Relations for optical indicatrix parameters in the conditions of crystal torsion

Skab I., Vasylkiv Yu., Savaryn V. and Vlokh R.

Institute of Physical Optics, 23 Dragomanov St., 79005 Lviv, Ukraine, e-mail: vlokh@ifo.lviv.ua

Received: 06.08.2010

Abstract

We have derived the relations describing optical indicatrix changes appearing in crystals of all the point symmetry groups for the different geometries of application of torque moment and light propagation directions.

Keywords: piezooptic effect, torsion stress

PACS: 78.20.Hp, 07.10.Lw **UDC**: 535.551

1. Introduction

It is known that the piezooptic effect consists in the changes of optical impermeability coefficients ΔB_{ij} (or the refractive indices $B_{ij} = (1/n^2)_{ij}$) of a medium under the action of mechanical stress σ_{kl} . This can be described by the relation

$$\Delta B_{ij} = B_{ij} - B_{ij}^0 = \pi_{ijkl} \sigma_{kl} , \qquad (1)$$

where π_{ijkl} is the fourth-rank piezooptic tensor, and B_{ij} and B_{ij}^0 the impermeability tensors of a strained and free samples, respectively.

There are many techniques aimed at study of the piezooptic effect in crystals [1]. However, in order to determine some of the piezooptic coefficients $\pi_{\lambda\mu}$ with the indices $\lambda = 1, 2, ...6$ and $\mu = 4, 5, 6$ in the matrix notation, one needs to apply so-called shear stress to a crystalline sample. Usually the shear-stressed state is created when loading a sample along the bisector of two mutually orthogonal crystallographic axes. When the above stress is applied, the existing components of the stress tensor are not limited to the shear ones only, and additional compressive and extension stresses appear along the principal crystallographic directions [1–3].

Besides (see, e.g., the analysis [4]), the piezooptic coefficients are usually measured with a high error that can exceed 30 per cent. This error is caused by a so-called barrel-shaped distortion appearing due to a friction force between sample faces, a cover cap and a substrate used for sample loading. As a consequence, a resulting distribution of stresses inside a sample is *a priori* unknown. For more precise determination of the piezooptic coefficients, a three-point bending method is often used [5]. Then the stress distribution inside a sample can be determined in advance.

Notice that the same should be true when a torsion mechanical moment is applied to a sample. Moreover, application of this kind of stresses should have the advantage consisting in possibilities for determining the shear stress-associated piezooptic coefficients. As mentioned above, the piezooptic tensor components $\pi_{\lambda\mu}$ with $\lambda = 1, 2, ...6$ and $\mu = 4, 5, 6$ in the matrix notation are referred to such the coefficients. Usually the latter cannot be measured in any simple way, due to a complicated experimental geometry required, and are therefore recalculated from the indirect experimental data on the basis of very cumbersome relations [2, 3], thus imposing increasing errors that can exceed the typical mean values of the coefficients themselves.

As shown in our works [6–10], application of the torsion [6, 7, 9, 10] or bending [7, 8, 10] stresses leads to some spatial distribution of the optical birefringence and the angle of optical indicatrix rotation in crystals. In particular, when a crystal is twisted around Z axis, a special point of zero induced birefringence is observed in the geometrical centre of XY cross section of a sample, corresponding to the zero shear stress components σ_{13} and σ_{23} . This point belongs to the torsion axis. It has been found in our earlier studies that the birefringence linearly increases with increasing distance from the geometrical centre of the XY cross section. Moreover, it has been shown that the birefringence distribution forms a conical surface in the coordinates (X, Y, Δn) [6, 7].

The experiments mentioned above have used a single laser-beam polarimetry method, with scanning the beam across the *XY* face of a sample. This method reveals a low resolution limited by the laser beam diameter and so should be successfully replaced by an imaging polarimetric technique.

If a cylindrical sample is twisted around the Z axis, the relevant stress tensor components may be determined as [11]

$$\sigma_{\mu} = \frac{2M_z}{\pi R^4} (X\delta_{4\mu} - Y\delta_{5\mu}), \qquad (2)$$

where $M_z = \int_{S} r \times P dS$, $\delta_{4\mu}$ and $\delta_{5\mu}$ are the Kronecker deltas, *R* the cylinder radius, *S*

the square of the cylinder basis, and *P* the mechanical load. Thus, we deal with the two shear components of the stress tensor, σ_{32} and σ_{31} :

$$\sigma_4 = \sigma_{23} = \frac{2M_z}{\pi R^4} X \tag{3}$$

and

$$\sigma_5 = \sigma_{13} = \frac{2M_z}{\pi R^4} Y , \qquad (4)$$

which linearly depend on the coordinates. This dependence enables one to determine unambiguously a distribution of shear stress components inside a sample under study. Furthermore, application of the torsion moment makes it possible to produce pure tangential displacements (i.e., the pure shear stress components), which are usually

lia.
ned
сп
iqc
otro
l is
and
ls a
sta
cry
ic
cut
ш.
ed
pli
ap
ent
om
Ē
ion
ors
e ti
r th
lde
n
ers
nei
uraı
t pê
triy
ica
ind
al
ptic
e ol
th
s in
ge
lan
C
<u>.</u> 1.
ıblé
T_{a}

Torsion	Direction	Refractive indices	Induced birefringence	Angle of
moment and	of light			optical
stress	propagation			indicatrix
components				rotation
M_x ,	$K \parallel X$	not changed	$\Delta n_{23} = 0$	$\tan 2\zeta_X = 0$
σ_{12},σ_{13}	$k \parallel Y$	$n_{1,3} = n_o \pm \frac{1}{2} n_o^3 \pi_{44} \sigma_{13} = n_o \pm n_o^3 \pi_{44} \frac{M_x}{\pi R^4} Y$	$\Delta n_{13} = n_o^3 \pi_{44} \sigma_{13} = n_o^3 \pi_{44} \frac{2M_x}{\pi R^4} Y$	$\tan 2\zeta_Y = \pm \infty$
	$k \parallel Z$	$n_{1,2} = n_o \pm \frac{1}{2} n_o^3 \pi_{44} \sigma_{12} = n_o \pm n_o^3 \pi_{44} \frac{M_x}{\pi R^4} Z$	$\Delta n_{12} = n_o^3 \pi_{44} \sigma_{12} = n_o^3 \pi_{44} \frac{2M_x}{\pi R^4} Z$	$\tan 2\zeta_Z = \pm \infty$,
$M_y, \sigma_{12}, \sigma_{23}$	$k \parallel X$	$n_{2,3} = n_o + \frac{1}{2}n_o^3 \pi_{44}\sigma_{23} = n_o + n_o^3 \pi_{44} \frac{M_y}{\pi R^4} X$	$\Delta n_{23} = n_o^3 \pi_{44} \sigma_{23} = n_o^3 \pi_{44} \frac{2M_y}{\pi R^4} X$	$\tan 2\zeta_X = \pm \infty$
	$k \parallel Y$	not changed	$\Delta n_{13} = 0$	$\tan 2\zeta_Y = 0$
	$k \parallel Z$	$n_{1,2} = n_o \pm \frac{1}{2} n_o^3 \pi_{44} \sigma_{12} = n_o \pm n_o^3 \pi_{44} \frac{M_y}{\pi R^4} Z$	$\Delta n_{12} = n_o^3 \pi_{66} \sigma_{12} = n_o^3 \pi_{66} \frac{2M_y}{\pi R^4} Z$	$\tan 2\zeta_Z = \pm \infty$
$M_{z}, \ \sigma_{13}, \sigma_{23}$	$k \parallel X$	$n_{2,3} = n_o + \frac{1}{2}n_o^3 \pi_{44}\sigma_{23} = n_o + n_o^3 \pi_{44} \frac{M_z}{\pi R^4} X$	$\Delta n_{23} = n_o^3 \pi_{44} \sigma_{23} = n_o^3 \pi_{44} \frac{2M_z}{\pi R^4} X$	$\tan 2\zeta_X = \pm \infty$
	$k \parallel Y$	$n_{1,3} = n_o \pm \frac{1}{2} n_o^3 \pi_{44} \sigma_{13} = n_o \pm n_o^3 \pi_{44} \frac{M_z}{\pi R^4} Y$	$\Delta n_{13} = n_o^3 \pi_{44} \sigma_{13} = n_o^3 \pi_{44} \frac{2M_z}{\pi R^4} Y$	$\tan 2\zeta_Y = \pm \infty$
	$k \parallel Z$	not changed	$\Delta n_{12} = 0$	$\tan 2\zeta_Z = 0$

