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Abstract. Nonlinear dynamics of high-intensity femtosecond singular pulses in a 
Kerr medium with group velocity dispersion (GVD) is analysed using variational 
and numerical approaches. We study underlying physical processes governing 
propagation of vortices: diffraction, Kerr self-focusing, defocusing due to photoin-
duced plasma, and normal/anomalous GVD. Multifoci behaviour of vortices appear-
ing in the medium are revealed. It is shown that the refocusing period depends on 
both the magnitude and sign of the GVD. The early stages of vortex beam filamenta-
tion are described. 
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1. Introduction  
After introduction by Nye and Berry in 1974 [1], optical vortices have become interesting subjects 
of research [2] and possible applications. Optical vortices have large potentials for applications in 
such fields as, e.g., information processing [3], optical trapping of particles and transfer of orbital 
angular momentum [4], and soliton algebra [5]. Beyond doubt, stability of vortices represents an 
important issue for both linear [6] and nonlinear [7] propagation regimes. This problem has drawn 
much attention of researchers because sometimes only specific design of samples or distinctive 
conditions can provide stability of propagating vortices [6]. 

In our previous work [8] we have investigated the propagation of highly intense femtosecond 
singular pulses in a Kerr medium, depending on the topological charge and the ratio of initial and 
critical pulse powers. We have found that the underlying physical mechanism for stable vortex 
propagation is dynamic competition between a Kerr self-focusing and a defocusing caused by 
plasma due to multi-photon ionisation processes. For the first time the role of inertial origin of 
plasma formation has been analysed, which provides stable propagation of the femtosecond vor-
tices. The stability of the vortex beam against azimuthal perturbations has been elucidated, too. 
The main results obtained in the study [8] may be formulated as follows. It is the competition of 
the focusing and defocusing factors at weak dissipation and especially the inertial character of 
plasma that can provide a quasi-soliton regime of propagation for the pulsed femtosecond vortex 
beams. Moreover, the singly charged vortex is stable at the scales exceeding three diffraction 
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lengths or even more, which are much longer than those for the hypothetic case of instantaneous 
character of the plasma. The similar scenarios take place for the vortices with larger topological 
charges, though the distances of vortex stability become essentially shorter.  

Below we will dwell on the main peculiarities of nonlinear dynamics of high-intensity femto-
second singular pulses in Kerr dielectrics, taking into account the effect of group velocity disper-
sion (GVD). The impact of the GVD on the vortex-beam stability becomes very important in opti-
cal fibres and photonic crystals, as well as for ultra-short singular pulses. Our analysis will include 
variational and numerical approaches.  

2. Basic equations 
Let us consider the behaviour of powerful femtosecond vortex pulse with the topological charge m 
in a fused silica. The underlying process providing a possible stable propagation of the vortex in 
the medium is the competition of cubic focusing nonlinearity and defocusing caused by plasma 
generation. The pulse propagation along some z axis is described by a set of equations, which 
consists of a generalised nonlinear Schrödinger equation for the complex envelope ( , , )E E r t z  

of the electric field and a kinetic equation for the free-electron density  : 
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Regarding the notations, 2  is the GVD coefficient, 0n  and 2n  respectively the linear and 

nonlinear refractive indices for the fused silica, 0 / ,k c 0n =1.45, 16
2 103 n сm2/W, 

181.55 10   cm2 [9] denotes the inverse bremsstrahlung cross section, 141033.2 c s the 

electron collision time, 15300 10 sr
   the electron recombination time resulting from electron–

phonon interaction, and ( )K  the Keldysh parameter for the K-photon absorption defined as [9] 
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Here em and  eq are respectively the electron mass and the elementary charge, 9.1 eVgE   means 
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 the number of photons in the multiphoton absorption process.  

