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Abstract. Efficient object tracking represents a technology important for many 
vision applications. It is known that ghost imaging (GI) has a great potential if 
compared with a standard imaging and solves many problems in case if the common 
object tracking cannot be carried out. Here we show how the techniques of 
compressive GI and background subtraction can achieve object tracking. First, 
object information is captured with the GI. A characteristic measured for an object is 
obtained by subtracting background in the compressed domain. This characteristic 
uses compressive sensing to reconstruct the object image. Then the object image is 
projection-positioned to obtain the corresponding centroid coordinates. At last, the 
object trajectory is recovered with a polynomial fit, thus providing successful object 
tracking. Our simulation experiments suggest that the technique can track objects 
accurately under condition of low sampling ratios. Moreover, it decreases drastically 
the number of measurements needed for reconstruction and improves the tracking 
efficiency. 
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1. Introduction 
Object tracking technologies are very important for the field of computer vision. It has been 
widely used in vehicle tracking, video surveillance, human–computer interaction and so on [1]. 
Although a lot of efficient object-tracking algorithms have been proposed, many problems in their 
application still need to be solved. For instance, it is matter of importance whether a whole object 
or its part is covered. Illumination changes in the environment, changes occurring with objects and 
a background noise can be mentioned among the other problems. As a result, it is still difficult to 
design the object-tracking algorithm which is accurate, reliable and stabile for a long time [2]. 

To track a moving object, we first need to detect it. In case of target-detection techniques, the 
common methods are a background subtraction (BS), an optical-flow method, and a frame 
difference one [3, 4]. If compared with the other methods, the BS is simple to implement in the 
context of fixed or slowly changing background. Then moving objects can be detected quickly and 
accurately, which is suitable for video surveillance [5].  

Area matching, feature matching, template matching and contour matching are among the 
common methods used in the process of tracking [6, 7]. In view of the problems arising in this 
process, the authors of the work [8] have put forward an object tracking based on multi-feature 
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fusion. It is able to adapt to illumination changes though involves complex calculations. The study 
[9] has suggested a technique for object tracking which is based on a scale-invariant feature. To 
some extent, it can overcome the problems of similar appearance of the object near the target and 
achieves the main goal of stable tracking. Nonetheless, the above technique is easily affected by 
the target scale and velocity changes.  

Traditional techniques used for object tracking have also shortcomings associated with data 
redundancy and bad tracking performance in harsh environments. In this respect, a compressive 
sensing (CS) [10] can use the sampling frequency far lower than the Nyquist sampling restrictions 
imposed upon signal restoration. In particular, application of the CS in the spectral-reflectance 
reconstruction improves the reconstruction accuracy so that the image can be restored more 
accurately [11, 12]. To improve the reconstruction accuracy and reduce workload, an adaptive CS 
has been used in the work [13] to reconstruct the spectral reflectance. In Ref. [14], the CS has been 
applied to target tracking. In this way, fast feature extraction and real-time object tracking have 
been achieved. Although the technique reduces the problem of target loss caused by a drift in the 
process of tracking, the problems with environment and illumination changes still have a great 
influence on the tracking. It is difficult to achieve the tracking effect stable for long enough times. 
Moreover, another problem linked with bad tracking performance in the harsh environment has not 
been solved, too.  

The authors of Ref. [15] have presented a technique that allows for direct reconstruction of 
background-subtracted images, using a CS theory and a complementary-modulation technique. 
Though it is really robust against changing illumination and noises, this technique still reveals 
flaws in some special environments. On the other hand, a ghost image (GI) technique [16] enables 
obtaining object images, using the optical paths external with respect to the objects themselves. A 
method combining entangled-photon approach with the CS has been proposed in Ref. [17] to 
detect different targets. Here the number of samplings and the redundancy in the transmission 
process are reduced and, moreover, the tracking performance remains sufficiently good in the 
harsh environment. Nonetheless, the technique is difficult to implement because of complicated 
equipment required. Finally, the authors of the work [18] have suggested using entangled photons 
and compression sensing. The technique demonstrates robustness with respect to the environment 
but remains difficult to implement in practice. Basing on the said above, we believe that a 
combination of the BS and compressive GI methods, which we refer to as CSGI, can reduce the 
data redundancy and manifest a sufficient tracking performance in the harsh environment. This can 
improve significantly the tracking. 