Table 2. Cha 42m, 4/mm	nges in the of m, 622, 6mm,	tical indicatrix parameters under the torsion momen $\overline{6}m2$, 6/mmm and textures of the Curie groups $\infty 2$	nt applied in crystals of the point sym 2, ∞ mm and ∞/mmm .	netry groups 422, 4mm,
Torsion moment and stress components	Direction of light propagation	Refractive indices	Induced birefringence	Angle of optical indicatrix rotation
	2	c,	4	5
M_x ,	$k \parallel X$	not changed	$\delta(\Delta n)_{23} = 0$	$\tan 2\zeta_X = 0$
σ_{12},σ_{13}	$k \parallel Y$	$n_{\rm l} = n_o + \frac{1}{2} \frac{n_o^5 n_e^2 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2} = n_o + \frac{n_o^5 n_e^2 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_x^2}{\pi^2 R^8} Y^2$	$\delta(\Delta n)_{13} = \frac{1}{2} \frac{n_e^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \pi_{44}^2 \sigma_{13}^2$	$\tan 2\zeta_Y = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{13}}{n_o^2 - n_e^2}$
		$n_3 = n_e - \frac{1}{2} \frac{n_o^2 n_e^5 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2} = n_e - \frac{n_o^2 n_e^5 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_x^2}{\pi^2 R^8} Y^2$	$=\frac{2n_o^2n_e^2(n_o^3+n_e^3)}{n_o^2-n_e^2}\pi_{44}^2\frac{M_x^2}{\pi^2R^8}Y^2$	$= \frac{4n_o^2 n_e^2 \pi_{44}}{n_o^2 - n_e^2} \frac{M_x}{\pi R^4} Y$
	Z Y	$n_{1,2} = n_o \pm \frac{1}{2} n_o^3 \pi_{66} \sigma_{12} = n_o \pm \pi_{66} n_o^3 \frac{M_x}{\pi R^4} Z$	$\Delta n_{12} = n_o^3 \pi_{66} \sigma_{12} = n_o^3 \pi_{66} \frac{2M_x}{\pi R^4} Z,$ the birefringence is compensated on the ontical path length	$\tan 2\zeta_Z = \pm \infty,$ $\zeta_Z = \pm 45^\circ$
$M_y, \sigma_{12}, \sigma_{23}$	$k \parallel X$	$n_2 = n_o + \frac{1}{2} \frac{n_o^5 n_e^2 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2} = n_o + \frac{n_o^5 n_e^2 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_y^2}{\pi^2 R^8} X^2$	$\delta(\Delta n)_{23} = \frac{1}{2} \frac{n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \pi_{44}^2 \sigma_{23}^2$	$\tan 2\zeta_X = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{23}}{2n_o^2 n_e^2 \pi_{22}}$
		$n_3 = n_e - \frac{1}{2} \frac{n_o^2 n_e^5 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2} = n_e - \frac{n_o^2 n_e^5 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_y^2}{\pi^2 R^8} X^2$	$=\frac{2n_o^2n_e^2(n_o^3+n_e^3)}{n_o^2-n_e^2}\pi_{44}^2\frac{M_y^2}{\pi^2R^8}X^2$	$= \frac{n_o^2 - n_e^2}{n_o^2 n_e^2 \pi_{44}} \frac{M_y}{\pi R^4} X$
	$k \parallel Y$	not changed	$\delta(\Delta n)_{13} = 0$	$\tan 2\zeta_{Y}=0$

