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Abstract. We investigate numerically polarization dynamics of a quasi-isotropic 
laser with weak loss anisotropy and a moderate Fresnel number, which involves 
competition of orthogonally polarized transverse modes. We demonstrate 
spontaneous formation of the first-, second- and third-order vector modes that reveal 
polarization structure of full Poincaré beams and show controllable transformations 
of the laser-field polarization structure and changes in its rotational dynamics. 
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1. Introduction 
It is known that a polarization-isotropic laser having cylindrical symmetry can emit the vector 
beams with inhomogeneous polarization structures covering the entire surface of the Poincaré 
sphere [1]. In practice, however, some loss anisotropy is always present in a laser cavity. It breaks 
the cylindrical symmetry and creates a preference for a particular polarization state (usually a 
linear polarization). Nonetheless, if the loss anisotropy is weak enough, such a quasi-isotropic 
laser can sustain oscillations of the two polarization modes, one with a preferable polarization and 
another with the polarization orthogonal to it [2]. When the coupling between the polarization 
modes is weak and some phase anisotropy is also involved, such two-polarization lasers can 
operate as dual-frequency devices and reveal a number of useful features for such applications as, 
e.g., vibrometry [3], optical microwave generation [4] and lidars [5]. Note that polarization 
dynamics of the quasi-isotropic lasers can be very complicated [6, 7], being dependent on the 
strength of coupling between the orthogonal polarization modes. 

In the present work we extend the studies of formation of the vector beams to the case of 
quasi-isotropic laser with weak loss anisotropy and strong coupling between the orthogonally 
polarized modes. Using a numerical solution of the two coupled laser equations, we demonstrate 
spontaneous formation of the vector beams with polarization structures of the full Poincaré beams, 
which represent polarization-spatial modes that carry nonzero angular momentums [8, 9]. We find 
the stability regions for the zero- and higher-order vector modes as functions of the laser aperture 
and the loss anisotropy. Controllable transformations of the polarization structure of the laser field 
and changes in its rotational dynamics are demonstrated, too.  

2. Vector laser model 
We consider a vector model for a single-longitudinal-mode high-quality laser with weak 
anisotropic losses. A laser cavity is suggested to be composed of two plane parallel mirrors and to 
contain polarization-isotropic-gain, dichroic and birefringent plates. This creates variable 
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anisotropic loss and phase. A circular diaphragm with the radius r controls the Fresnel number of 

the cavity 2
FN r L  (with  being the laser wavelength and L the resonator length) and allows 

selecting the transverse modes. Such a laser sustains oscillations of the two orthogonally polarized 
modes, thus forming a spatially structured vector laser field. Since the laser quality is high and the 
intra-cavity loss is low, the transverse structure of the vector laser field changes only slightly when 
the light propagates between the flat mirrors of the cavity. In this case the complex (slowly varying 
in space and time) amplitude of the vector laser field can be averaged over the longitudinal 
coordinate and represented by the following two transversely structured amplitudes of 
orthogonally polarized vectors:  

     1 1 2 2, , , , , ,E x y t e E x y t e E x y t 
   ,    (1) 

where 1 2,e e
 

 are the unit vectors for the linear ( 1 2,x ye e e e 
   

) or circular ( 1 2,e e e e  
   

) 

polarization bases. Note that the orthogonal components in Eq. (1) can have different frequencies 
depending on the phase anisotropy of the cavity and different spatial structures depending on the 
cavity aperture. 

The relaxation times for the population inversion and the polarization of gain medium are 
assumed to be negligibly small if compared with the lifetime of the intra-cavity light-field 
relaxation (a case of a so-called class-A laser). To calculate the evolution of the transversely 
structured vector laser-field envelope (in the form of Eq. (1)), which is formed inside the laser 
cavity with a saturable gain G(I), we use two coupled laser equations taken in the form of the 
following system of extended Ginsburg–Landau equations: 

   2
1,2 Re Im 1,2 1,2 1,2 1,2E t d id E G I i E            .  (2) 

Here t is the time measured in the units of field-decay time for the empty cavity, dRe and dIm 

are respectively the effective diffusion and diffraction coefficients, 2 2 2 2 2x y        

denotes the transverse Laplace operator, 2 2
1 2I E E   the total intra-cavity light intensity 

normalized to the saturated intensity IS (so that the gain is reduced to half of its unsaturated value 
at IS),    0 1G I = +Ig  implies the saturable gain (with 0g   denoting the unsaturated gain), 1 2,  

are detunings for the orthogonal polarization modes created by a birefringent element that 
produces the phase anisotropy, and 1 2,  are the linear loss coefficients for the orthogonal 

polarization modes, which reveal the loss anisotropy imposed by a dichroic element. 
The transverse coordinates x and y are measured in the units of the Fresnel-zone width, 

  1 24 1 /
Fw L R     , where R is the product of reflectivity coefficients of the mirrors. Eq. (2) 

describes interaction of the orthogonally polarized components,  1 , ,E x y t   and  2 , ,E x y t , of the 

optical field via the effect of cross-saturation of the gain medium. We assume that the gain 
medium is spatially homogeneous and its coefficients of self-saturation and cross-saturation are 
equal to unity, which implies strong competition between the orthogonally polarized modes. 