As a consequence, the present work presents a technique aimed at object tracking, which is 
based on both the compressive GI and the BS. It is termed hereafter as a BSCSGI technique. 
According to this technique, we first collect the image information with the GI. Then the object 
information is obtained using the BS in the compressed domain. Finally, the object is 
reconstructed directly using the CS. Since the reconstructed image contains only the moving object 
at each time, the very problem of object tracking becomes essentially simpler. The location 
information referred to different time moments can be deduced from the reconstructed images. 
Then the object trajectory can be calculated issuing from this information, and the next positions 
of the object can be predicted. The location area predicted can be reconstructed directly with the 
CSGI and, therefore, a small-area image containing the object can be obtained. Our technique can 
use the sampling frequencies which are far lower than those associated with the Nyquist sampling 
restrictions, thus enabling one to restore the target object more accurately. The BSCSGI can solve 
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many problems which are otherwise difficult to overcome with the conventional imaging 
techniques. As an example, the number of samplings can be reduced drastically when our 
technique is employed in the object tracking. Besides of simplicity of the BSCSGI, it improves the 
accuracy of object tracking and reduces the influence of noises. 

2. Theory of compressive GI 
In the computational GI, light irradiates a spatial light modulator which modulates the intensity of 
the emergent light. Then the modulated light field falls upon the object under test. The bucket 
detector collects all the light having passed through the object, and some resulting bucket-detector 
reading is obtained. After N  samplings, N  detector readings iD  are collected. A speckle field 

( , )iI x y  generated by the spatial light modulator is recorded for each modulation act. Then the 

second-order correlation function is got due to correlating operation applied to the speckle field-
intensity distribution I  and the bucket-detector readings D . The image of the target object 

( , )G x y  is given by the formula 

( , ) ( , ) ( , ) 1,2ii i iG x y I x y D I x y D i N    ,  (1) 

where 
 
implies averaging.  

The CS theory points out that the signal length N  in a known transform domain   is sparse. 

Then one can obtain the coefficients of the signal measured linearly in the transform domain, using 
a ( )m n m n  -dimension measurement matrix  , which is not related to the transformation 

basis  . As a result, we have the measured values Y  with the dimension 1m  . Hence, the 

dimension of the measured values is less than that of the unknown signal. 

 

Fig. 1. Schematic diagram of compressive GI. 

In the traditional theory of signal recovery, a signal cannot be found exactly. According to 
the CS theory, we make use of the measured values Y , the transform base   and the 

measurement matrix  . Then the original signal can be reconstructed with arbitrarily high 

precision by solving the optimization problem. The CS theory can be applied to the GI systems, as 
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shown in Fig. 1. The bucket detector yields N  readings for the CS and N  optical-intensity 
distributions ( , )I x y  as a measurement matrix. Then the compressive GI model can be constructed 

as  

  
1

cs L
T =T; min ψ T x,y , 

subject to 

   i i iD = dxdyI x,y T x,y ; =1,...,N ,   (2) 

where csT  represents the image of the target object, ( , )T x y  the projection function of the object, 

1L
  the L1 norm, and { ( , )}T x y  the sparse matrix of the object. 

3. Principles of compressive GI-based object tracking that involves BS  
The compressive GI-based object tracking that involves the BS include the two principles. The 
first is object detection based on the compressive GI and the BS. A reconstructed image which 
contains only the object is thus obtained. The second moment is the object tracking itself. Here the 
object reconstructed with the CS undergoes projection positioning to obtain a centroid coordinate. 
Then an object trajectory is built with a polynomial fit. Finally, the position of the object at the 
next moment can be predicted, thus narrowing the predicted area, which is reconstructed using the 
compressive GI. In this manner, the object can be successfully tracked and a small-area image 
containing the object can be obtained. 

According to the principles of CSGI, a laser light is modulated by the spatial light modulator 
in the process of target detection. The modulated light passes through the background image bX  
and then through the test image tX . The modulated light is collected by a lens and received by the 
bucket detector. After M samplings, M  values of the background image ( 1,2... )ibD i M  and M  
values of the test image ( 1,2... )itD i M  are detected. Each light-intensity distribution is stored and, 

as a result, a set of transformed stored results represents a so-called measurement matrix of the CS. 
To extract the moving object, one has to remove any background (i.e., static) elements. Both 

of the bX  and tX  quantities contain the same elements, the difference being that tX  contains only 
the target object and bX  only the background elements. Therefore the target-object image detected 
with the BS represents a difference between bX  and tX . Then the information acquired from the 
object is sparse, thus conforming to the main operation principles of the CS. Following from the 

bX  and tX  values measured with the GI, we obtain the bD  and tD  parameters associated 
respectively with bX  and tX . The resulting BS-based parameters of the target object are given by 

d t bD D D  .      (3) 

Here dD  denote the values measured after subtracting, which are nothing but the values 
measured for the target object. Then the image can be reconstructed with the CSGI procedure. 
Fig. 2a and Fig. 2b correspond to the test and background images. As shown in Fig. 2c, the object 
obtained using the background-difference method is sparse, so that the numbers of necessary 
measurements and reconstructions are less than those of the background and test images. In this 
way the reconstruction efficiency is improved and the tracking becomes more reliable. 