For the fused silica at the wavelength  = 800 nm we have K = 6, 2 361  fs2/cm, and 
( ) 104 9 66.49 10 m /(s W )K   . In other words, we assume that the plasma is formed due to mul-

tiphoton ionisation mechanism, as the latter is indeed the most essential under the conditions 
specified above. Different terms appearing in the r. h. s. of Eq. (1) describe the diffraction, the 
GVD, the cubic nonlinearity, the plasma defocusing, and the multiphoton absorption. The first 
term in the r. h. s. of Eq. (2) is responsible for the multiphoton ionisation and the second one ac-
counts for the electron recombination. Provided that the propagating pulse duration is far shorter 
than the electron–phonon relaxation time, the effect of recombination can be neglected in the sub-
sequent discussion. 
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Let the light pulse with the wavelengths  = 800 nm or 1500 nm and the duration p = 10–

120 fs pass through the bulk fused silica. This pulse should be susceptible to influence of the 
GVD. We assume that the input pulse intensity 0I  varies in the range of 1–70 TW/cm2 and the 

beam waist 0w  can acquire the values between 12 m and 50 m. We consider the propagation of 

a doughnut-shaped pulsed beam carrying the vortex with the topological charge m.  
We choose the boundary conditions for the field amplitude as follows: 

 
2 2

02 2 2
0 0 0 0 0

2( 0) exp exp
!

mm

m

r r tE z E im
m a T a a T




 
   

 
,   (3) 

( 0) ( ) 0E r E r
r

 
  

 .       
Let us introduce the dimensionless variables / dfz z L , 0/r r w  and  / / pt t z v   , 

where z  and r  are the dimensionless longitudinal and lateral variables, t  implies the dimen-

sionless time in the frame of reference moving with the group velocity v, 2
0 / 2dfL kw  the diffrac-

tion length, and 0 /k n c . The dimensionless field amplitude is 0/e E E , with 0E  being the 

input peak field amplitude. Then Eq. (1) in the dimensionless form reads as 
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be reduced to its dimensionless form in an analogous manner. 

3. Two-scale variational approach 
In this section we present the results of variational analysis of the set of Eqs. (1) and (2). The 
variational approach represents only an approximation, being good enough as an initial trial solu-
tion. However, its advantage is that it provides a semi-analytical result, which can easily be ana-
lysed, and often gives a simple physical insight to the origin of processes [10–12]. Let us use the 
ansatz 

( , , ) ( , , ) exp{ ( , , )}E r z t A r z t i r z t ,    (5) 

where A(r, z, t) is the amplitude of the pulse and its phase ( , , )r z t  is given by 

( , , ) ( , , )r z t r z t m    .     (6) 
Substituting Eqs. (5) and (6) into Eq. (1), we arrive at the set of equations for the wave amplitude 

and phase: 
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Using a classical-mechanics analogy of a particle moving in two-dimensional potential well 
with regard to Eq. (8), one obtains the Hamilton function 
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Following the analogy suggested in the work [13] for the Gaussian beams, we have devel-
oped the Hamiltonian approach to the pulsed vortex beam in order to get equations for its radius 
and duration. Indeed, having known the potential function V(r, t) depending on the two variables r 
and t, 
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it is easy to get an equation of motion for them: 
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Here we take z, r, t and k in Eq. (8) as t, q1, q2 and m in the Hamilton–Jacobi equation, which 
describes particle’s movement in a two-dimensional potential well in the classical mechanics. Note 
that r and t are the radial and temporal distances of some arbitrary light ray in the pulsed beam 
from the centre of the latter, which is specified by the conditions r = 0 and t = 0. The problem 
under consideration reduces to solution of equations for r and t with Eq. (7), though the solution 
can be notably simplified in the frame of aberrationless approximation. We assume surely enough 
that the pulsed vortex beam retains a doughnut form:  
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where a(z) and T(z) are the beam radius and its duration, respectively. Being interested in the be-
haviour of the waist and the temporal width of the singular pulse, we can arrive at the following 
system of equations for a(z) and T(z) in the aberrationless approximation: 
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The system of Eqs. (13) and (14) is integro-differential, since the plasma density represents 
an integral value. For the topological charge m = 0, these equations are similar to those for the 
transverse and temporal mean-square widths of the Gaussian beam centred at the origin t = 0 and 
r = 0, which has been obtained in Ref. [11] in a different way. In the absence of plasma contribu-
tion our equations reduce to those obtained for the pulsed beam’s width and duration in the work 
[10], the authors of which have considered spatiotemporal effects at the vortex-free pulse propaga-
tion in the dispersive medium with the Kerr nonlinearity. Using a simple integration rule, the elec-