3. Numerical simulations 
To find the transverse polarization structure of the vector laser field and the intensity/phase 
structure of each of its polarization components, we solve Eq. (2) numerically, using a standard 
Fourier split-step method. The transverse boundary conditions are defined at the edge of the 
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circular diaphragm, which is modelled by the 2,1  parameters in the form of six-order super-

Gaussian function of the radius r. The initial conditions are specified as a random noise, which 
starts formation of a transversely structured vector laser field. 

We limit our studies to searching for those vector laser modes only that reveal axially 
symmetric intensity profiles. Such the structures are formed spontaneously at moderate Fresnel 
numbers of the resonator (1 < NF < 10). As explained below, the vector modes 

0
1 0 2

l l
r rV e LG e LG 
    are reduced to mutually trapped, orthogonally polarized a spiral-phase 

Laguerre–Gauss mode 0
lLG  (with l denoting the azimuthal index) and a radial mode 0

rLG   (with r 
being the radial index). On the contrary, we will deal with the irregular structures with polarization 
topological defects [10], whenever the Fresnel number of the cavity becomes large enough 
(NF > 10). 

For numerical calculations, the following normalized parameters entering Eq. (2) have been 
used: g0 = 2, dRe = 2×10–4, and dIm = 2×10–3. The transverse structure of the vector laser fields is 
examined depending on the cavity Fresnel number, as well as the loss and phase anisotropies.  

4. Results and discussion 
As mentioned above, we study the effects of loss (η1 ≠ η2) and phase (θ1 ≠ θ2) anisotropies on the 
effect of spontaneous formation and the polarization dynamics of the vector modes in the quasi-
isotropic laser with variable diaphragm (i.e., a changing NF parameter). We start with a zero-order 
vector mode, which involves only polarization dynamics. Then we consider a competition of 
polarization and spatial fields that leads to formation of higher-order vector modes.  

4.1. Zero-order vector mode  
First we study the polarization structure and its dynamics for the laser with a small-size intra-
cavity diaphragm, which corresponds to the case of NF ≈ 1. Then only the zero-order vector mode 

0 0 0
0 1 0 2 0V e LG e LG 
    is allowed to oscillate, for which the orthogonally polarized components are 

spatially identical and completely overlapped. Under this condition, the polarization modes inter-
act with the same volume of the gain material and none of them acquires advantage over the other. 

 

Fig. 1. Structure of orthogonal polarization components 0
1 0e LG


 and 0
2 0e LG


, and their powers P1 (red) and P2 

(blue) versus linear loss coefficient  1 , as calculated at 1FN   and  2 1  . 
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When the intra-cavity loss anisotropy is involved, one of the polarization components 
acquires advantage over the other, so that the powers of the orthogonally polarized components 

( 2
1 2 1 2, ,P E ds  , with S being the diaphragm area) become different. Having solved Eq. (2) with 

the parameters specified above, we obtain a switching regime of the laser oscillation:  the lasing 

occurs either in 0
1 0e LG  or in 0

2 0e LG  mode, depending on the sign of the loss anisotropy (η1 – η2). 

The polarization of the laser field switches abruptly between these orthogonal polarization modes 
when η1 = η2 (see Fig. 1). If the laser emission occurs at η1 = η2 and θ1 = θ2, the steady-state 
solutions of Eq. (2) are characterized by a homogeneous polarization which can correspond to any 
state, i.e. to an arbitrary point of the Poincaré sphere.  

When the phase anisotropy is present in the laser cavity and we have η1 = η2 (i.e., the 
orthogonal polarization fields have different detunings, θ1 ≠ θ2), the laser goes into the dynamic 
regime of polarization oscillations, although the field remains transversely uniform at each time 
instant. This is a well-known dual-frequency operation regime of the anisotropic laser [11, 12]. As 
expected for the above case, the polarization-oscillation frequency is proportional to (θ1 – θ2). 