Finally, a standard computer image-processing technology is used to carry out binarization of 
a reconstructed object image under a suitable threshold for image segmentation (see Fig. 2d). Then 
the binary object image suffers a projection positioning to obtain a smallest outer rectangle of the 
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object, with a rectangle centre being a centroid of the object (see Fig. 2e). The projection 
positioning uses projections along the two directions of image, horizontal and vertical, so as to 
find out the positions and the ranges of the image along these two directions. The specific method 
used by us is a top-down progressive scan of the image. The relevant sum of the columns is as 
follows:  

( ) ( , )
N

i i i
i

f y f x y .    (4) 

After analyzing the horizontal-projection results, one finds that larger ( )if y ’s correspond to 

the object area, while zero or smaller ( )if y ’s to the background area or the noise. Having this 

feature in mind, one can determine the upper and lower boundaries. The left and right boundaries 
of the object can be determined in the same manner. The smallest outer rectangle of the object is 
determined by the four boundary lines mentioned above. Then the central position of the upper and 
lower boundaries is the ordinate of the object centroid, whereas the central position of the left and 
right boundaries is the abscissa of this centroid. The object trajectory ( , )Y f X C  can be 

calculated with a standard polynomial fit. Here X  and Y  are the column vectors composed 
respectively of abscissas and ordinates of the object centroids, and C  is some indeterminate 
multinomial coefficient. A continuous curve can be found after analyzing the trajectory, which can, 
in principle, be arbitrarily close to the discrete points of the true object trajectory. Here we take the 
analytic expression of the polynomial as a model and employ the least-squares method [19] to 
measure the approximation effect, as described below. 

The moving trajectory of the object should be found as 
2

0 1 2( , ) ... n
nY f X C c c X c X c X     ,   (5) 

where 0 1 2 ( 1){ , , ... }nC c c c c 
 
is the vector of n parameters of the polynomial. Then we calculate the 

variance of the N known points and the estimated fitting curve: 
2 2 2

0 22
1
[ ( ... )]

N
n

i i i i n i
i

y c c x c x c x


     .    (6) 

Taking partial derivative of each iC  in the variance 
2

2
 , we arrive at the matrix  

1 1 10
2 1

11 1 1 1

1 2
1 1 1 1

N N Nn
i i ii i i

N N N Nn
i i i i ii i i i

N N N Nn n n nn
i i i i ii i i i

N x x yc
cx x x x y

c
x x x x y

  


   


   

   
    
    
    
    
    
    

   

  
   

   




    



.  (7) 

Basing on this matrix, all of the parameters 0 1 2 ( 1){ , , ... }nC c c c c   of the least-squares fitted 

trajectory can be obtained. 

 
a)                        b)                       c)                       d)                       e) 

Fig. 2. Test image (a), background image (b), object image reconstructed with CSGI (c), (d) binary image, 
and (e) object image obtained after projection positioning. 
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Fig. 3. Flow diagram of BSCSGI. 

Having known the object trajectory, one can predict the centroid coordinate of the object 
( ', ')x y  and calculate the smallest outer rectangle of the object. Notice that the compressive GI is 

used to reconstruct the image in the smallest outer rectangle so that the image containing only the 
moving object can be obtained. Since the predicted results shrink the scope of imaging at every 
moment, the image-measurement and image-reconstruction times are greatly reduced, along with 
complexity of the object tracking. Fig. 3 illustrates a flow diagram of the BSCSGI technique. 

4. Simulation results 
We verified the performance of the BSCSGI technique through numerical simulations. In our si-
mulation experiments, a random matrix was used as a measurement matrix. Grayscale images were 
adopted from traffic.avi, a video provided with MATLAB. The first frame was taken as a back-
ground image and the other continuous frames were selected as test images. To facilitate the simu-
lation experiments, we set the size of both binary and grayscale images to be 64 64  pixels. In our 
simulations, modulated laser light fell upon the object to generate a bucket-detector reading, which 
was recorded as a single-time sampling. The sampling ratio was equal to the ratio of number of 
samplings and the total number of pixels in the image. The simulation platform was MATLAB 
software. The images were reconstructed using a known algorithm of orthogonal matching pursuit. 
The mean-square error was selected as a measuring standard in order to analyze quantitatively the 
image-reconstruction effect. 