tron density can be approximated as 
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 while integrating up to the pulse peak, 

with min( ) 0.5( )g t t t   and tmin denoting the cutoff time determined by the parameters of  the 
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initial pulse [12]. It is important that the electron density has to be evaluated for each propagation 
distance, which does not pertain in this case. However, most of the important physics is still re-
tained in this approximation. Moreover, the approximation not only simplifies the calculations but 
also makes the interpretation more transparent. 

The analysis of Eq. (13) with regard to dependences on the input parameters of the beam re-
veals periodic behaviour of both the waist and the intensity of the pulse propagating as far as sev-
eral diffraction lengths, which is due to the competition of the focusing and defocusing effects. 
The refocusing period (RP) is determined by the pulse parameters. These are the intensity and the 
radius of the pulse, the ratio of the input pulse power to the critical (threshold) self-focusing 
power, and also the input pulsed-beam collimating parameter    0

d / d d / da z a z  for 0z  . Ac-

cording to our variational analysis, the less radius and the higher intensity of the input pulse the 
less the RP becomes. Moreover, this period depends on the pulse duration: the less duration, the 
less RP is. This originates from higher peak intensities of shorter pulses. Fig. 1 demonstrates be-
haviour of the pulse radius and duration when the GVD is negligible. In this case the radius oscil-
lates with a constant period and every time after refocusing stage it acquires its original value 
under propagation free of dissipation. As seen from Fig. 1, the pulse duration is constant under 
these conditions and does not change along the propagation axis. 

 
 

Fig. 1. Spatial behaviours of transverse 
radius r(z) (lower curve) and duration T(z) 
(upper curve) of doughnut pulsed beam in the 
fused silica along the propagation axis z for 
m = 1 and the initial parameters 
 0
d / da z  –0.0041, a0 = 26 µm, T0 = 120 fs, 

I0 = 6.19 TW/cm2, and  = 31.13. 

 

 
 

 
 

Fig. 2. Impact of normal GVD on pulse duration T(z) (upper curves) and radius r(z) (lower curves) under 
propagation in the fused silica for m = 1,  = 62.265 and the input parameters a0 = 12 m, T0 = 60 fs, 
 = 800 nm, da/dz (z = 0) = –0.011, I0 = 58.2 TW/cm2, and β2 =  361 fs2/cm: (a) dT/dz (z = 0) = –0.0001 and 
(b) dT/dz (z = 0) = –0.02.  

Different scenarios of nonlinear dynamics of the pulse are realised with increasing GVD. Our 
simulations demonstrate a strong dependence of behaviour of the singly charged vortex on both 
the magnitude and sign of the GVD. In particular, Fig. 2a elucidates dependences of the temporal 
and spatial widths of the pulse upon the distance, which are characterised by beam radius oscilla-
tions and by steady trend of increasing the temporal width under complete passage of the pulse. 
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Stretching of the pulse along the propagation axis is accompanied by increasing its spatial width 
and the RP. It should be noticed that this result contradicts the data of the work [14]. 

As shown in [14], the femtosecond vortex-free pulse shortens significantly along the propa-
gation axis under the combined influence of diffraction, Kerr nonlinearity, normal GVD and 
photoinduction of plasma. Then the compression factor can reach the value of 5.5. According to 
our data, the influence of plasma nonlinearity is quite weak and it cannot compensate for the nor-
mal GVD effect and make the vortex pulse shorten. Higher plasma density and the input pulse 
chirp dT/dz (z = 0) can reverse the pulse elongation process. One can see from Fig. 2b that the 
vortex beam with dT/dz (z = 0) = –0.02 in the fused silica self-focuses and shortens up to z = 4 mm 
and then its RP and temporal width increase.  