4.2. First-order vector modes  
For the case of NF ≈ 3…5, steady-state solutions of Eq. (2) have the form of rotating polarization 

structures of the two axially symmetrical first-order vector modes, 1 1 0
0 1 0 2 0V e LG e LG  
    (Fig. 2) 

and  1 1 0
1 1 0 2 1V e LG e LG  
     (Fig. 3). They represent mutually trapped and orthogonally polarized 

transverse modes with different azimuthal and radial indices. These polarization-spatial modes are 
formed spontaneously from the random noise and, therefore, the probabilities of forming the 
structures with the azimuthal index equal to either +1 or –1 amount to 50%. Simultaneous 

 

Fig. 2. Structure of first-order vector mode 1
0V 


 calculated at NF ≈ 3, θ2 – θ1 = 0 and η1 – η2 = –0.03: transverse 
distributions of total intensity (a), map of polarization (polarization ellipses) in the linear polarization basis (d), 
and intensity (b)/(c) and instant phase (e)/(f) for the mutually trapped transverse mode 1 0

0 0LG LG . Red and 
blue ellipses denote respectively left-handed and right-handed polarization states. C+ and C− points are 
labelled with blue and red circles, respectively. Domains of left-handed (red) and right-handed (blue) 
polarization states are separated by L-lines (green). Arrows indicate rotation directions. 
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Fig. 3. Structure of vector mode  1

1V 


  calculated at NF ≈ 5, θ2 – θ1 = 0 and η1 – η2 = –0.03. Notations are the 
same as in Fig. 2. 

polarization and spatial competitions lead to the formation of complementary vector spatial 

structures, with the first-order azimuthal mode 1
0LG  in one polarization state and the zero-order 

0
0LG  (or the first-order 0

1LG ) radial mode in the orthogonal polarization state. The polarization 

structures of the vector modes 1
0V   and  1

1V   are the same, which corresponds to the rotating full 
Poincaré beams of the types I and II of an ideally isotropic laser [1].  However, in the case of laser 
with the phase anisotropy, one can vary the optical length of the cavity separately for each of the 
polarization components and, thereby, change the frequency difference between the orthogonal 
transverse modes. This allows for controlling the value and the direction of rotational speed of the 
vector  modes. 

Beating of the orthogonal transverse modes that oscillate at different frequencies leads to 
rotation of the total polarization structure with the constant angular speed, even in the ideal 

isotropic case (θ2 – θ1 = 0 and η1 – η2 = 0). The rotational speed of the  1
0V   mode becomes zero 

whenever we have θ2 – θ1 = –0.42 and η1 – η2 = 0. When θ2 – θ1 < –0.42, the direction of the 
polarization-structure rotation is opposite to that of the phase structure of the azimuthal 
component, and vice versa in the case of θ2 – θ1  > –0.42. The point of zero angular velocity for the 

polarization structure of the 1
1V   mode is θ2 – θ1 = 0.51. Note that these rotational transformations 

occur at a fixed azimuthal index of the vector modes. 

The first-order vector modes 1
0V   and  1

1V   can be formed in the laser at the same Fresnel 

number of the cavity though at different loss anisotropies. Fig. 4 shows stability ranges (marked as 

Roman numerals) for these modes formed at 3FN  , depending on the linear loss coefficient 1  
and at 2 1  .  In the zone I, the power 1P  of the first component, which has the structure of the  

1
0LG  mode, takes all the laser gain and does not leave any power for the second polarization  
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Fig. 4. Structure of orthogonally polarized mode components 1
l
re LG


 (red) and  2

l
re LG


 (blue), as well as their 

powers P1 (red curves) and P2 (blue curves) and the total power (black curve) versus linear loss coefficient  1 , 

as calculated at  2 1   and 3FN  . Stability zones for polarization-spatial modes are marked by Roman 
numerals (see the text).  

component. Therefore, the zone I represents a zone of scalar pattern where no vector-mode 
structures  l

rV


 can exist. In the zone II, a vector mode 1 1 0
1 1 0 2 1V e LG e LG  
    with a vortex in the 

first component can be spontaneously formed (see Fig. 3). The vector mode 
1 1 0

0 1 0 2 0V e LG e LG  
     with a vortex in the first component becomes stable in the zone III (see 

Fig. 2). The structural transition 1 1
1 0V V 
 

 occurring between the zones II and III is 

accompanied by a dynamical transformation: the polarization structures of the vector modes 1
1V   

and 1
0V   rotate in the opposite directions, provided that they have the same sign of the azimuthal 

index. The zone IV corresponds to the 1
0V   vector mode with a vortex in the second component, 

whereas the vector mode 1
1V   with a vortex in the second component is spontaneously formed in 

the zone V. Finally, the zone VI is a scalar-pattern zone of the second polarization component.  