4.1. Confirmation of feasibility of the technique 
Here we imply to verify the feasibility of the BSCSGI. First the object-detection procedure, which 
represents the initial step in the object tracking, needs to be verified. In Fig. 4, the sampling rate of 
the reconstructed image is 50%. We find that the object image can be reconstructed with the 
BSCSGI technique under low-sampling conditions. Therefore our method can detect the objects 
accurately enough.  

Now the feasibility of the object detection with the BSCSGI should be verified. After the 
BSCSGI is used to track some object, its trajectory can be built. The image reconstructed using the 
BSCSGI is transformed into a binary image with the aid of a standard technology. Then the binary 
images obtained are subjected to projection positioning to obtain the smallest outer rectangle of the 
object. As a result, a relevant centroid and a length and width of the object are recorded. Fig. 5 
displays the results obtained when the projection positioning is applied to the binary image. 
Table 1 summarizes the object-centroid coordinates. As seen from Table 1, the maximum errors 
for the length and the width of projection positioning are about 1 pixel, and the same is true of the 
maximum error of the reconstructed centroid coordinates. Hence, the results derived with the 
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  a)   b)   c)   d) 
 

  e)   f)   g) 
Fig. 4. Background image (a), three continuous frames (b)–(d), and images reconstructed with CSGI (e)–(g) 

projection positioning agree well with the corresponding actual values, such that our projection-
positioning procedures are indeed reliable. After the centroid coordinate are known, one can built 
the object trajectory using the polynomial fit. 

 
Table 1. Actual coordinates of a moving object and coordinates reconstructed with our 

technique. The coordinates, the length and the width are measured in the units of 
pixels, where a lower left corner of the image is taken as an origin. 

  Frame #1 Frame #2 Frame #3 
Centroid 

coordinates (24.0, 38.5) (28.0, 39.0) (31.0, 38.0) 
Actual values Length and 

width 14.0, 11.9 16.0,12.0 18.0, 12.0 

Centroid 
coordinates (23.5, 38.5) (27.0, 38.5) (30.0, 37.5) Reconstructed 

values Length and 
width 15.0, 11.0 16.0, 13.0 18.0, 11.0 

 

  a)      b)      c) 
Fig. 5. Results of projection positioning. 

The object trajectory can only be used for predicting a regular movement. Though this has 
some disadvantages, the method still meets the requirements of video surveillance. The BSCSGI 
tracks the moving objects in the successive two frames, where the object motion in each previous 
frame is taken as a prior data. The predicted fourth- and fifth-frame centroid positions are equal to 
(33.0, 38.5) and (35.0, 38.5), respectively. It follows from the calculations that the fourth- and 
fifth-frame outer rectangular boxes are 20 and 22 pixel large. The relevant simulation results are 
displayed in Fig. 6. Here the range obtained by the prediction contains completely the moving 
object. When the sampling ratio of the moving object is 30%, the outline of the object is clearly 
visible and the details of the target object become clear when the sampling ratio reaches 50%. This 
means that the object tracking has been implemented successfully. 

In our simulation experiments performed for the BSCSGI, the object detection efficiency 
increases notably whenever the object image is obtained at low-sampling ratios. We notice again  



Zhang Leihong et al 

Ukr. J. Phys. Opt. 2017, Volume 18, Issue 3 150 

 20% 30% 50% 

   

 a) b) c) d) 

   

 e) f) g) h) 

Fig. 6. Results of small-scale compressive GI. Panels (a) and (e) correspond to the fourth and fifth frames, and 
panels (b) and (f), (c) and (g), and (d) and (h) to different sampling ratios used when reconstructing the image. 
The sampling ratio is equal to 20% in panels (b) and (f)), 30% in (c) and (g), and 50% in (d) and (h). 

that the detected object image suffers projection positioning to obtain the object centroid. First the 
image is transformed into a binary image, where a standard technology of digital-image processing 
is used. Imperfect parts are filtered out at this stage so that the effect of noise is reduced (see 
Fig. 5). Then the accuracy of the projection positioning is improved, and the object trajectory 
found with the polynomial fit becomes more accurate. The location of the object can be predicted 
by the object trajectory, whereas the reconstruction methods are aimed only at the object regions. 
Compared with the whole-image reconstruction, the small-range image reconstruction reduces the 
burdens of transmission, storage and sampling ratio. Our simulation experiments performed for the 
object detection and object tracking have verified feasibility of the object tracking under 
conditions of low-sampling ratio. Summing up, the BSCSGI reduces greatly the number of 
samplings, alleviates the burden of transmission and storage, improves the efficiency of moving-
object tracking and solves the problems of tracking under harsh conditions. These are the main 
advantages if compared with the common object-tracking methods. 