Dynamics of the vortex pulse depends not only on the GVD value but on its sign. The pulse 
shortens along the propagation axis in the media with anomalous dispersion. This is accompanied 
by periodic self-focusing and defocusing of the pulse. The mechanism underlying this stretching 
process may be explained in terms of competition of the anomalous GVD and the Kerr focusing. 
The smaller the temporal width of the pulse, the smaller its radius and the shorter the RP are. This 
is why the vortex pulse propagating in a medium with the anomalous GVD at larger distances 
more often refocuses. The behaviours of its temporal and spatial widths are depicted in Fig. 3a.  

It should be noted that inclusion of the GVD makes possible pulse refocusing for larger ratios 
  than those typical for the case when the dispersion is completely absent [8]. We would recall in 
this respect that the multifoci scenario observed in our previous work takes place at  =15.57 or 
even smaller values. Moreover, refocusing and temporal reshaping processes can be controlled by 
both the magnitude and sign of such parameters as the collimation and the temporal chirp of the 
input pulse. So the magnitude and the sign of  0

d / da z  largely determine both the character and 

the period of the refocusing. As for the initial temporal chirp of the vortex pulse (dT/dz)0, it can 
stop pulse shortening or stretching processes occurring in the medium at large enough values and 
turn them into the reverse processes. Such a scenario is illustrated in Fig. 3b, where one can see a 
non-monotonic dependence of the pulse duration ( )T z  on the propagation distance in the medium 

with the anomalous dispersion for the temporal chirp of the input pulse (dT/dz)0 = 0.002. Initially 
the pulse stretches and then it starts to shorten, beginning from the distance of z = 4 mm. As a 
result, the RP increases up to z = 4 mm and then decreases. 

  

Fig. 3. Spatial dynamics of pulsed vortex beam radius r(z) (lower curve) and duration T(z) (upper curve) in a 
medium with anomalous GVD for m = 1,  = 29.52 and the input parameters a0 = 12 m, T0 = 36 fs, 
da/dz (z = 0) = –0.011,  = 1500 nm, I0 = 97.1 TW/cm2, β2 = –242 fs2/cm: (a) dT/dz (z = 0) = –0.00002 and (b) 
dT/dz (z = 0) = 0.002. 
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Being interested in the stable propagation of the pulsed vortex beams in the medium, we 
search for the soliton or, at least, quasi-soliton solutions. As earlier shown in the work [8], the 
competition of the Kerr focusing and the defocusing plasma nonlinearities can provide quasi-
soliton regime of the vortex propagation under negligible effect of the GVD. Fig. 1 corresponds 
exactly to this case. The GVD complicates searching for the soliton solutions. The solutions pre-
sented in Fig. 2 and Fig. 3 do not speak in favour of such scenarios, because the pulse durations do 
not remain constant under propagation. From our point of view, the combined effects of the dif-
fraction, the Kerr nonlinearity, the GVD and the photoinduced plasma can lead to periodic oscilla-
tions not only of the pulse waist but also of its duration, providing stability of the pulse along the 
propagation axis. Currently we are in search of such scenarios. We are also interested in such re-
gimes of the vortex pulse propagation when their parameters retain their initial values. 

4. Numerical simulations 
Now let us dwell upon the results of our numerical modelling. To gain detailed insight in various 
scenarios of the behaviour of powerful femtosecond pulses in Kerr dielectrics, we have solved 
numerically Eqs. (1) and (2) reduced to their dimensionless form (see Section 2), subject to the 
input parameters indicated above. 

