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Abstract. We search for peculiar acousto-optic interaction planes in the crystals of 
all point symmetry groups, in which the strain tensor caused by acoustic waves 
(AWs) can be derived analytically with taking polarization non-orthogonality of the 
AWs into account. It is shown that the effective elasto-optic coefficients for the 
acousto-optic interactions in these peculiar planes can be obtained analytically. We 
ascertain that the analytical relations for arbitrary directions of AW propagation can 
be obtained only for the glass media described by the Curie symmetry groups. 
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1. Introduction 
Acousto-optic (AO) diffraction is a well-known phenomenon that consists in interaction of light 
radiation with acoustic wave (AW) propagating in a material medium [1, 2]. The efficiency of AO 
Bragg diffraction is given by the relation [2] 
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where I and I0 are the intensities of respectively diffracted and incident light,   is the wavelength 
of optical radiation, B  the Bragg angle, aP  the AW power, 2Μ  the AO figure of merit 

(abbreviated as AOFM further on), l  the interaction length, and b  the height of the acoustic 
beam. The AOFM is defined as 
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Here in  and dn  denote the refractive indices of respectively incident and diffracted waves, 

effp  the effective elasto-optic coefficient,   the material density, and ijv  the AW velocity. Note 

that the indices i and j correspond to the directions of AW propagation and polarization. 
It is seen from Eq. (2) that the AOFM depends on a number of constitutive parameters. Most 

of these are tensor quantities, of which initial structure and number of nonzero components depend 
on the material symmetry. For example, the AW velocities are determined by a Christoffel 
equation through a fourth-rank elastic-stiffness tensor Cijkl (or Cλμ in the matrix notation). The 
effective elasto-optic coefficients are determined by complicated relations that include the 
components of a fourth-rank elasto-optic tensor pλμ, while the refractive indices are given by a 
second-rank impermeability tensor Bμ [3]. Hence, the AOFM and the efficiency of AO diffraction 
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depend on the acoustic and optical anisotropies of the material and, therefore, on the geometry of 
AO interactions. As a result, searching for the geometries for which the AOFM reaches its 
maximal values in a given crystal can potentially decrease the amplitude of a driving signal and so 
the total energy consumption.  

In general, two methods for the analysis of AOFM anisotropy have been developed recently. 
These are the analytical method [4–7] and the method of numerical calculations [8, 9]. The 
analytical method enables one to obtain phenomenological relations for the AOFM, while the 
numerical method yields in a final result only, i.e. a spatial distribution of the AOFM. A number of 
glass-like and crystalline materials belonging to isotropic, cubic and optically uniaxial groups of 
symmetry have been studied using the analytical method. Note that the appropriate relations for 
the effective elasto-optic coefficient and the AOFM become more and more cumbersome for the 
crystalline materials with lower symmetries. Moreover, accounting for the effect of AW non-
orthogonality often implies that it is impossible to obtain any analytical relations for the 
mechanical strains caused by the AWs. For example, recently we have used the analytical method 
[10] for the orthorhombic crystals of thallium arsenic sulphosalt, Tl3AsS4, and have taken the non-
orthogonality of AW polarization into consideration. As a consequence, we have been able to 
analyze the AOFM anisotropy only within the crystallographic planes. Notice that the numerical 
method mentioned above has been adopted to address the AOFM anisotropy in orthorhombic 
SrB4O7 crystals for all of possible interaction geometries [11]. On the other hand, a clear 
disadvantage of the numerical approach consists in its inability to find out the reasons for a given 
behavior of the AOFM. 

The problem for obtaining analytical relations for the components of AO-induced strain 
tensor lies in the fact that, with lowering crystalline symmetry, the displacement vector for the 
three acoustic eigenwaves usually lies out of the plane of AO interaction. We remind that the 
interaction plane is formed by the wave vectors of the incident and diffracted optical waves, and 
the AW vector. This leads to nonzero values of most of the off-diagonal Christoffel tensor 
components. As a result, it is impossible to obtain analytical solutions for the eigenvalues and 
eigenvectors of this tensor. However, as follows from our recent works (see, e.g., Ref. [10]), some 
peculiar interaction planes can still manifest the acoustic properties which ensure orientation of the 
displacement vector of quasi-longitudinal and one of quasi-transverse waves within the interaction 
plane. Then the polarization of the third eigenwave is purely transverse and its vector remains 
perpendicular to the interaction plane. The aim of the present work is to determine the orientation 
of these peculiar planes in the crystals belonging to different symmetry groups. As follows from 
the said above, this corresponds to finding out the conditions under which the AOFM anisotropy 
can be described analytically in the most complex though practical situation when the polarization 
non-orthogonality of the AWs is taken into account.  