4.2. CSGI-based image reconstructed as compared with GI 
The GI reveals a great potential if compared with the standard imaging. In particular, this refers to 
the imaging of objects located in optically harsh or noisy environments. The method provides also 
a solution for the moving-object tracking in harsh environments. As a consequence, the GI and the 
CSGI are used to reconstruct the images in our simulation experiments and compare the 
performance of the two methods. 

The experiments illustrated in Fig. 7 and Fig. 8 suggest the following. 
(1) A noticeable noise is peculiar for the target image detected with the GI and, hence, the 

information concerned with spatial intensity distribution in the image is difficult to distinguish.  
(2) The target object detected with the CSGI is clear in the case of 2000 samplings, while the 

target object detected with the GI is still covered by noise. Fig. 8 shows clearly that, with the same 
sampling, the target image detected with the CSGI includes less noise, the information distribution 
in the target image is more accurate, and the edges of the object are clearer. The overall result is 
far better than that detected using the GI method. 

(3) The mean-square errors for the target images detected with both the GI and the CSGI 
methods show a downtrend with increasing sampling number. This demonstrates that, as the 
number of samplings increases, the quality of the target image detected using the target-detection 
methods is improved.  
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

  

 
f) 

 
g) 

 
h) 

Fig. 7. Illustrations of performance of the GI and CSGI techniques for the numbers of samplings equal to 1000, 
1500 and 2000: (a) test image, (b) background image, (c), (d) and (e) target images detected with CSGI, and (f), 
(g) and (h) target images detected with GI. The number of samplings is equal to 1000 in panels (c) and (f), 1500 
in (d) and (g), and 2000 in (e) and (h). 

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

 

 

M
S

E

Sampling    frequency

 B
 C

 
Fig. 8. Dependences of mean-square errors on the sampling frequency, as calculated for CSGI (black squares) 
and GI (red circles) techniques. 

(4) The mean-square errors found for the case of CSGI are evidently less than those typical 
for the GI. When the sampling number reaches a certain threshold, the mean-square errors tend to 
become gentler. Since the mean-square errors for the target image detected with the GI are higher, 
the reconstructed images have also larger errors. Therefore the performance of CSGI detection is 
better than that of GI. Furthermore, the image quality is enhanced and the accuracy of target 
detection is also improved. This provides a priori knowledge for the projection positioning and the 
object tracking. 

4.3. BSCSGI as compared with region-based object tracking 
Among the methods of object tracking, the region-based object tracking is, maybe, the most 
common. Therefore we have performed simulation experiments to verify the object-tracking 
performance of the BSCSGI and the region-based tracking. Prior to the object tracking, the target 
object should be detected. Both of the methods use the BS to detect the object. The following can 
be concluded from the data presented in Fig. 9 and Fig. 10.  

(1) Under conditions of high sampling ratios, the object obtained with the BSCSGI is clearer 
than that obtained with the BS. With declining sampling ratio, the BSCSGI method appears 
slightly noisier, although the edges of the target objects can still be accurately determined. On the 
other hand, the target objects detected with the BS are vague and even harder to discern the object.  



Zhang Leihong et al 

Ukr. J. Phys. Opt. 2017, Volume 18, Issue 3 152 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

  

 
f) 

 
g) 

 
h) 

  

 
i) 

 
j) 

 
k) 

Fig. 9. Simulation results obtained for the case of traditional background subtraction: (a) background image, (b) 
test image, (c)–(e) target object detected using the background subtraction, (f)–(h) binary images, and (i)–(k) 
object-region images. The sampling ratio is equal to 25% in panels (c), (f) and (i), 10% in (d), (g) and (j), and 5% 
in (e), (h) and (k). 

   
a) b) c) 

 

 

 

 

 

 

d) e) f) 

 

 

 

 

 

 

g) h) i) 

 

 

 

 

 

 

j) k) l) 
Fig. 10. Comparison of tracking results obtained using region-based and BSCSGI techniques: Panels (a), (b) 
and (c) correspond to three consecutive-frame images, and left and right sides of panels (d)–(l) are results of 
the region-based object tracking and the BSCSGI, respectively. The sampling ratio is equal to 5% in panes (d), 
(e) and (f), 25% in (g), (h) and (i), and 50% in (j), (k) and (l). 