4.3. Second-order vector modes   

As seen from Fig. 5, the second-order vector modes 2 2 0
0 1 0 2 0V e LG e LG  
    are spontaneously 

formed with increasing Fresnel number. They correspond to a non-separable, mutually trapped and 
orthogonally polarized zero-order radial mode and a spiral-phase mode with 2l   . Note that the 
latter is unstable in the scalar case.  

The second-order vector modes reveal the polarization structures of the full Poincaré beams, 
with polarization topological defects present. These are two L lines of linearly polarized states 
(green lines in Fig. 5) which separate the domains of opposite handedness, as well as two pairs of 
C point defects (i.e., the points of circular polarizations). A pair of C+ defects (blue) is surrounded 
by a pattern of ellipses having a ‘star’ morphology, with a tree radial direction of the ellipses’ 
major axes. There is also a pair of C– defects (red) having a ‘lemon’ morphology, with single 
radial directions of the major axes [13].  
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Fig. 5. Structure of vector mode 2

0V   calculated at NF ≈ 6, θ2 – θ1 = 0 and η1 – η2 = –0.03. Notations are the 
same as in Fig. 2. 

Fig. 6 displays dependence of the powers P1 and P2 of the both polarization components on 
the linear loss coefficient 1 , as obtained at  2 1   and NF ≈ 6. The ‘zonal structure’ shown in 

Fig. 6 is like that appearing in Fig. 4, except for the second and penultimate zones. These are the 
zones of irregular vector patterns where the axially symmetric vector modes cannot exist. There 

are two zones of stability of the 2
0V   mode in the region  1 0.82;  1.12  . As evident from Fig. 6, 

they are separated by the isotropy point  1 2 1   . Two structural transformations occur at this 

point: we have 2 0
0 0LG LG   for the first polarization component and  0 2

0 0LG LG  for the 

second polarization  component.  

 
Fig. 6. Powers 1P  (red) and 2P  (blue) of the polarization components, and the total power (black) versus 

linear loss coefficient 1 , as calculated at  2 1  and NF ≈ 6. 
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4.4. Third-order vector modes   
When the Fresnel number increases up to NF ≈ 7, we find stable third-order vector structures 

3 3 0
0 1 0 2 0V e LG e LG  
     (see Fig. 7). The third-order spiral-phase modes 3

0LG , which are 

unstable in a scalar laser with strong loss anisotropy, become stable in the quasi-isotropic laser due 

to a stabilizing role of the zero-order radial mode 0
0LG . The vector modes acquire the polarization 

structures typical for the full Poincaré beams. They rotate around the beam axis in a controllable 
manner due to changing phase anisotropy. These structures also contain the polarization 
topological defects, three L lines of the linearly polarized states (see green lines in Fig. 7) and six 
C point defects. Three C+ defects (blue) are surrounded by a pattern of ellipses having a ‘star’ 
morphology, whereas three C– defects are surrounded by a pattern of ellipses with ‘lemon’ 
morphology. The zonal structure obtained for the laser with this Fresnel number is similar to that 
found for the laser with NF ≈ 6 (see Fig. 6). At the isotropy point, structural transformations 

3 0
0 0LG LG    and 0 3

0 0LG LG  occur respectively for the first and second polarization 

components.  

 

Fig. 7. Structure of vector mode 3
0V   calculated at NF ≈ 7, θ2 – θ1 = 0 and η1 – η2 = –0.03. Notations are the 

same as in Fig. 2. 

5. Conclusion 
We have studied the effects of spontaneous formation of rotating vector beams in the single-
longitudinal-mode quasi-isotropic laser with weak loss anisotropy and a moderate Fresnel number 
of the cavity. Our numerical simulations show that the vector laser modes are formed from a 
random noise under conditions when different polarization and spatial fields compete with each 
other. As a result, pairs of mutually trapped, orthogonally polarized azimuthal and radial 
Laguerre–Gauss modes of different orders are formed. They have axially symmetric profiles of the 
total intensity and spatially inhomogeneous polarization structures of the full Poincaré beams, 
which rotate around the beam axis with constant speeds. We have demonstrated that one can 
control both the magnitude and the direction of angular speed of the polarization structure of these 
vector modes, when varying the phase anisotropy of the laser cavity. 
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Анотація. Досліджено динаміку поляризації світла квазі-ізотропного лазера зі слабкою 
анізотропією втрат і помірним числом Френеля, яка включає конкуренцію ортогонально 
поляризованих поперечних мод. Продемонстровано можливість спонтанного формування 
векторних мод першого, другого і третього порядків, які виявляють поляризаційну 
структуру т. зв. повних пучків Пуанкаре, керовані перетворення структури поляризації 
лазерного поля, а також зміни динаміки її обертання. 