2. Method of analysis  

It is well known that the eigenvectors of the Christoffel matrix il ijkl j kM C m m  (with jm  and km  

being the components of the AW vector) correspond to the unit vectors of polarization (or 
displacement) of the acoustic eigenwaves [3]. In general, the angle of deviation of AW 
polarization from the purely transverse or longitudinal states (referred to as the angle of non-
orthogonality) is given by the off-diagonal Christoffel tensor components. The appropriate 
formulae for the principal planes XY, XZ and YZ are as follows: 
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When the AW propagates, e.g., in the XZ plane which represents simultaneously the AO 
interaction plane, the appearance of a nonzero M31 component leads to non-orthogonality of a 
quasi-longitudinal AW and one of quasi-transverse AWs. The displacement vectors of these waves 
then lie in the XZ plane, while the third eigenwave is purely transverse, with its polarization being 
perpendicular to the XZ plane. If one of the components M23 or M12 is also nonzero, the 
displacement vectors of all the three eigenwaves go out from the interaction plane. The same 
concerns the other planes of AW propagation. Then the third-order equation by which one can 
determine the eigenvalues of the Christoffel tensor can be solved only numerically and, as a 
consequence, the components of the strain tensor cannot be obtained analytically. 

Hence, it would be very useful to find those peculiar planes in the crystallographic system, 
which are characterized by a single off-diagonal component of the Christoffel tensor. In these 
planes, the eigenvectors of the Christoffel tensor are rotated around the direction perpendicular to 
the interaction plane. We have carried out this analysis for different point symmetry groups that 
characterize crystals and for different Curie symmetry groups (e.g., / / mmm  ) that characterize 
glass media. The interaction plane has been rotated around the principal axes X, Y and Z of the 
Cartesian coordinate system, which is based on the crystallographic system. These rotations have 
ensured passing through all the interaction planes that include at least one axis of coordinate 
system. Then the elastic-stiffness tensor has been rewritten in a new coordinate system formed by 
each rotation. 

3. Results and discussion 
3.1. Glass media (Curie symmetry groups / / mmm   and / 2  ) 
Glass media are characterized by the elastic-stiffness matrix that contains only two independent 
coefficients C11 and C12 (i.e., we have C44 = (C11 – C12)/2). For the AW that propagates, e.g., in the 
XZ plane in a glass medium, the Christoffel tensor can be written as 
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where   is the angle between the X axis and the wave-vector direction. Here the component M31 is 
not equal to zero. The orientation of the displacement vector, e.g., for the longitudinal AW is 
determined by the relation that follows from Eqs. (3): 
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Then the equality    means that the wave remains purely longitudinal and the angle of 

non-orthogonality is equal to zero. The transverse waves also manifest pure types of polarization. 
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Thus, all the acoustic modes in the isotropic material media are nothing but the pure modes of the 
first kind (i.e., all the directions represent the longitudinal normals) [12]. 

Notice that two kinds of special directions can be distinguished [12, 13]: the first kind allows 
propagation of one longitudinal and two transverse modes (a longitudinal normal), while one 
transverse and two mixed modes propagate along the directions of the second kind (a transverse 
normal). A degenerated case for the glass media appears due to their high symmetry and the 
equality C44 = (C11 – C12)/2. Eq. (5) remains valid for arbitrary directions of AW propagation. 
Hence, the AWs propagating in the glass media in any direction do not reveal the non-
orthogonality effect for the AW polarization. Accordingly, the analytical relations for the strain 
tensor components can be derived for all of the directions of AW propagation. 

3.2. Crystals of cubic system (point symmetry groups m3m, 432, m3 and 23) 
Here the matrix of elastic-stiffness coefficients contains three independent coefficients, C11, C12, 
and C44   (C11 – C12)/2. For the AW propagating in the principal crystallographic planes {100} 
(e.g., in the XZ plane), the Christoffel tensor can be written as 
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Then the angle between the X axis and the displacement vector becomes as follows: 
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One can notice that the displacement vectors of two acoustic eigenwaves lie in the principal 
crystallographic planes whenever the AW propagates in these planes. They are the planes of 
propagation of acoustic modes of the second kind, in terms of Ref. [12]. The module of non-

orthogonality angle increases when the factor    12 44 11 44C C C C   deviates from unity. For 

instance, let the quasi-longitudinal AW propagate along the bisectors of the principal 
crystallographic axes (i.e., at   = 45 deg). Then we have   = 45 deg for the arbitrary 

   12 44 11 44C C C C   value. This implies that the non-orthogonality angle is zero for these 

propagation directions. The same is true for the cases when we have   = 0 or 90 deg. 

