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Abstract. We develop a new approach for determining some of elasto-optic 
coefficients (pij with i = 1…6 and j = 4, 5) basing on Dixon–Cohen method and 
acousto-optic diffraction at circularly polarized acoustic waves. Particular cases of 
crystals that belong to trigonal system and some symmetry groups of tetragonal and 
hexagonal systems are analyzed. We find that the effective elasto-optic coefficients 
are different for the alternative cases of diffractions at either right- or left-handed 
circularly polarized acoustic waves that propagate along Z axis in crystals. One can 
determine in this way the coefficients p44 and p45 at the anisotropic diffraction in the 
crystals belonging to point symmetry groups 4, 4/m, 4 , 6, 6/m and 6 . For the 
crystals belonging to symmetry groups 32, 3m and 3m , it is possible to determine 
the coefficients p14 and p44 respectively at the isotropic and anisotropic diffractions. 
Finally, for the crystals described by the groups 3 and 3 , one can determine 
separately the four coefficients p44, p45, p25 and p14 following from the anisotropic-
diffraction data and the two coefficients p14 and p25 following from the isotropic-
diffraction data. 
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1. Introduction 
Acousto-optic (AO) diffraction is a well known phenomenon, which consists in interaction of 
optical wave with the phase grating of refractive index caused by acoustic wave (AW) via elasto-
optic effect [1]. The efficiency of AO Bragg diffraction is given by the relation  
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or, under the condition 1  , by its simplified version, 
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Here 0  is the wavelength of optical radiation in vacuum, B  the Bragg angle, acP  the power of 
the AW, L the length of AO interaction, H the width of piezoelectric transducer, and M2 the AO 
figure of merit. In fact, the diffraction efficiency is proportional to the AW power, where the 
proportionality coefficient is just the AO figure of merit. The latter is defined by a set of 
constitutive coefficients: 
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where in  and dn  denote the refractive indices of respectively incident and diffracted optical 

waves, effp  implies the effective elasto-optic coefficient (EEC), v  the AW velocity, and   the 

material density. The other parameters entering Eqs. (1) and (2) are geometric or they depend on 
the acoustic and optical wavelengths, together with phase-matching conditions [2]. 

Hence, the efficiency of AO diffraction depends mainly on the material properties. Basing on 
Eqs. (2) and (3), Dixon R. W. and Cohen M. G. have developed an AO method for determining 
elasto-optic coefficients [3]. In general, it involves the studies of efficiency of AO diffraction in a 
given material with respect to the efficiency referred to some standard material. For example, one 
can determine the elasto-optic coefficients ijp  (with i, j = 1, 2, 3) using the diffraction at 

longitudinal AWs, while the coefficients iip  (i  = 4, 5, 6) can be measured basing on the 
diffraction at transverse AWs. The other coefficients are usually combined with each other so that 
they can be evaluated when utilizing a number of interaction geometries and different crystal cuts. 
As an example, the coefficients 14p , 25p , 44p  and 45p  are usually superimposed with the other 
coefficients even for such high-symmetry optically uniaxial crystals as those belonging to the point 
symmetry groups 3 and 3 . 

Notice that excitation of circular AWs produces shear mechanical deformations. For instance, 
the deformation components e4 and e5 arise when the AW propagates along Z axis. These 
components can lead to AO coupling that depend upon the elasto-optic coefficients ijp  (i = 1...6 

and j = 4, 5). Recently, we have reported that the case of diffraction of circularly polarized optical 
waves at AWs in optically active crystals represents a separate area of acousto-optics [4–6]. In 
particular, when the circular optical waves represent eigenwaves in a material medium, one can 
consider the isotropic and anisotropic types of AO coupling between two left-handed (LH) (or 
right-handed (RH)) optical waves or, alternatively, between the RH and LH optical waves. This 
situation can happen, e.g., in the crystals that belong to gyrotropic cubic point symmetry groups or 
at the optical wavelength that corresponds to a so-called isotropic point in anisotropic crystals [7]. 
If the isotropic approximation [6] holds true, the same situation can also be realized in the vicinity 
of optic axes. 

From this point of view, the situation described above is very similar to the AO interaction 
between linearly polarized optical eigenwaves, i.e. the interaction between the two ordinary (or 
extraordinary) waves or between the ordinary and extraordinary waves, under condition that the 
AWs are circularly polarized. As far as we know, the diffraction at the circular AWs has not yet 
been analyzed in the literature. In the present work, we will show that, in crystals of some 
particular symmetries, the diffractions occurring at the RH and LH AWs can differ from each 
other. Moreover, we will demonstrate that it is possible to determine some of the elasto-optic 
coefficients with the Dixon–Cohen method, when using the circular AWs. 