Skab I. et al

196

Ukr. J. Phys. Opt. 2010, V11, Nº4

5	$\frac{2M_y}{\pi R^4}Z, \tan 2\zeta_Z = \pm \infty, \\ \zeta_Z = \pm 45^\circ$	npensated	$\frac{-n_e^3}{2} \pi_{44}^2 \sigma_{73}^2 \tan 2\zeta_X = \frac{2n_o^2 n_e^2 \pi_{44}^2 \sigma_{23}^2}{2n_o^2 n_e^2 \pi_{44}^2 \sigma_{23}^2}$	$n_o^2 - n_e^2$	$\frac{1}{\pi^2 R^8} X^2 = \frac{4n_o^2 n_e^2 \pi_{44}}{n_o^2 - n_e^2} \frac{n_o^2 - n_e^2}{\pi R^4} X$	$\frac{w_{e}}{\tau^{2}R^{8}}X^{2} = \frac{4n_{o}^{2}n_{e}^{2}\pi_{44}}{n_{o}^{2}-n_{e}^{2}}\frac{m_{o}^{2}-n_{e}^{2}}{\pi R^{4}}X$	$\frac{u^2}{v^2 R^8} X^2 = \frac{4n_o^2 n_e^2 \pi_{44}}{n_o^2 - n_e^2} \frac{n_o^2 - n_e^2}{\pi R^4} X$ $\frac{\frac{M_z^2}{v^2 R^8} X^2}{\frac{n_o^2}{n_e^2} \pi R^4} \frac{M_z}{\pi R^4} X$ $\frac{n_o^3}{n_o^2 - n_e^2} \frac{1}{\pi R^4 \sigma_{13}^2} \frac{1}{\pi R^4 \sigma_{13}^2} \frac{1}{\pi R^4 \sigma_{13}^2} \frac{1}{\pi R^2} \frac{1}{R^2 R^4 \sigma_{13}^2} \frac{1}{R^2 R^4 \sigma_{13}^2} \frac{1}{R^2 R^4 R^4} \frac{1}{R^2 R^4} \frac{1}{R^2 R^4} \frac{1}{R^4 R^4} \frac{1}{R^4} \frac{1}{R^4 R^4} \frac{1}{R^4 R^4} \frac{1}{R^4} \frac{1}{R^4} \frac{1}{R^4 R^4} \frac{1}{R^4} \frac{1}{R^$	$\frac{m_{z}^{2}}{\pi^{2}R^{8}}X^{2} = \frac{4n_{o}^{2}n_{e}^{2}\pi_{44}}{n_{o}^{2}-n_{e}^{2}}\frac{n_{o}^{2}-n_{e}^{2}}{\pi R^{4}}X$ $\frac{m_{z}^{2}}{\pi^{2}R^{8}}X^{2} = \frac{4n_{o}^{2}n_{e}^{2}\pi_{44}}{n_{o}^{2}-n_{e}^{2}}\frac{m_{A}^{2}}{\pi R^{4}}X$ $\frac{m_{z}^{2}}{\pi^{2}R^{8}}Y^{2} = \frac{4n_{o}^{2}n_{e}^{2}\pi_{44}}{n_{o}^{2}-n_{e}^{2}}\frac{M_{z}}{\pi R^{4}}Y$
4	$\Delta n_{12} = n_o^3 \pi_{66} \sigma_{12} = n_o^3 \pi_{66}$	the birefringence is comp on the optical path length	$\left \delta(\Delta n)_{23} = \frac{1}{2} \frac{n_o^2 n_e^2 (n_o^3 + n)}{n_o^2 - n_e^2} \right $, ,	$2 = \frac{2n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \pi_{44}^2 \frac{M}{\pi^2}$	$2 = \frac{2n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \pi_{44}^2 \frac{M}{\pi^2}$	$2 = \frac{2n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \pi_{44}^2 \frac{M}{\pi^2}$ $\delta(\Delta n)_{13} = \frac{1}{2} \frac{n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2}$	$2 = \frac{2n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \pi_{44}^2 \frac{M}{\pi^2}$ $\delta(\Delta n)_{13} = \frac{1}{2} \frac{n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \frac{M}{\pi^4 + \pi_e^3}$ $= \frac{2n_o^2 n_e^2 (n_o^3 + n_e^3)}{n_o^2 - n_e^2} \pi_{44}^2 \frac{M}{\pi^2}$
3	$= n_o \pm \frac{1}{2} n_o^3 \pi_{66} \sigma_{12} = n_o \pm n_o^3 \pi_{66} \frac{M_y}{\pi R^4} Z$		$n_o + \frac{1}{2} \frac{n_o^5 n_e^2 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2} = n_o + \frac{n_o^5 n_e^2 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} X$		$n_e - \frac{1}{2} \frac{n_o^2 n_e^5 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2} = n_e - \frac{n_o^2 n_e^5 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} X$	$n_e - \frac{1}{2} \frac{n_o^2 n_e^5 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2} = n_e - \frac{n_o^2 n_e^5 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} X$	$n_e - \frac{1}{2} \frac{n_o^2 n_e^5 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2} = n_e - \frac{n_o^2 n_e^5 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} X$ $n_o + \frac{1}{2} \frac{n_o^5 n_e^2 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2} = n_o + \frac{n_o^5 n_e^2 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} Y^2$	$n_e - \frac{1}{2} \frac{n_o^2 n_e^5 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2} = n_e - \frac{n_o^2 n_e^5 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} X$ $n_o + \frac{1}{2} \frac{n_o^5 n_e^2 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2} = n_o + \frac{n_o^5 n_e^2 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} Y^2$ $n_e - \frac{1}{2} \frac{n_o^2 n_e^5 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2} = n_e - \frac{n_o^2 n_e^5 \pi_{44}^2}{n_o^2 - n_e^2} \frac{2M_z^2}{\pi^2 R^8} Y^2$
2	$k \parallel Z$ $n_{1,2}$		$k \parallel X$ $n_2 =$		<i>n</i> ³ =	<i>u</i> ³ =	$\frac{n_3}{k \parallel Y} = \frac{n_3}{n_1} = \frac{n_3}{n_1}$	$\frac{n_3}{k \parallel Y} = \frac{n_3}{n_1} = \frac{n_3}{n_3} $
1			M_z , σ_{13}, σ_{23}				I	I

Ukr. J. Phys. Opt. 2010, V11, Nº4

Table 3. Changes in the optical indicatrix parameters under the torsion moment applied in crystals of the point symmetry groups 6, $\overline{6}$, 6/m and textures of the Curie groups ∞ and ∞/m .

Torsion	Direction of	Refractive indices
moment and	light	
stress	propagation	
components		
1	2	3
$M_x, \\ \sigma_{12}, \sigma_{13}$	$k \parallel X$	$n_2 = n_o + \frac{n_o^3}{2} \left(2\pi_{62}\sigma_{12} + \frac{\pi_{45}^2\sigma_{13}^2n_o^2n_e^2}{n_o^2 - n_e^2 + 2n_o^2n_e^2\pi_{62}\sigma_{12}} \right)$
		$= n_o + 2n_o^3 \left(\frac{\pi_{62}M_x}{\pi R^4} Z + \frac{n_o^2 n_e^2 \pi_{45}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_x}{\pi R^4} Z} \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{\pi_{45}^2 \sigma_{13}^2 n_o^2 n_e^2}{n_o^2 - n_e^2 + 2n_o^2 n_e^2 \pi_{62} \sigma_{12}}$
		$= n_e - 2n_e^3 \frac{n_o^2 n_e^2 \pi_{45}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_x}{\pi R^4} Z}$
	$k \parallel Y$	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(2\pi_{62}\sigma_{12} - \frac{n_{o}^{2}n_{e}^{2}\pi_{44}^{2}\sigma_{13}^{2}}{n_{o}^{2} - n_{e}^{2} - 2n_{o}^{2}n_{e}^{2}\pi_{62}\sigma_{12}} \right)$
		$= n_0 - 2n_o^3 \left(\frac{\pi_{62}M_x}{\pi R^4} Z - \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \frac{2M_x}{\pi R^4} Z} \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \sigma_{12}}$
		$= n_e - 2n_e^3 \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \frac{2M_x}{\pi R^4} Z}$
	<i>k</i> <i>Z</i>	$n_1 = n_o - \frac{n_o^3}{2}\sigma_{12}\sqrt{4\pi_{62}^2 + \pi_{66}^2} = n_o - n_o^3 \frac{M_x}{\pi R^4} Z\sqrt{4\pi_{62}^2 + \pi_{66}^2}$
		$n_2 = n_o + \frac{n_o^3}{2}\sigma_{12}\sqrt{4\pi_{62}^2 + \pi_{66}^2} = n_o + n_o^3\frac{M_x}{\pi R^4}Z\sqrt{4\pi_{62}^2 + \pi_{66}^2}$