Let us analyze the propagation of AWs in the planes {110}. The matrix of elastic-stiffness 
coefficients rewritten in the coordinate system ' 'X Y Z  rotated by 45 deg around the Z axis 
contains six independent coefficients: 11 22 12 13 23 33 44 55' ' , ' , ' ' , ' , ' 'C C C C C C C C    and 66'C . The 

Christoffel tensor for the AW propagation in the (110) plane can be written as 
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It is easily seen that the displacement vectors for the two acoustic eigenwaves lie in the plane 
(110) and their orientations are given by 
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The non-orthogonality angle remains zero at   = 0 or 90 deg. Moreover, this angle is zero 

whenever the   angle satisfies the condition 
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In fact, pure acoustic modes propagate at this angle [14], and this represents the special 
direction of the first type. This angle differs from 45 deg since we have 11 33' 'C C . In the other 

planes formed by rotating the interaction plane around, e.g., the principal axis Z by an arbitrary 
angle Z , the elastic-stiffness components 26 16'  – 'C C  and 62 61'  – 'C C  become nonzero. This 

gives rise to additional nonzero off-diagonal component of the Christoffel tensor, 
2

12 16' cosM C  . Then the AW displacement vector leaves the interaction plane. 

Hence, the two conditions must be satisfied in order that the polarization non-orthogonality 
vanish for the AWs propagating in the interaction plane rotated by an arbitrary angle around the Z 
axis: (i) M12 = 0, which is fulfilled when we have 16 12 11 44' 0.25(C C 2C )sin 4 ZC    , and (ii) the 

condition defined by Eq. (10). It is seen that the condition (i) is fulfilled when 11 12 44C C 2C  , 

which is peculiar only for the glass media. For the cubic crystals there are six AW propagation 
directions within each octant of the Cartesian coordinate system, for which the angle of AW 
polarization non-orthogonality becomes zero. These are the three <110> directions and the three 
directions inside the {110} planes, which are oriented at the angles   defined by Eq. (10). In 
addition, there are nine planes where the displacement vector lies inside these planes, namely the 
planes {100} and {110}. 

3.3. Hexagonal system (point symmetry groups 6, 6 , 6/m, 622, 6mm, 6 m2 and 6/mmm, 
and Curie symmetry groups  , / m , 2 , mm  and / mmm ) 
The elastic-stiffness tensor for the hexagonal crystalline systems and the axial-symmetric Curie 
groups contains five independent coefficients: C11 = C22, C12, C13 = C23, C33, C44 = C55 and 
C66 = (C11 – C12)/2. For the AWs propagating in the XZ plane, the Christoffel tensor is defined by 
the matrix given by Eq. (8), while the orientation of the displacement vector by Eq. (9). Thus, the 
angle of non-orthogonality is equal to zero at   = 0 and 90 deg, while the displacement vector lies 

in the XZ plane. The non-orthogonality angle becomes zero at the angle   defined by Eq. (10). 
Since the six-fold (or infinity-fold) symmetry axis is parallel to the Z axis, the same is true for the 
arbitrary interaction plane containing the Z axis. Hence, the directions of AW propagation that 
form a cone with the apex angle 2  are the directions of AW propagation with the pure transverse 
and longitudinal polarizations. 

The Christoffel tensor for the AW propagation in the XY plane is as follows: 
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The displacement vector orientation with respect to the X axis is given by the relation 
tan 2 tan 2  .     (12) 

Therefore the angle of non-orthogonality for the AWs propagating along arbitrary directions 
in the XY plane is equal to zero. When the interaction plane is rotated around the X axis by the 
angle X , additional components of the elastic-stiffness tensor become nonzero, 14 24 34' , ' 'C C C  

and 56'C . This leads to nonzero values of all the Christoffel tensor components, i.e. we have 
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If the AWs propagate in the ZY plane at the angle X  with respect to the Y axis, the angle   

becomes equal to 90 deg. In this case we have M12 = M31 = 0 and M23 = 24'C  in the matrix given by 

Eq. (13). However, since the AWs propagate inside the principal crystallographic plane, the 
equality M23 = 24'C  = 0 holds true and the non-orthogonality angle is zero. The angle X  in this 

case plays a role of the angle   defined by Eq. (10). This direction of AW propagation coincides 
with one of the generating lines of the cone with the apex angle 2 . 