2. Results and discussion 
Let us consider propagation of a circularly polarized AW along the acoustic axis in a crystal. For 
example, this can be a direction of four-fold symmetry axis in paratellurite. The transverse AWs 
propagating along this direction (i.e., along the Z axis) have the same velocities that do not depend 
on the orientation of displacement vector in the XY plane. Hence, these waves suffer no linear 
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acoustic birefringence. The circular acoustic birefringence, which is caused by the acoustic 
activity, can be ignored since it cannot manifest itself in our case. When the incident optical wave 
propagates along the X (or Y) axis and diffracts at a thick acoustic grating in tangential Bragg 
regime, one can consider the two alternative interaction planes, XZ and YZ (see Fig. 1). 

(a) (b) 

Fig. 1. Schematic view of AO interactions in optically positive crystals, which arise in the cases of isotropic (a) 
and anisotropic (b) diffractions. 

The components of deformation tensor for the RH and LH AWs can be represented by the 
systems of equations 
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where 0e  is the unit amplitude of deformation and   its phase. In the case of isotropic diffraction 
inside the XZ and YZ interaction planes, the EEC is determined by the elasto-optic coefficients p14, 
p15, p24, p25, p34 and p35, which are equal to zero for the symmetry group 422. Thus, the isotropic 
AO interaction (see Fig. 1a) with the circular AW in this experimental geometry cannot be 
implemented in the paratellurite crystals. 

Consider now the anisotropic diffraction (see Fig. 1b) of the ordinary incident optical wave at 
the RH AW inside the XZ interaction plane. Then the system of equations for the electric-field 
components of the diffracted wave can be written as 
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where ijB  denotes the increment of optical impermeability tensor and jD  is the unit electrical 

induction of the incident optical wave. After averaging the phase over period ( / 4  ), one gets 

the EEC equal to 44
2

2effp p , since the relations p45, p64, p65 = 0 hold true. Under the same 

diffraction conditions, we still have the same EEC for the case of LH AW. 
At the anisotropic diffraction of ordinary incident optical wave at the RH AW inside the 

interaction plane YZ, the electric field of the diffracted optical wave reads as 
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Since we have 55 44p p , the EEC is equal to 44
2

2effp p  . The EEC obtained for the 

alternative case of diffraction at the LH AW is equal to 44
2

2effp p , i.e. the module of the EEC 

remains the same. Hence, the EEC modules are the same for the XZ and YZ interaction planes in 
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TeO2. In other words, these parameters are invariant under changing sign of the circular AW. 
Nonetheless, the AO figures of merit can differ for the cases of diffractions at the LH and RH 

AWs, since these waves differ by their propagation velocity due to acoustic activity. Then it is not 
necessary to excite the circular AW for determining the p44 coefficient or, in some other terms, it is 
enough to excite one of the transverse waves. The same is true for the symmetry groups 4/mmm, 
4mm, 42m , 622, 6mm, 6/mmm and 6m2  that belong to either tetragonal or hexagonal systems.  

Let us now consider the crystals belonging to the symmetry groups 4, 4/m, 4 , 6, 6/m and 6 , 
and the case of anisotropic diffraction in the geometry illustrated in Fig. 1b. The electric field of 
the diffracted wave is given by  

3 32 2 44 4 45 5 2 44 45 2
2( ) ( )

2
RH RHE B D p e p e D p p D        (7) 

when the optical wave diffracts at the RH AW inside the XZ plane. The diffraction at the LH AW 
under the same conditions yields in the relation 
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Then the EEC is equal to 44 45
2 ( )

2effp p p   in the first case, while we have 

44 45
2 ( )

2effp p p   in the second case. Hence, the two above measurements can enable 

determining separately the coefficients p44 and p45. Moreover, here the diffraction efficiencies 
differ for the cases of diffractions at the RH and LH AWs, since they are determined by different 
EECs. 

Let us consider the diffraction at the circular AW in the crystals that belong to the trigonal 
groups 32, 3m and 3m . The electric field of the optical wave diffracted at the RH AW in the case 
when isotropic interaction between the ordinary optical waves occurs inside the XZ plane is as 
follows: 
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The EEC modules remain the same when the isotropic interaction inside the YZ plane occurs or 
when the optical wave diffracts at the LH AW. Then one can determine the elasto-optic coefficient 
p14. Finally, the EEC is equal to zero at the isotropic interaction between the extraordinary optical 
waves. The reason is the absence of appropriate elasto-optic coefficients in the four-rank tensor. 

Let us proceed to the cases of anisotropic diffraction inside the XZ and YZ planes in the 
crystals belonging to the symmetry groups mentioned above. Let the optical waves diffract at the 

RH or LH AWs. Then the EEC is defined as 2 2 2 2 1/2
14 44

2 ( sin cos )
2effp p p   , where   is the 

angle between the X (or Y) axis and the wave vector of incident optical wave. Having determined 
the p14 coefficient value in the isotropic-diffraction study, one can also found the p44 coefficient. 