Induced birefringence	Angle of optical indicatrix rotation

4	5
$\delta(\Delta n)_{23} = n_o^3 \pi_{62} \sigma_{12} + \frac{1}{2} \frac{\left(n_o^3 + n_e^3\right) \pi_{45}^2 \sigma_{13}^2 n_o^2 n_e^2}{n_o^2 - n_e^2 + 2n_o^2 n_e^2 \pi_{62} \sigma_{12}}$ $= 2n_o^3 \pi_{62} \frac{M_x}{\pi R^4} Z + 2 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{45}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_x}{\pi R^4} Z}$ $\approx n_o^3 \pi_{62} \sigma_{12} = 2n_o^3 \pi_{62} \frac{M_x}{\pi R^4} Z$	$\tan 2\zeta_X =$ $= \frac{2\pi_{45}\sigma_{13}n_o^2 n_e^2}{n_o^2 - n_e^2 + 2n_o^2 n_e^2 \pi_{62}\sigma_{12}}$ $= \frac{4n_o^2 n_e^2 \pi_{45} \frac{M_x}{\pi R^4} Y}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_x}{\pi R^4} Z}$
$\delta(\Delta n)_{13} = n_o^3 \pi_{62} \sigma_{12} - \frac{1}{2} \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \sigma_{12}}$ $= n_o^3 \pi_{62} \frac{2M_x}{\pi R^4} Z - 2 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{44}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_x}{\pi R^4} Z}$ $\simeq n_o^3 \pi_{62} \sigma_{12} = n_o^3 \pi_{62} \frac{2M_x}{\pi R^4} Z$	$\tan 2\zeta_Y = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{13}}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \sigma_{12}}$ $= \frac{4n_o^2 n_e^2 \pi_{44} \frac{M_x}{\pi R^4} Y}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_x}{\pi R^4} Z}$
$\delta(\Delta n)_{12} = n_o^3 \sigma_{12} \sqrt{4\pi_{62}^2 + \pi_{66}^2}$ $= 2n_o^3 \frac{M_x}{\pi R^4} Z \sqrt{4\pi_{62}^2 + \pi_{66}^2}$ the birefringence is compensated on the optical path length	$\tan 2\zeta_Z = \frac{\pi_{66}}{2\pi_{62}}$

1	2	3
$M_{y}, \\ \sigma_{12}, \sigma_{23}$	k X	$n_2 = n_o + \frac{n_o^3}{2} \left(2\pi_{62}\sigma_{12} + \frac{\pi_{44}^2 \sigma_{23}^2 n_o^2 n_e^2}{n_o^2 - n_e^2 + 2n_o^2 n_e^2 \pi_{62} \sigma_{12}} \right)$
		$= n_o + 2n_o^3 \left(\pi_{62} \frac{M_y}{\pi R^4} Z + \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{\pi_{44}^2 \sigma_{23}^2 n_o^2 n_e^2}{n_o^2 - n_e^2 + 2n_o^2 n_e^2 \pi_{62} \sigma_{12}}$
		$= n_e - 2n_e^3 \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z}$
	k Y	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(2\pi_{62}\sigma_{12} - \frac{n_{o}^{2}n_{e}^{2}\pi_{45}^{2}\sigma_{23}^{2}}{n_{o}^{2} - n_{e}^{2} - 2n_{o}^{2}n_{e}^{2}\pi_{62}\sigma_{12}} \right)$
		$= n_0 - 2n_o^3 \left(\pi_{62} \frac{M_y}{\pi R^4} Z - \frac{n_o^2 n_e^2 \pi_{45}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 \pi_{45}^2 \sigma_{23}^2}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62}^2 \sigma_{12}}$
		$= n_e - 2n_e^3 \frac{n_o^2 n_e^2 \pi_{45}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z}$
	k Z	$n_1 = n_o - \frac{n_o^3}{2} \sigma_{12} \sqrt{4\pi_{62}^2 + \pi_{66}^2}$
		$= n_o - n_o^3 \frac{M_y}{\pi R^4} Z \sqrt{4\pi_{62}^2 + \pi_{66}^2}$
		$n_2 = n_o + \frac{n_o^3}{2}\sigma_{12}\sqrt{4\pi_{62}^2 + \pi_{66}^2}$
		$= n_o + n_o^3 \frac{M_y}{\pi R^4} Z \sqrt{4\pi_{62}^2 + \pi_{66}^2}$

$$\frac{4}{\delta(\Delta n)_{23} = n_o^3 \pi_{62} \sigma_{12} + \frac{1}{2} \frac{(n_o^3 + n_e^3) \pi_{44}^2 \sigma_{23}^2 n_o^2 n_e^2}{n_o^2 - n_e^2 + 2n_o^2 n_e^2 \pi_{45}^2 \sigma_{25} \sigma_{25}} = \tan 2\zeta_X = \frac{2\pi_{44} \sigma_{23} n_o^2 n_e^2 r_{45}}{n_o^2 - n_e^2 + 2n_o^2 n_e^2 \pi_{42} \frac{M_y^2}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{44} \frac{M_y}{\pi R^4} X}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{44} \frac{M_y}{\pi R^4} Z}{n_o^2 - n_e^2 + 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} = \frac{\delta(\Delta n)_{13} = n_o^3 \pi_{62} \sigma_{12} - \frac{1}{2} \frac{(n_o^3 + n_e^3) n_o^2 n_e^2 \pi_{43}^2 \sigma_{23}^2}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \sigma_{23} \frac{M_y}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{44} \frac{M_y}{\pi R^4} Z}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{43} \frac{M_y}{\pi R^4} Z}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{43} \frac{M_y}{\pi R^4} Z}{n_o^2 - n_e^2 - 2n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{43} \frac{M_y}{\pi R^4} Z}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{43} \frac{M_y}{\pi R^4} Z}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z} = \frac{4n_o^2 n_e^2 \pi_{43} \frac{M_y}{\pi R^4} Z}{n_o^2 - n_e^2 - 4n_o^2 n_e^2 \pi_{62} \frac{M_y}{\pi R^4} Z}$$

1	2	3
$M_z, \\ \sigma_{13}, \sigma_{23}$	k X	$n_2 = n_o - \frac{1}{2} n_o^3 \frac{n_o^2 n_e^2 (\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13})^2}{n_o^2 - n_e^2}$
		$= n_o - 2n_o^3 \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44}X + \pi_{45}Y)^2}{n_o^2 - n_e^2}$
		$n_3 = n_e + \frac{1}{2} n_e^3 \frac{n_o^2 n_e^2 (\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13})^2}{n_o^2 - n_e^2}$
		$= n_e + 2n_e^3 \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44}X + \pi_{45}Y)^2}{n_o^2 - n_e^2}$
	k Y	$n_1 = n_o - \frac{1}{2} n_o^3 \frac{n_o^2 n_e^2 (\pi_{44} \sigma_{13} - \pi_{45} \sigma_{23})^2}{n_o^2 - n_e^2}$
		$= n_o - 2n_o^3 \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44}Y - \pi_{45}X)^2}{n_o^2 - n_e^2}$
		$n_3 = n_e + \frac{1}{2} n_e^3 \frac{n_o^2 n_e^2 (\pi_{44} \sigma_{13} - \pi_{45} \sigma_{23})^2}{n_o^2 - n_e^2}$
		$= n_e + 2n_e^3 \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44}Y - \pi_{45}X)^2}{n_o^2 - n_e^2}$
	$k \parallel Z$	not changed

4	5
$\delta(\Delta n)_{23} = \frac{1}{2} \left(n_o^3 + n_e^3 \right) \frac{n_o^2 n_e^2 \left(\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13} \right)^2}{n_o^2 - n_e^2}$ $= 2 \left(n_o^3 + n_e^3 \right) \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44} X + \pi_{45} Y)^2}{n_o^2 - n_e^2}$	$\tan 2\zeta_X =$ $= \frac{2n_o^2 n_e^2 (\pi_{44}\sigma_{23} + \pi_{45}\sigma_{13})}{n_o^2 - n_e^2}$ $= \frac{4n_o^2 n_e^2 \frac{M_z}{\pi R^4} (\pi_{44}X + \pi_{45}Y)}{n_o^2 - n_e^2}$
$\delta(\Delta n)_{13} = \frac{1}{2} \left(n_o^3 + n_e^3 \right) \frac{n_o^2 n_e^2 \left(\pi_{44} \sigma_{13} + \pi_{45} \sigma_{23} \right)^2}{n_o^2 - n_e^2}$ $= 2 \left(n_o^3 + n_e^3 \right) \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44} Y + \pi_{45} X)^2}{n_o^2 - n_e^2}$	$\tan 2\zeta_Y = \frac{2n_o^2 n_e^2 (\pi_{44}\sigma_{13} - \pi_{45}\sigma_{23})}{n_o^2 - n_e^2}$ $= \frac{4n_o^2 n_e^2 \frac{M_z}{\pi R^4} (\pi_{44}Y - \pi_{45}X)}{n_o^2 - n_e^2}$
$\delta(\Delta n)_{12} = 0$	$\tan 2\zeta_Z = 0$