As a result, the AWs with the pure transverse and longitudinal polarizations in the crystals of 
hexagonal system propagate along the principal axes X, Y and Z, along the generating lines of the 
cone oriented around the Z axis, and along arbitrary directions in the XY plane. Moreover, in all the 
interaction planes that include the Z axis, two of the eigenwaves are characterized by the 
displacement vector which does not leave these planes. 

3.4. Tetragonal crystals (point symmetry groups 422, 4mm, 4 2m and 4/mmm) 
The matrix of elastic-stiffness coefficients for these symmetry groups contains six independent 
coefficients: C11 = C22, C12, C13 = C23, C33, C44 = C55 and C66. Therefore, the Christoffel tensor for 
the AW propagation inside the principal XZ (or YZ) plane is defined by Eq. (8). The displacement 
vectors of two acoustic eigenwaves lie in the interaction plane for all the directions of AW 
propagation within these planes. The orientation of this vector is described by Eq. (9). The non-
orthogonality angle is equal to zero for the directions given by Eq. (10). When the coordinate 
system is rotated around the Z axis by the angle Z , an additional component 26 16'  – 'C C  of 

elastic-stiffness tensor appears. Then the component 2
12 16' cosM C   arises in the Christoffel 

tensor (with 16 12 11 66' 0.25(C C 2C )sin 4 ZC    ) and the displacement vector leaves the 

interaction plane. At the angles Z  = 0, 45 or 90 deg, the 16'C  and M12 components are zero and 

the displacement vectors of two of the eigenwaves lie inside the interaction plane. Moreover, the 
non-orthogonality in these planes vanishes at the angle   determined by Eq. (10). In the XY plane, 
the only nonzero diagonal component M12 is present in the Christoffel tensor: 

12 66 12( ) sin cosM C C    .   (14) 

Then the non-orthogonality angle can be written as 
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In other words, the non-orthogonality angle is zero only when we have 66 11 12( ) / 2C C C  . 

When the interaction plane is rotated around the X axis by the angle X , new nonzero components 

appear in the rewritten elastic-stiffness tensor, 14 24 34' , ' 'C С С  and 56'С . As a result, all the off-

diagonal components of the Christoffel tensor become nonzero and the displacement vectors for all 
eigenwaves lie out of the interaction plane.  

3.5. Tetragonal crystals (point symmetry groups 4, 4  and 4/m) 
These crystals are characterized by the elastic-stiffness tensor containing seven components, of 
which six are invariant. In comparison with the tetragonal systems mentioned in subsection 3.4, 
here we have additional component C26 = –C16. Under rotation of the coordinate system around the 
Z axis by the angle 
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41 a tan
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the 16'C  component vanishes and the structure of the elastic-stiffness tensor becomes the same as 
that described in subsection 3.4 for the higher-symmetry tetragonal groups. Hence, in the crystals 
of lower-symmetry tetragonal groups there are two mutually perpendicular planes that contain the 
Z axis, in which the non-orthogonality angle behaves in the same manner as in the principal planes 
XZ and YZ of higher-symmetry tetragonal groups. One of these planes is rotated with respect to the 
principal plane XZ by the angle Z  determined by Eq. (16). In the XY plane, the displacement 

vector lie in this plane and the angle of non-orthogonality is given by the relation 
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When the interaction plane is rotated around the X axis by an arbitrary angle X , all the 
elastic-stiffness components in the rewritten system are nonzero. As a consequence, all of the off-
diagonal components of the Christoffel tensor become nonzero and the displacement vectors of the 
eigenwaves lie out of the interaction plane.  

Hence, the displacement vectors of two eigenwaves in the crystals of high-symmetry groups 
of the tetragonal system lie in the principal crystallographic plane or in the plane rotated by 45 deg 
around the Z axis. At a certain angle   determined by Eq. (10), the non-orthogonality effect 
vanishes in the XZ, YZ and (110) planes. In particular, the non-orthogonality angle is zero when 
the AWs propagate along the principal axes X, Y and Z. In the crystals of low-symmetry groups of 
the tetragonal system, the displacement vectors of two eigenwaves either lie in the interaction 
plane (in the case of XY plane) or are rotated around the Z axis by the angle defined by Eq. (16) (in 
the two mutually perpendicular planes). In the latter case, the non-orthogonality angle is equal to 
zero when the AWs propagate along the Z axis, along the 'X  and 'Y  directions given by Eq. (16), 
and along the directions given by Eq. (10) in the 'X Z  and 'Y Z  planes. 