Finally, we consider the crystals that belong to the point symmetry groups 3 and 3 . Let the 
isotropic interaction between the ordinary optical waves take place inside the XZ and YZ planes. The 
EEC modules calculated for the cases of diffractions at the RH and LH AWs read respectively as 

25 14
2 ( )

2effp p p   and 25 14
2 ( )

2effp p p  .   (10) 
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This fact enables one to determine the elasto-optic coefficients p14 and p25 separately. Note that the 
EECs and, hence, the efficiencies of AO diffractions differ for the cases of interactions with the 
RH and LH AWs. On the other hand, the EEC is equal to zero when the extraordinary optical 
waves interact with each other and with circular AWs. 

The EEC for the case of anisotropic interaction inside the XZ plane and diffraction at the RH 
AW is as follows: 

 2 2 2 2
44 45 25 14

2 ( ) cos ( ) sin
2effp p p p p     .   (11)  

For the YZ plane we have 
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Notice that the EECs differ for the XZ and YZ interaction planes. 
The EEC obtained for the cases of diffractions at the LH AW are given by 
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for the XZ plane and 
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for the YZ plane. As a consequence, one can determine the four coefficients p44, p45, p25 and p14 
separately by determining the combinations of coefficients given by Eqs. (11)–(14). Notice that, 
again, the EECs differ for the cases of AO interactions with the RH and LH AWs. 

To end up our discussion, we would like to remind that the circular AWs can be excited in 
different ways, e.g., when using acoustic quarter-wave plates [8] or a Fresnel parallelepiped [9]. 
However, a known effect of conical refraction usually manifests itself in the trigonal crystals 
whenever the circular AWs propagate along the three-fold axis. The angle of the internal conical 
refraction depends on relationships among the elastic-stiffness coefficients Cij. It can vary notably 
for different crystals. For instance, this angle can approach zero (e.g., in Pb5Ge3O11, since we have 
C14 ≈ 0 [10]) or reach high enough values (e.g., 17.17 deg in quartz or even 30.75 deg in calcite 
[11]). In the case of internal conical acoustic refraction, a conically shaped acoustic energy walk-
off arises, so that the orientation of linear polarization of the AW reveals azimuthal dependence on 
the angle π around the ring of refraction. Therefore, special requirements must be met in order to 
satisfy the conditions necessary for the AO diffraction at the circular AWs in such crystals. 
Namely, in the case of tangential Bragg AO interactions, the numerical aperture of the incident 
optical beam should be large enough for covering the aperture of a conical acoustic beam. 

3. Conclusion 
Issuing from the results of the present work, one can conclude that the AO diffraction at the 
circular AWs can be considered as an additional approach, which is useful when determining the 
elasto-optic coefficients via the Dixon–Cohen technique. Using this approach, one can find 
separately some of the elasto-optic coefficients (pij with i = 1…6 and j = 4, 5). In particular, one 
can measure the coefficients p44 and p45 under conditions of anisotropic diffraction in the crystals 
belonging to the symmetry groups 4, 4/m, 4 , 6, 6/m and 6 . For the crystals that belong to the 
trigonal symmetries 32, 3m and 3m , it is possible to find the coefficients p14 and p44 respectively 
at the isotropic and anisotropic diffractions. For the crystals described by the groups 3 and 3 , one 
can find separately the four coefficients p44, p45, p25 and p14, using the studies of anisotropic 
diffraction. Finally, the coefficients p14 and p25 for the same crystals can be evaluated following 
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from the isotropic-diffraction data. It is also worth noting that the EECs can be defined by different 
relationships for the cases of diffraction either at the RH AW or at the LH AW. 
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Анотація. Розроблено новий підхід до визначення деяких із еластооптичних коефіцієнтів 
(pij із i = 1…6 та j = 4, 5) на основі методу Діксона–Коена та акустооптичної дифракції на 
циркулярно поляризованих акустичних хвилях. Проаналізовано конкретні випадки 
кристалів, що належать до тригональної системи і деяких груп симетрії тетрагональної 
та гексагональної систем. Виявлено, що ефективні еластооптичні коефіцієнти різні для 
альтернативних випадків дифракції на правих або лівих акустичних хвилях, які 
поширюються вздовж осі Z у кристалах. Так можна визначити коефіцієнти p44 і p45 при 
анізотропній дифракції в кристалах, що належать до точкових груп симетрії 4, 4/m, 4 , 6, 
6/m і 6 . Для кристалів, що належать до груп симетрії 32, 3m і 3m , можна знайти 
коефіцієнти p14 і p44 відповідно при ізотропній і анізотропній дифракції. Нарешті, для 
кристалів, що описуються групами 3 і 3 , можна окремо визначити чотири коефіцієнти 
p44, p45, p25 і p14 на підставі даних для анізотропної дифракції і два коефіцієнти p14 і p25 на 
підставі даних для ізотропної дифракції. 