Torsion	Direction of	Refractive indices
moment	light	
and stress	propagation	
components		
1	2	3
M_x ,	$k \parallel X$	n_{1}^{3} $($ $n_{2}^{2}n_{2}^{2}\pi_{45}^{2}\sigma_{12}^{2})$
σ_{12}, σ_{12}		$n_2 = n_0 + \frac{\sigma}{2} \left[\pi_{16} \sigma_{12} + \frac{\sigma}{n^2 + n^2 + n^2 + n^2} \right]$
- 12 % - 15		$2 (n_o - n_e + n_o n_e n_{16} n_{12})$
		$\begin{pmatrix} 2n^2n^2\pi^2 & M_x^2 \\ M_x^2 & V^2 \end{pmatrix}$
		$M_x = M_x = M_x = \frac{2n_0 n_e n_{45}}{\pi^2 R^8}$
		$= n_o + n_o \left[\frac{n_{16}}{\pi R^4} Z + \frac{1}{\pi R^2} \frac{2}{\pi R^2} - \frac{2M_x}{2} \right]$
		$\left(\frac{n_{o} - n_{e} + n_{o} n_{e} n_{16} \pi R^{4}}{\pi R^{4}} \right)$
		n^3 $n^2 n^2 - 2 - 2$
		$n_3 = n_e - \frac{n_e}{2} - \frac{n_o n_e n_{45} o_{13}}{2 2 2 2 2 2 2 2}$
		$2 n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \sigma_{12}$
		$_{2}$ $_{2}$ $_{2}$ M_{r}^{2} $_{x2}$
		$n_{o}^{2}n_{e}^{2}\pi_{45}^{2}\frac{\pi^{2}R^{8}}{\pi^{2}R^{8}}Y^{2}$
		$= n_e - 2n_e^2 - \frac{n_e R}{2 - 2 - 2 - 2 - 2 - 2M_{r}}$
		$n_{o}^{-} - n_{e}^{-} + n_{o}^{-} n_{e}^{-} \pi_{16} \frac{\pi}{\pi R^{4}} Z$
	<i>k</i> <i>Y</i>	$n^{3}(n^{2}n^{2}\pi^{2}\sigma^{2})$
		$n_{1} = n_{o} - \frac{n_{o}}{2} \left(\pi_{16} \sigma_{12} - \frac{n_{o} n_{e} \pi_{44} \sigma_{13}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} \right)$
		$\begin{pmatrix} & & 2 & 2 & 2 & M_{\pi}^2 & -2 \end{pmatrix}$
		$M_{x} = \frac{2n_o^2 n_e^2 \pi_{44}^2 \frac{x}{\pi^2 R^8} Y^2}{\pi^2 R^8}$
		$= n_o - n_o^3 \left[\pi_{16} \frac{\pi}{\pi R^4} Z - \frac{\pi R}{2} \frac{\pi R}{2} \frac{2}{2} \frac{2}{2} \frac{2}{2} \frac{2M_{\rm r}}{2} \frac{\pi}{R} \right]$
		$\left(n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \frac{x}{\pi R^{4}} Z \right)$
		$n^3 = n^2 n^2 \pi^2 \sigma^2$
		$n_3 = n_e - \frac{n_e}{2} - \frac{n_o n_e n_{44} o_{13}}{2 2 2 2 2 2}$
		$2 n_{o}^{-} - n_{e}^{-} - n_{o}^{-} n_{e}^{-} \pi_{16} \sigma_{12}$
		$m^2 m^2 \pi^2 M_x^2 V^2$
		$n_0 n_e n_{44} \frac{\pi^2 R^8}{\pi^2 R^8}$
		$= n_e - 2n_e \frac{1}{n_e^2 - n_e^2 - n_e^2 - 2M_x} \frac{2M_x}{2}$
		$n_o - n_e - n_o n_e n_{16} \frac{1}{\pi R^4} L$
	$k \parallel Z$	1_3 $\sqrt{2_2}$ $3_3 M_{\rm r}$ $\sqrt{2_2}$
		$n_1 = n_o - \frac{1}{2}n_o \sigma_{12}\sqrt{\pi_{16}} + \pi_{66} = n_o - n_o \frac{1}{\pi R^4}Z\sqrt{\pi_{16}} + \pi_{66}$
		$n = n + \frac{1}{n^3} \pi \sqrt{\pi^2 + \pi^2} = n + n^3 M_x \sqrt{\pi^2 + 2^2}$
		$n_2 - n_o + \frac{1}{2}n_o O_{12} \sqrt{n_{16} + n_{66}} = n_o + n_o \frac{1}{\pi R^4} \sqrt{n_{16} + n_{66}}$
	1	

Table 4. Changes in the optical indicatrix parameters under the torsion moment applied in crystals of the point symmetry groups 4, $\overline{4}$ and 4/m..

Induced birefringence	Angle of optical indicatrix rotation
4	5
$\delta(\Delta n)_{23} = \frac{n_o^3}{2}\pi_{16}\sigma_{12} + \frac{1}{2}\frac{\left(n_o^3 + n_e^3\right)n_o^2n_e^2\pi_{45}^2\sigma_{13}^2}{n_o^2 - n_e^2 + n_o^2n_e^2\pi_{16}\sigma_{12}}$	$\tan 2\zeta_X = \frac{2n_o^2 n_e^2 \pi_{45} \sigma_{13}}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \sigma_{12}}$
$= n_o^3 \pi_{16} \frac{M_x}{\pi R^4} Z + 2 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{45}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \frac{2M_x}{\pi R^4} Z}$	$=\frac{4n_o^2 n_e^2 \pi_{45} \frac{x}{\pi R^4} Y}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \frac{2M_x}{\pi R^4} Z}$
$\simeq \frac{n_o^3}{2} \pi_{16} \sigma_{12} = n_o^3 \pi_{16} \frac{M_x}{\pi R^4} Z$	
$\delta(\Delta n)_{13} = \frac{n_o^3}{2}\pi_{16}\sigma_{12} - \frac{1}{2}\frac{\left(n_o^3 + n_e^3\right)n_o^2n_e^2\pi_{44}^2\sigma_{13}^2}{n_o^2 - n_e^2 - n_o^2n_e^2\pi_{16}\sigma_{12}}$	$\tan 2\zeta_Y = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{13}}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{16} \sigma_{12}}$ $4n_o^2 n_e^2 \pi_{44} \frac{M_x}{M_x} Y$
$= n_o^3 \pi_{16} \frac{M_x}{\pi R^4} Z - 2 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{44}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{16} \frac{2M_x}{\pi R^4} Z}$	$=\frac{\pi R^{4}}{n_{o}^{2}-n_{e}^{2}-n_{o}^{2}n_{e}^{2}\pi_{16}\frac{2M_{x}}{\pi R^{4}}Z}$
$\simeq \frac{n_o^3}{2} \pi_{16} \sigma_{12} = n_o^3 \pi_{16} \frac{M_x}{\pi R^4} Z$	
2 [2 2	
$\delta(\Delta n)_{12} = n_o^3 \sigma_{12} \sqrt{\pi_{16}^2 + \pi_{66}^2}$	$\tan 2\zeta_Z = \frac{\pi_{66}}{\pi_{16}}$
$= n_o^3 \frac{2M_x}{\pi R^4} Z \sqrt{\pi_{16}^2 + \pi_{66}^2}$	10
the birefringence is compensated on the optical path length	