3.6. Trigonal crystals (point symmetry groups 32, 3m, 3m , 3 and 3 ) 
The elastic-stiffness tensor for the crystals that belong to the symmetry groups 32, 3m and 3m  
contains six independent components, C11 = C22, C12, C13 = C23, C33, C44 = C55, C66 = (C11 – C12)/2, 
C56 = C14 and C24 = –C14. Here the three-fold symmetry axis represents the acoustic axis, and the 
transverse AWs propagating along this direction have the same velocity and the pure polarizations. 
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The Christoffel tensor for the AWs propagating in the YZ plane (which is simultaneously the 
symmetry mirror plane) can be written as 
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Then the displacement vectors of the two eigenwaves lie in the YZ plane, while the non-
orthogonality angle reads as 
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Due to symmetry conditions, the interaction planes formed as a result of rotation of the YZ 

plane around the Z axis by the angle Z  = n×120 deg (with n being an integer number) are the 

same, and Eqs. (18) and (19) remain valid for the three symmetry-equivalent planes. All the 
components of the Christoffel tensor for the AWs propagating in the XZ and XY planes are 
nonzero. This means that the displacement vectors of all the eigenwaves do not belong to these 
interaction planes. 

The elastic-stiffness tensor for the crystals that belong to the symmetry groups 3 and 3  
contains seven components (and six invariant ones): C11 = C22, C12, C13 = C23, C33, C44 = C55, 
C66 = (C11 – C12)/2, C56 = C14, C24 = –C14 and C25 = C46 = –C15. There is a single AW propagation 
direction, the Z axis, in the crystals belonging to these point groups, along which the non-
orthogonality effect vanishes. The displacement vector for the AWs propagating inside the 
principal crystallographic planes does not belong to these planes. However, when the coordinate 
system is rotated around the Z axis with respect to the YZ plane by a certain angle, 

25

14

1120 a tan
3Z

C
n

C
    ,     (20) 

the 25'C  component vanishes and the structure of the elastic-stiffness tensor becomes the same as 

that typical for the symmetry groups 32, 3m and 3m  of trigonal system. In other terms, there are 
three planes rotated by the angle given by Eq. (20) with respect to the YZ plane, in which two 
eigenwaves propagate with the polarization vectors belonging to these planes. 

3.7. Orthorhombic crystals (point symmetry groups mmm, mm2 and 222) 
These point symmetry groups are subgroups of the tetragonal groups described in subsection 3.4. 
The matrix of elastic-stiffness coefficients for these groups contains nine independent coefficients: 
C11, C22, C33, C12, C13, C23, C44, C55 and C66. Here the behaviour of the displacement vector is 
somewhat similar to that peculiar for the tetragonal symmetry groups mentioned above. In 
particular, the displacement vectors of two eigenwaves belong to the interaction plane, whenever 
these planes coincide with the principal crystallographic planes. However, the angle of AW 
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propagation at which they acquire pure polarizations differs for different crystallographic planes. 
For the XZ plane, this angle with respect to the X axis can be written as 
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For the YZ plane, the angle with respect to the Y axis at which a pure polarization is reached 
is given by 
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Finally, for the XY plane this angle with respect to the X axis reads as 
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Thus, the special directions of the second type for the orthorhombic crystals belong to the 
principal crystallographic planes. 

3.8. Monoclinic crystals (point symmetry groups 2/m, 2 and m) 
The special directions of the second type in the monoclinic crystals belong to the plane that 
coincides with the mirror symmetry plane or is perpendicular to the two-fold axis. The Christoffel 
tensor for this case (e.g., for the XZ plane, with mXZ and 2XZ) can be written as 
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Then the relation for the orientation angle of the displacement vector in the XZ plane with 
respect to the X axis acquires the form 

 2 2
15 35 13 55
2 2

11 33 55 15 35

2 cos 2 sin sin 2
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.  (24) 

This means that all directions in this plane represent the special directions of the second type. 
In other words, the quasi-longitudinal and quasi-transverse waves polarized in this plane should be 
mixed waves, while the transverse wave polarized perpendicular to this plane is characterized by 
the pure polarization type.  

