when the isotropic interaction inside the YZ plane occurs or

when the optical wave diffracts at the LH AW. Then one can determine the elasto-optic coefficient

pi4. Finally, the EEC is equal to zero at the isotropic interaction between the extraordinary optical
waves. The reason is the absence of appropriate elasto-optic coefficients in the four-rank tensor.

Let us proceed to the cases of anisotropic diffraction inside the XZ and YZ planes in the

crystals belonging to the symmetry groups mentioned above. Let the optical waves diffract at the

2 . .
RH or LH AWs. Then the EEC is defined as p,; = %(p]z4 sin’ @ + p;, cos” )", where ¢ is the

angle between the X (or Y) axis and the wave vector of incident optical wave. Having determined
the p14 coefficient value in the isotropic-diffraction study, one can also found the p44 coefficient.
Finally, we consider the crystals that belong to the point symmetry groups 3 and 3. Let the
isotropic interaction between the ordinary optical waves take place inside the XZ and YZ planes. The
EEC modules calculated for the cases of diffractions at the RH and LH AWs read respectively as

=%(1725_[714)~ (10)
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This fact enables one to determine the elasto-optic coefficients p14 and p»s separately. Note that the
EECs and, hence, the efficiencies of AO diffractions differ for the cases of interactions with the
RH and LH AWs. On the other hand, the EEC is equal to zero when the extraordinary optical
waves interact with each other and with circular AWs.

The EEC for the case of anisotropic interaction inside the XZ plane and diffraction at the RH
AW is as follows:

2

Py 27(@44 _p45)20052(/’+(p25 _p14)25in2(/’)~ (11)
For the YZ plane we have

V2 :
Py = 7((1944 + Pys) cos @+ (p,s —p]4)zsmz(p). (12)
Notice that the EECs differ for the XZ and YZ interaction planes.
The EEC obtained for the cases of diffractions at the LH AW are given by

A

Py =7((p44 +p45)20052§0+(p25 +p14)25in2§0) 13)
for the XZ plane and

Py :%(@44 ~ D4s) €08’ @+ (P +p14)25in2(/7) (14)
for the YZ plane. As a consequence, one can determine the four coefficients pas, pas, p2s and pia
separately by determining the combinations of coefficients given by Egs. (11)—(14). Notice that,
again, the EECs differ for the cases of AO interactions with the RH and LH AWs.

To end up our discussion, we would like to remind that the circular AWs can be excited in
different ways, e.g., when using acoustic quarter-wave plates [8] or a Fresnel parallelepiped [9].
However, a known effect of conical refraction usually manifests itself in the trigonal crystals
whenever the circular AWs propagate along the three-fold axis. The angle of the internal conical
refraction depends on relationships among the elastic-stiffness coefficients Cj. It can vary notably
for different crystals. For instance, this angle can approach zero (e.g., in PbsGe;O;;, since we have
Ci14= 0 [10]) or reach high enough values (e.g., 17.17 deg in quartz or even 30.75 deg in calcite
[11]). In the case of internal conical acoustic refraction, a conically shaped acoustic energy walk-
off arises, so that the orientation of linear polarization of the AW reveals azimuthal dependence on
the angle  around the ring of refraction. Therefore, special requirements must be met in order to
satisfy the conditions necessary for the AO diffraction at the circular AWs in such crystals.
Namely, in the case of tangential Bragg AO interactions, the numerical aperture of the incident
optical beam should be large enough for covering the aperture of a conical acoustic beam.

3. Conclusion

Issuing from the results of the present work, one can conclude that the AO diffraction at the
circular AWs can be considered as an additional approach, which is useful when determining the
elasto-optic coefficients via the Dixon—Cohen technique. Using this approach, one can find
separately some of the elasto-optic coefficients (p; with i=1...6 and j =4, 5). In particular, one
can measure the coefficients p4s and pss under conditions of anisotropic diffraction in the crystals
belonging to the symmetry groups 4, 4/m, 4, 6, 6/m and 6. For the crystals that belong to the
trigonal symmetries 32, 3m and 3m, it is possible to find the coefficients p14 and pa4 respectively
at the isotropic and anisotropic diffractions. For the crystals described by the groups 3 and 3, one
can find separately the four coefficients pas, pss, p2s and pus, using the studies of anisotropic
diffraction. Finally, the coefficients pi4 and p»s for the same crystals can be evaluated following
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from the isotropic-diffraction data. It is also worth noting that the EECs can be defined by different
relationships for the cases of diffraction either at the RH AW or at the LH AW.
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Anomayisn. Po3pobneno Hosuti nioxio 00 6U3HAYEHHS 0eAKUX I3 elaCmOONMUYHUX KoeQiyicHmie
(piizi=1..6 maj=4,5)na ocnosi memooy /ixcona—Koena ma axycmoonmuunoi ougppaxyii na
YUPKYIAPHO — NONAPUZOGAHUX — AKYCMUYHUX — Xeunax. IIpoamanizosano KOHKpemHi GUNAOKU
KpUCmarnis, wjo Hanexicams 00 MpUueOHAIbHOL cucmemu i 0essKux epyn cumempii mempazoHaibHOT
ma 2ekcazoHanbHoi cucmem. Busisneno, wo egexmusni eracmoonmuuni xoe@iyienmu pisui OJis
anbmepHamusHux BuUnaokie ougpaxyii Ha npasux abo JNGUX AKYCMUYHUX XEUNAX, AKi
nowupoomsca 630062ic oci Z 'y kpucmanax. Tax modxcna eusnauumu Koe@iyicnmu pqs i p4s npu
AHi30mMpOnHil OUGPAKYii 6 KPUCMANAX, WO HaTeHcamb 00 MOUYKOBUX 2pyn cumempii 4, 4/m, 4, 6,

6/mi 6. [ Kpucmanie, wo Hanedxcamv 00 epyn cumempii 32, 3m i 3m, moocna snatimu
Koeiyicumu piy i p4s 6I0NOBIOHO npu (30mponuil i anizomponnii Jugpaxyii. Hapewmi, 0ns
KpUCManie, wo onucylomscs zpynami 3 i 3, MOJNCHA OKPEMO GUSHAYUMU HYOMupu Koe@iyienmu
D44, P45, P25 [ Pra HA NIOCMAsi 0anux Oisk aHi3ompontoi ougparxyii i 0ea koegpiyienmu pi4 i prs HA
niocmasi oanux 015 i30mponHoi ougpaxyii.
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