1	2	3
$M_y,$ σ_{12}, σ_{22}	<i>k</i> <i>X</i>	$n_2 = n_o + \frac{n_o^3}{2} \left(\pi_{16} \sigma_{12} + \frac{n_o^2 n_e^2 \pi_{44}^2 \sigma_{23}^2}{n^2 - n^2 + n^2 n^2 \pi_{16} \sigma_{12}} \right)$
12 / 23		$= n_o + n_o^3 \left(\pi_{16} \frac{M_y}{\pi R^4} Z + \frac{2n_o^2 n_e^2 \pi_{44}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \frac{2M_y}{\pi R^4} Z} \right)$
		$n_{3} = n_{e} - \frac{n_{e}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} \pi_{44}^{2} \sigma_{23}^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{44}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{44}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{44}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{44}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{44}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{44}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{44}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{e}^{2} n_{e}^{2} \pi_{16} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} \pi_{16} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}$
	$k \parallel Y$	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(\pi_{16} \sigma_{12} - \frac{n_{o}^{2} n_{e}^{2} \pi_{45}^{2} \sigma_{23}^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} \right)$
		$= n_o - n_o^3 \left(\pi_{16} \frac{M_y}{\pi R^4} Z - \frac{2n_o^2 n_e^2 \pi_{45}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{16} \frac{2M_y}{\pi R^4} Z} \right)$
		$n_{3} = n_{e} - \frac{n_{e}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} \pi_{45}^{2} \sigma_{23}^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{45}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{45}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{45}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{45}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{45}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{45}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{o}^{2} n_{e}^{5} \pi_{45}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \sigma_{12}} = n_{e} - 2 \frac{n_{e}^{2} n_{e}^{2} \pi_{16}^{2} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} \pi_{16} \frac{M_{y}^{2}}{\pi^{2} R^{8}} X^{2}}$
	<i>k</i> <i>Z</i>	$n_1 = n_o - \frac{1}{2}n_o^3 \sigma_{12} \sqrt{\pi_{16}^2 + \pi_{66}^2} = n_o - n_o^3 \frac{M_y}{\pi R^4} Z \sqrt{\pi_{16}^2 + \pi_{66}^2}$
		$n_2 = n_o + \frac{1}{2}n_o^3\sigma_{12}\sqrt{\pi_{16}^2 + \pi_{66}^2} = n_o + n_o^3\frac{M_y}{\pi R^4}Z\sqrt{\pi_{16}^2 + \pi_{66}^2}$
$ \begin{array}{c} M_z, \\ \sigma_{13}, \sigma_{23} \end{array} $	<i>k</i> <i>X</i>	$n_2 = n_o - \frac{1}{2} n_o^3 \frac{(\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13})^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$
		$= n_o - 2n_o^3 \frac{M_z^2}{\pi^2 R^8} \frac{(\pi_{44}X + \pi_{45}Y)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$
		$n_3 = n_e + \frac{1}{2} n_e^3 \frac{\left(\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13}\right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$
		$= n_e + 2n_e^3 \frac{\left(\pi_{44} \frac{M_z}{\pi R^4} X + \pi_{45} \frac{M_z}{\pi R^4} Y\right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$

Δ	5
$\delta(\Delta n)_{23} = \frac{n_o^3}{2}\pi_{16}\sigma_{12} + \frac{1}{2}\frac{\left(n_o^3 + n_e^3\right)n_o^2n_e^2\pi_{44}^2\sigma_{23}^2}{n_o^2 - n_e^2 + n_o^2n_e^2\pi_{16}\sigma_{12}}$	$\tan 2\zeta_X = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{23}}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \sigma_{12}}$
$= n_o^3 \pi_{16} \frac{M_y}{\pi R^4} Z + 2 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{44}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \frac{2M_y}{\pi R^4} Z}$	$=\frac{4n_o^2 n_e^2 \pi_{44} \frac{M_y}{\pi R^4} X}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{16} \frac{2M_y}{\pi R^4} Z}$
$\simeq \frac{n_o^3}{2} \pi_{16} \sigma_{12} = n_o^3 \pi_{16} \frac{M_y}{\pi R^4} Z$	
$\delta(\Delta n)_{13} = \frac{n_o^3}{2}\pi_{16}\sigma_{12} - \frac{1}{2}\frac{\left(n_o^3 + n_e^3\right)n_o^2n_e^2\pi_{45}^2\sigma_{23}^2}{n_o^2 - n_e^2 - n_o^2n_e^2\pi_{16}\sigma_{12}}$	$\tan 2\zeta_Y = \frac{2n_o^2 n_e^2 \pi_{45} \sigma_{23}}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{16} \sigma_{12}}$
$= n_o^3 \pi_{16} \frac{M_y}{\pi R^4} Z - 2 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{45}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{16} \frac{2M_y}{\pi R^4} Z}$	$=\frac{4n_o^2 n_e^2 \pi_{45} \frac{n_y^2}{\pi R^4} X}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{16} \frac{2M_y}{\pi R^4} Z}$
$\simeq \frac{n_o^3}{2} \pi_{16} \sigma_{12} = n_o^3 \pi_{16} \frac{M_y}{\pi R^4} Z$	
$\delta(\Delta n)_{12} = n_o^3 \sigma_{12} \sqrt{\pi_{16}^2 + \pi_{66}^2}$ $= n_o^3 \frac{2M_y}{\pi R^4} Z \sqrt{\pi_{16}^2 + \pi_{66}^2}$	$\tan 2\zeta_Z = \frac{\pi_{66}}{\pi_{16}}$
the birefringence is compensated on the optical path length	
$\delta(\Delta n)_{23} = \frac{1}{2} \left(n_o^3 + n_e^3 \right) \frac{\left(\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13} \right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$	$\tan 2\varsigma_X = \frac{2(\pi_{44}\sigma_{23} + \pi_{45}\sigma_{13})n_o^2 n_e^2}{n_o^2 - n_e^2}$
$= 2\left(n_o^3 + n_e^3\right) \frac{\left(\pi_{44} \frac{M_z}{\pi R^4} X + \pi_{45} \frac{M_z}{\pi R^4} Y\right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$	$=4\frac{\left(\pi_{44}\frac{M_z}{\pi R^4}X + \pi_{45}\frac{M_z}{\pi R^4}Y\right)n_o^2 n_e^2}{n_o^2 - n_e^2}$

ſ	1	2	3
		$k \parallel Y$	$n_1 = n_o - \frac{1}{2} n_o^3 \frac{(\pi_{44} \sigma_{13} - \pi_{45} \sigma_{23})^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$
			$= n_o - 2n_o^3 \frac{\left(\pi_{44} \frac{M_z}{\pi R^4} Y - \pi_{45} \frac{M_z}{\pi R^4} X\right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$
			$n_3 = n_e + \frac{1}{2} n_e^3 \frac{\left(\pi_{44} \sigma_{13} - \pi_{45} \sigma_{23}\right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$
			$= n_e + 2n_e^3 \frac{\left(\pi_{44} \frac{M_z}{\pi R^4} Y - \pi_{45} \frac{M_z}{\pi R^4} X\right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$
I		$k \parallel Z$	not changed

Table 5. Changes in the optical indicatrix parameters under the torsion moment applied in crystals of the point symmetry groups 32, 3m and $\overline{3}m$.