The modified NSE equation has been solved in the Cartesian coordinate system moving 
along with the group velocity. For numerical calculations, a splitting scheme has been used assum-
ing that, at each small step along the pulse axis, the diffraction and dispersion effects are inde-
pendent. The second-order differential operators in the spatial coordinates and the corresponding 
difference ones have been presented as locally one-dimensional operators. The resulting system of 
the difference equations has been solved with a sweep method along the appropriate spatial direc-
tions. The nonlinear terms have been involved, with the weight coefficients obeying the best sum-
mary approximation. This scheme is absolutely stable. To account for the dispersion, fast Fourier 
transform has been performed. Nonlinear dynamics of the pulsed vortex beams has been studied as 
a function of the input field parameters , a0, T0 and m. We have varied the ratio  from 12 to 20. 

We would like to emphasise that the GVD modifies significantly the propagation scenario for 
the vortex beams. Fig. 4a and Fig. 4b illustrate spatial evolution of 60 fs pulse in the fused silica, 
when the topological charge is unit (the wavelength being 800   nm, the intensity 

0I  = 2.25 TW cm–2, and the initial width 0 22 μmw  ). Here the ratio α is taken to be 

. 20in critP P   . 

For the distance z = 1.5Ldf (with Ldf denoting the diffraction length) the pulse still retains its 
radial distribution and temporal profile (see Fig. 4a). However, transverse distortions and temporal 
reshaping occur for larger distances (beginning from z = 3.31Ldf). As our numerical analysis 
shows, then the three modulations affecting the vortex give rise to three filaments of different 
intensities. The final filaments rotate and do not fuse, since all of them must preserve the total 
angular momentum of the incident beam [15]. 

More complicated dynamics is inherent to the vortices with larger topological charges. For 
example, the vortex with the topological charge m = 2 depicted in Fig. 5 undergoes reshaping of 
its temporal profile at smaller distances, when compared with those typical of singly charged vor-
tices (already at z = 1.6Ldf – see Fig. 5a). Simultaneously, transverse distortions begin to appear, 
leading to splitting of the doughnut beam into three subrings along the radial direction. Two pe-
ripheral subrings of lower intensities and a central subring of higher intensity then arise. The most 
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severe distortions occur just in the central, most intense part of the doughnut beam. The filamenta-
tion process begins at the distance z = 2.4Ldf (see Fig. 5b), which leads ultimately to five filaments 
of different intensities. Two filaments are observed in Fig. 5c in the plane y = 0 at the distance 
z = 2.4Ldf. 

 

 

Fig. 4. Intensity profiles ( , )I x t  of singly charged femtosecond vortex pulse in the plane y = 0 at different 
propagation distances: (a) z = 1.5Ldf and (b) z = 3.1Ldf. 

 

 

Fig. 5. Temporal reshaping and filamentation of vortex with m = 2 at  = 18 and the same input parameters 
as in Fig.4: (a) spatio-temporal profile of vortex intensity in the plane y = 0 at z = 1.6Ldf, (b) initial stage of 
filamentation at z = 2.4Ldf, and (c) two filaments in the plane y = 0 at z = 2.8Ldf. 

Let us proceed to a more detailed analysis of the vortex beam propagation at m = 3 and 
 = 12 under combined effect of the factors mentioned above, supposing that the input pulse pa-
rameters are the same as earlier. Fig. 6 displays the earlier stages of vortex distortions. For the 
distance z = 0.8Ldf, the temporal envelope of the pulse distorts and a plateau is formed. At the 
same time, the radial structure of the vortex remains unaltered (see Fig. 6a) almost up to z = 1.2Ldf. 
At this distance the vortex undergoes reshaping of the temporal profile and the ring structure splits 
into three subrings. The outer and inner subrings of almost equal intensities still retain the original 
shape of the vortex. Reshaping is observed in the central part of the doughnut ring. While propa-
gating, the distortions of the vortex accumulate, the inner ring grows in intensity (see Fig. 6c, Fig. 
6d) and seven filaments arise at z = 2.2Ldf . 
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Fig. 6. Early stages of high-intensity femtosecond singular pulse filamentation for m = 3, α = 12 and y = 0: 
(a) formation of plateau in the temporal profile at z = 0.8Ldf, (b) reshaping temporal envelope and ring split-
ting at z = 1.2Ldf, (c) accumulation of distortion at z = 1.6Ldf, and (d) intensity increase of the inner subring at 
z = 1.9Ldf. 