4. Conclusions 
Let us summarize the main results obtained above. The AWs that propagate in the glass media 
along arbitrary directions do not reveal the effect of polarization non-orthogonality. In the crystals 
of cubic system, there are six directions of AW propagation inside each octant of the Cartesian 
coordinate system, for which the angle of polarization non-orthogonality for the AWs is equal to 
zero. These are the three directions <110> and the three directions lying in the {110} planes, 
which are oriented at specific angles   with respect to the principal crystallographic axes. 
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Besides, there are nine planes in which the displacement vectors of two acoustic eigenwaves lie 
inside these planes. These are the planes {100} and {110}. In the crystals of hexagonal system, the 
AWs with purely transverse or longitudinal polarizations propagate along the principal axes X, Y 
and Z, as well as along the generating lines of the cone oriented along the Z axis and along 
arbitrary directions in the XY plane. Moreover, in all the interaction planes which include the Z 
axis, the two propagating eigenwaves are characterized by the displacement vectors which do not 
leave these planes. 

In the crystals of tetragonal system described by the higher-symmetry groups 422, 4mm, 
4 2m and 4/mmm, the displacement vectors of two eigenwaves lie in the principal crystallographic 
planes and in the planes rotated by 45 deg around the Z axis. At a certain orientation of 
propagation direction with respect to the X and Y axes, which is given by a specific angle  , or 
along the [110] direction, the non-orthogonality vanishes in the XZ, YZ and (110) planes . The 
angle of non-orthogonality is equal to zero when the AWs propagate along the principal axes X, Y 
and Z. In the crystals of tetragonal system described by the lower-symmetry groups 4, 4  and 4/m, 
the displacement vectors of two acoustic eigenwaves lie in the interaction plane for the cases of 
propagation in the XY plane and in the two mutually perpendicular planes rotated around the Z axis 
by the angle, which is determined by the ratio of elastic-stiffness coefficients. In the latter case, the 
angle of non-orthogonality is zero when the AWs propagate along the Z axis, along the 'X  and 

'Y  directions determined by the ratio mentioned above, as well as along the directions given by a 
specific angle   in the 'X Z  and 'Y Z  planes. 

Our next subject has been the trigonal crystals belonging to the symmetry groups 32, 3m and 
3m . When the AWs propagate in the YZ plane or in the planes formed by rotation of the YZ plane 
around the Z axis by the angle 120Z n   deg (with n being integer), the polarization vectors of 
two of the eigenwaves belong to the interaction plane. The same is true for the symmetry groups 3 
and3. However, these planes in the latter case are rotated by the angle 

25 14120 [a tan( / )] / 3Z n C C     with respect to the YZ plane.  

The special directions of the second type in the orthorhombic crystals belong to the principal 
crystallographic planes. In the monoclinic crystals, there is a single plane in which two eigenwaves 
propagate with the polarization belonging to this plane. This special plane is perpendicular to the 
two-fold axis and parallel to the symmetry mirror plane. Finally, the third AW is transverse and 
purely polarized along the direction perpendicular to the above plane. 

Hence, we have found all the interaction planes for the crystals of all point symmetry groups, 
in which the strain tensor caused by the AWs can be derived analytically under condition that the 
effect of non-orthogonality of the AW polarization is taken into account. This means that the 
effective elasto-optic coefficients for the AO interactions in these planes can be obtained 
analytically. On the other hand, the analytical relations for arbitrary directions of AW propagation 
can be obtained only for the glass-like media that belong to the Curie symmetry groups. Finally, 
one can easily testify that the results of our work agree well with the data [12] in the part of 
longitudinal normals, though our method of analysis is much simpler than that adopted in 
Ref. [12]. 
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Анотація. Знайдено особливі площини акустооптичної взаємодії в кристалах усіх точкових 
симетрійних груп, в яких тензор напружень, викликаний акустичними хвилями (АХ), можна 
одержати аналітично з урахуванням явища неортогональності поляризацій АХ. Показано, 
що ефективні пружнооптичні коефіцієнти для акустооптичних взаємодій у цих особливих 
площинах можна одержати аналітично. Встановлено, що аналітичні співвідношення для 
довільних напрямків поширення АХ можна одержати лише для склоподібних середовищ, що 
описуються групами симетрії Кюрі. 
 