Torsion moment and stress components	Direction of light propagation	Refractive indices
1	2	3
M_x ,	$k \parallel X$	not changed
σ_{12}, σ_{13}	k Y	$n_{1} = n_{o} + \frac{n_{o}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} (\pi_{44} \sigma_{13} + 2\pi_{41} \sigma_{12})^{2}}{n_{o}^{2} - n_{e}^{2}}$ $= n_{o} + 2n_{o}^{3} \frac{n_{o}^{2} n_{e}^{2} \left(\pi_{44} \frac{M_{x}}{\pi R^{4}} Y + 2\pi_{41} \frac{M_{x}}{\pi R^{4}} Z\right)^{2}}{n_{o}^{2} - n_{e}^{2}}$ $n_{3} = n_{e} - \frac{n_{e}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} (\pi_{44} \sigma_{13} + 2\pi_{41} \sigma_{12})^{2}}{n_{o}^{2} - n_{e}^{2}}$ $n_{3}^{2} n_{e}^{2} \left(\pi_{44} \frac{M_{x}}{\pi R^{4}} Y + 2\pi_{41} \frac{M_{x}}{\pi R^{4}} Z\right)^{2}$
		$= n_e - 2n_e^3 \frac{\sigma^2 e^{(44)} \pi R^4}{n_o^2 - n_e^2}$
	k Z	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} (\pi_{14}\sigma_{13} + \pi_{66}\sigma_{12}) = n_{o} - n_{o}^{3} \frac{M_{x}}{\pi R^{4}} (\pi_{14}Y + \pi_{66}Z)$
		$n_2 = n_o + \frac{1}{2} (\pi_{14}\sigma_{13} + \pi_{66}\sigma_{12}) = n_o + n_o \frac{1}{\pi R^4} (\pi_{14}r + \pi_{66}Z)$

4	5
$\delta(\Delta n)_{13} = \frac{1}{2} \left(n_o^3 + n_e^3 \right) \frac{\left(\pi_{44} \sigma_{13} - \pi_{45} \sigma_{23} \right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$	$\tan 2\varsigma_Y = \frac{2(\pi_{44}\sigma_{13} - \pi_{45}\sigma_{23})n_o^2 n_e^2}{n_o^2 - n_e^2}$
$= 2\left(n_o^3 + n_e^3\right) \frac{\left(\pi_{44} \frac{M_z}{\pi R^4} Y - \pi_{45} \frac{M_z}{\pi R^4} X\right)^2 n_o^2 n_e^2}{n_o^2 - n_e^2}$	$=4\frac{\left(\pi_{44}\frac{M_z}{\pi R^4}Y - \pi_{45}\frac{M_z}{\pi R^4}X\right)n_o^2 n_e^2}{n_o^2 - n_e^2}$
$\delta(\Delta n)_{12} = 0$	$\tan 2\zeta_{7} = 0$

Induced birefringence	Angle of optical indicatrix rotation
4	5
$\delta(\Delta n)_{23} = 0$	$\tan 2\zeta_X = 0$
$\delta(\Delta n)_{13} = \frac{1}{2} \left(n_o^3 + n_e^3 \right) \frac{n_o^2 n_e^2 \left(\pi_{44} \sigma_{13} + 2\pi_{41} \sigma_{12} \right)^2}{n_o^2 - n_e^2}$	$\tan 2\zeta_Y = \frac{2n_o^2 n_e^2 \left(\pi_{44}\sigma_{13} + 2\pi_{41}\sigma_{12}\right)}{n_o^2 - n_e^2}$
$= 2\left(n_o^3 + n_e^3\right) \frac{n_o^2 n_e^2 \left(\pi_{44} \frac{M_x}{\pi R^4} Y + 2\pi_{41} \frac{M_x}{\pi R^4} Z\right)^2}{n_o^2 - n_e^2}$	$=\frac{4n_o^2 n_e^2 \left(\pi_{44} \frac{M_x}{\pi R^4} Y + 2\pi_{41} \frac{M_x}{\pi R^4} Z\right)}{n_o^2 - n_e^2}$
$\delta(\Delta n)_{12} = n_o^3 \left(\pi_{14} \sigma_{13} + \pi_{66} \sigma_{12} \right)$	$\tan 2\zeta_Z = \pm \infty$
$=2n_o^3 \left(\pi_{14} \frac{M_x}{\pi R^4} Y + \pi_{66} \frac{M_x}{\pi R^4} Z\right)$	

1	2	3
$ \begin{array}{c} M_y, \\ \sigma_{12}, \sigma_{23} \end{array} $	$k \parallel X$	$n_{2} = n_{o} + \frac{n_{o}^{3}}{2} \left(\pi_{14}\sigma_{23} + \frac{n_{o}^{2}n_{e}^{2}\pi_{44}^{2}\sigma_{23}^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2}n_{e}^{2}\pi_{14}\sigma_{23}} \right)$
		$= n_o + n_o^3 \left(\pi_{14} \frac{2M_y}{\pi R^4} X + \frac{2n_o^2 n_e^2 \pi_{44}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \frac{2M_y}{\pi R^4} X} \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
		$= n_e - 2n_e^3 \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \frac{2M_y}{\pi R^4} X}$
	k Y	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(\pi_{14}\sigma_{23} - \frac{4n_{o}^{2}n_{e}^{2}\pi_{41}^{2}\sigma_{12}^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2}n_{e}^{2}\pi_{14}\sigma_{23}} \right)$
		$= n_o - \frac{n_o^3}{2} \left(\pi_{14} \frac{2M_y}{\pi R^4} X - \frac{16n_o^2 n_e^2 \pi_{41}^2 \frac{M_y^2}{\pi^2 R^8} Z^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \frac{2M_y}{\pi R^4} X} \right)$
		$n_3 = n_e - 2n_e^3 \frac{n_o^2 n_e^2 \pi_{41}^2 \sigma_{12}^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
		$= n_e - 8n_e^3 \frac{n_o^2 n_e^2 \pi_{41}^2 \frac{M_y^2}{\pi^2 R^8} Z^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \frac{2M_y}{\pi R^4} X}$
	k Z	$n_1 = n_o - \frac{n_o^3}{2} \sqrt{\pi_{14}^2 \sigma_{23}^2 + \pi_{66}^2 \sigma_{12}^2}$
		$= n_o - n_o^3 \frac{M_y}{\pi R^4} \sqrt{\pi_{14}^2 X^2 + \pi_{66}^2 Z^2}$
		$n_2 = n_o + \frac{n_o^3}{2} \sqrt{\pi_{14}^2 \sigma_{23}^2 + \pi_{66}^2 \sigma_{12}^2}$
		$= n_o + n_o^3 \frac{M_y}{\pi R^4} \sqrt{\pi_{14}^2 X^2 + \pi_{66}^2 Z^2}$