Notice that the problem considered here resembles to optical vortex bullet solutions. Genera-
tion of stable, fully three-dimensional, self-supported and long-lived light bullets having a large 
potential for various applications is one of grand challenges of the field of nonlinear optics, though 
it still remains open after several decades passed. The laser pulse cannot be trapped into spatio-
temporal soliton in the normal-GVD media with the Kerr nonlinearity, because the evolution of 
this pulse results from the competition between the two main tendencies, the pulse compression in 
the transverse spatial direction as a result of self-focusing, and the pulse stretching along the time 
axis T. To overcome this obstacle, various approaches have been suggested, e.g. nonlinearity satu-
ration [16], higher-order diffraction or dispersion [17], nonlocality of nonlinear response [18], and 
periodic (discrete) waveguide structures with controlled diffraction and/or GVD [19]. We suppose 
that the inertial character of defocusing nonlinearity of the photoinduced plasma in the Kerr dielec-
trics with the normal GVD can also provide a condition necessary for getting optical vortex bul-
lets. The relevant results will be published in a forthcoming article. 

5. Conclusions 
In conclusion, in this work we have investigated the propagation of high-intensity femtosecond 
singular pulses in the Kerr medium, depending on the topological charge and the ratio of the initial 
pulse power to the critical one. The underlying physical processes governing the vortex propaga-
tion are the diffraction, the Kerr self-focusing and defocusing caused by the plasma generated via 
multiphoton ionisation process, and the GVD. For modelling we have employed a system involv-
ing the modified (3 + l)-dimensional nonlinear Schrödinger equation and the kinetic equation for 
the free-electron density. The calculations have been based on semi-analytical and numerical ap-
proaches. The main results obtained can be formulated as follows. 

When the pulsed vortex beam with above-critical input powers propagates through the Kerr 
medium under conditions of weak dissipation and dispersion, we deal with the competition of the 
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focusing and defocusing factors, resulting in a periodic behaviour of the beam structure along the 
propagation axis. At the same time, the greater the topological charge, the less the period of beam 
refocusing becomes. Since the beam retains its shape, it would be right to say that it propagates in 
a quasi-soliton regime. When the impact of the GVD increases, the RP depends on the pulse dura-
tion and varies along the propagation axis in compliance with the changes in the pulse duration. 
The pulse elongates while propagating in the medium with the normal GVD, since the plasma 
defocusing does not compensate the dispersion effect. It leads to increasing RP. In the case of 
anomalous dispersion one can observe the reverse process. If the Kerr self-focusing increases the 
impact of the anomalous dispersion, the temporal width of the pulse decreases and, as a result, the 
pulse refocuses more often in the medium. 

The early stages of filamentation of the pulsed vortex beam are described, which include re-
shaping of temporal profile of the vortex and splitting of the ring structure into three subrings 
along the radial direction. The outer and inner subrings of almost equal intensities still retain the 
original shape of the vortex. Reshaping is observed in the central part of the doughnut ring. When 
the vortex propagates, the filaments appear in the central ring, and the less intense peripheral rings 
disappear. 
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Анотація. З використанням числового і варіаційного підходів проаналізована нелінійна 
динаміка високо інтенсивних фемтосекундних сингулярних імпульсів у керрівському середо-
вищі з дисперсією групової швидкості. Вивчені фізичні процеси, які керують поширенням 
вихорів: дифракції, керрівського самофокусування, розфокусування завдяки фотоіндукова-
ній плазмі і нормальної/аномальної дисперсії групових швидкостей. Виявлена багатофокус-
на поведінка вихорів у цьому середовищі.  Показано, що період роз фокусування залежить, 
як від величини так і від знаку дисперсії групових швидкостей. Описаний ранній етап філа-
ментації вихрового променя.  
 

 