Studies on the key methods 

Ukr. J. Phys. Opt. 2017, Volume 18, Issue 3 153 

(2) When the images are binary-transformed, the technique developed in the present work 
can still be successfully employed to find the object at low-sampling ratios. Under the same 
conditions, the traditional technique is unable to identify the object accurately. 

(3) With the projection positioning used to determine the object region, our technique can 
recognize the region where the object is located at low enough sampling ratios. On the contrary, 
the object region obtained using the traditional technique is deformed, and it is difficult to obtain 
the accurate target-area template. The latter problem can cause a loss of the target object in the 
tracking process, especially in the case of region-based tracking. 

In case if several preceding frames serve as a prior knowledge, the objects are tracked at 
different sampling ratios. We have verified the tracking performance of the two techniques and the 
experiments illustrated in Fig. 10 and Fig. 11 prove the following facts. 
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Fig. 11. Dependences of 
tracking errors on the sampling 
rate, as calculated for BSCSGI 
(black squares) and region-
based object-tracking (red 
circles) techniques. 

 

(1) The objects detected under conditions of low-sampling ratios are used as templates for the 
tracking. The object-tracking results derived with the BSCSGI are better than those of the region-
based tracking. In particular, the error of our tracking technique is within acceptable range. On the 
other hand, the region-based technique has some difficulties when tracking accurately the targets 
at low-sampling ratios and larger errors are involved in this case.  

(2) Both of the tracking results are evidently improved with increasing sampling ratio. The 
technique suggested in the present work is more stable in this respect. 

(3) The tracking results derived with the BSCSGI represent small-region images so that the 
data redundancy is reduced and the tracking efficiency improved. 

It is also seen from our simulation experiments that, in the aspect of target-object detection, 
the BSCSGI can detect the objects under low sampling-ratio conditions and is able to pinpoint the 
location of the object. In the aspect of object tracking, our technique always achieves the aim of 
tracking since it uses the object images detected at lower-sampling ratios to accurately predict the 
location of the object. Compared with the traditional object tracking, our technique reduces the 
sampling ratio and improves the object-tracking efficiency. 

5. Conclusion 
This study introduces the technique aimed at object tracking, which is based on combination of the 
compressive GI and the BS. The target image is captured using the GI and the measured 
characteristic of the object is obtained with the BS in the compressed domain. Then the object 
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image is reconstructed directly using the CS. The centroid of the object is obtained by the 
projection positioning and the polynomial curve is used to fit the object trajectory. The next-frame 
location of the object can easily be determined and the scope of the target object is far less than the 
whole image. The object image is reconstructed with the compressive GI to achieve the main 
purpose of tracking.  

The efficiency of our technique has been verified through numerical simulation experiments. 
We have proven that the BSCSGI can use the sampling frequencies far lower than the Nyquist 
sampling restrictions to restore the target objects, and so it can track the objects with high enough 
accuracy. The sampling number is then reduced and the tracking efficiency improved. 
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Анотація. Ефективне відстеження об’єктів – це технологія, важлива для багатьох 
практичних застосувань комп’ютерного зору. Відомо, що підхід «зображення з 
примарами» (ПЗ) має значний потенціал, порівняно зі стандартним відстеженням 
об’єктів, і вирішує багато проблем у разі, якщо традиційне відстеження об’єкта 
неможливе. У цій праці ми показуємо, як можна відстежувати об’єкти за методами 
стиснення ПЗ і вилучення фону. Спочатку фіксують інформацію про об’єкт за допомогою 
ПЗ. Характеристику, виміряну для об’єкта, одержують вилученням фону в стиснутій 
області. Ця характеристика використовує стиснене впізнавання для реконструкції 
зображення об’єкта. Далі зображення об’єкта проекційно позиціонують так, щоб 
отримати відповідні координати центроїда. Нарешті, траєкторію об’єкта відновлюють 
за допомогою поліноміальної апроксимації, що забезпечує успішне відстеження об’єкта. 
Наші експерименти засвідчують, що ця методика здатна точно відстежувати об’єкти за 
умови низьких коефіцієнтів вибірки. Крім того, вона різко зменшує кількість вимірювань, 
потрібних для відновлення зображення, і покращує ефективність відстеження. 