4	5
$\delta(\Delta n)_{23} = \frac{n_o^3}{2}\pi_{14}\sigma_{23} + \frac{1}{2}\frac{\left(n_o^2 + n_e^2\right)n_o^2n_e^2\pi_{44}^2\sigma_{23}^2}{n_o^2 - n_e^2 + n_o^2n_e^2\pi_{14}\sigma_{23}}$	$\tan 2\zeta_X = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{23}}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
$= n_o^3 \pi_{14} \frac{M_y}{\pi R^4} X + 2 \frac{\left(n_o^2 + n_e^2\right) n_o^2 n_e^2 \pi_{44}^2 \frac{M_y^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \frac{2M_y}{\pi R^4} X}$	$=\frac{4n_o^2n_e^2\pi_{44}\frac{M_y}{\pi R^4}X}{n_o^2-n_e^2+n_o^2n_e^2\pi_{14}\frac{2M_y}{\pi R^4}X}$
$\simeq \frac{n_o^3}{2} \pi_{14} \sigma_{23} = n_o^3 \pi_{14} \frac{M_y}{\pi R^4} X$	
$\delta(\Delta n)_{13} = \frac{n_o^3}{2}\pi_{14}\sigma_{23} - 2\frac{\left(n_o^3 + n_e^3\right)n_o^2n_e^2\pi_{41}^2\sigma_{12}^2}{n_o^2 - n_e^2 - n_o^2n_e^2\pi_{14}\sigma_{23}}$	$\tan 2\zeta_Y = \frac{4n_o^2 n_e^2 \pi_{41} \sigma_{12}}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
$= n_o^3 \pi_{14} \frac{M_y}{\pi R^4} X - 8 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{41}^2 \frac{M_y^2}{\pi^2 R^8} Z^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \frac{2M_y}{\pi R^4} X}$	$=\frac{8n_o^2n_e^2\pi_{41}\frac{M_y}{\pi R^4}Z}{n_o^2-n_e^2-n_o^2n_e^2\pi_{14}\frac{2M_y}{\pi R^4}X}$
$\simeq \frac{n_o^3}{2} \pi_{14} \sigma_{23} = n_o^3 \pi_{14} \frac{M_y}{\pi R^4} X$	
$\delta(\Delta n)_{12} = n_o^3 \sqrt{\pi_{14}^2 \sigma_{23}^2 + \pi_{66}^2 \sigma_{12}^2}$	$\tan 2\zeta_Z = \frac{\pi_{66}\sigma_{12}}{\pi_{14}\sigma_{23}} = \frac{\pi_{66}Z}{\pi_{14}X}$
$=2n_o^3 \frac{M_y}{\pi R^4} \sqrt{\pi_{14}^2 X^2 + \pi_{66}^2 Z^2}$	

1	2	3
$ \begin{matrix} M_z, \\ \sigma_{13}, \sigma_{23} \end{matrix} $	k X	$n_{2} = n_{o} + \frac{n_{o}^{3}}{2} \left(\pi_{14}\sigma_{23} + \frac{n_{o}^{2}n_{e}^{2}\pi_{44}^{2}\sigma_{23}^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2}n_{e}^{2}\pi_{14}\sigma_{23}} \right)$
		$= n_o + \frac{n_o^3}{2} \left(\pi_{14} \frac{2M_z}{\pi R^4} + \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{4M_z^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X} \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 \pi_{44}^2 \sigma_{23}^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
		$= n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{4M_z^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X}$
	k Y	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(\pi_{14}\sigma_{23} - \frac{n_{o}^{2}n_{e}^{2}\pi_{44}^{2}\sigma_{13}^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2}n_{e}^{2}\pi_{14}\sigma_{23}} \right)$
		$= n_o - \frac{n_o^3}{2} \left(\pi_{14} \frac{2M_z}{\pi R^4} - \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{4M_z^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X} \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
		$= n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{4M_z^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X}$
	k Z	$n_1 = n_o - \frac{n_o^3}{2} \pi_{14} \sqrt{\sigma_{23}^2 + \sigma_{13}^2}$
		$= n_o - n_o^3 \pi_{14} \frac{M_z}{\pi R^4} \sqrt{X^2 + Y^2}$
		$n_1 = n_o + \frac{n_o^2}{2} \pi_{14} \sqrt{\sigma_{23}^2 + \sigma_{13}^2}$
		$= n_{o} + n_{o}^{2} \pi_{14} \frac{z}{\pi R^{4}} \sqrt{X^{2} + Y^{2}}$

	-
4	5
$\delta(\Delta n)_{23} = \frac{n_o^3}{2}\pi_{14}\sigma_{23} + \frac{1}{2}\frac{\left(n_o^3 + n_e^3\right)n_o^2n_e^2\pi_{44}^2\sigma_{23}^2}{n_o^2 - n_e^2 + n_o^2n_e^2\pi_{14}\sigma_{23}}$	$\tan 2\zeta_X = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{23}}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
$= n_o^3 \pi_{14} \frac{M_z}{\pi R^4} X + 2 \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \pi_{44}^2 \frac{M_z^2}{\pi^2 R^8} X^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X}$	$=\frac{4n_o^2 n_e^2 \pi_{44} \frac{M_z}{\pi R^4} X}{n_o^2 - n_e^2 + n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X}$
$\simeq \frac{n_o^3}{2} \pi_{14} \sigma_{23} = n_o^3 \pi_{14} \frac{M_z}{\pi R^4} X$	
$\delta(\Delta n)_{13} = \frac{n_o^3}{2} \pi_{14} \sigma_{23}$	$\tan 2\zeta_Y = \frac{2n_o^2 n_e^2 \pi_{44} \sigma_{13}}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \sigma_{23}}$
$-\frac{1}{2}\left(n_o^3 + n_e^3\right)\frac{n_o^2 n_e^2 \pi_{44}^2 \sigma_{13}^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \sigma_{23}}$	$4n_o^2 n_e^2 \pi_{44} \frac{M_z}{\pi P^4} Y$
$= n_o^3 \pi_{14} \frac{M_z}{\pi R^4} X$	$= \frac{\pi K}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X}$
$-2\left(n_o^3 + n_e^3\right) \frac{n_o^2 n_e^2 \pi_{44}^2 \frac{M_z^2}{\pi^2 R^8} Y^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \pi_{14} \frac{2M_z}{\pi R^4} X}$	
$\simeq \frac{n_o^3}{2} \pi_{14} \sigma_{23} = n_o^3 \pi_{14} \frac{M_z}{\pi R^4} X$	
$\delta(\Delta n)_{12} = n_o^3 \pi_{14} \sqrt{\sigma_{23}^2 + \sigma_{13}^2}$	$\tan 2\zeta_Z = \frac{\sigma_{13}}{\sigma_{23}} = \frac{Y}{X}$
$=2n_o^3 \pi_{14} \frac{M_z}{\pi R^4} \sqrt{X^2 + Y^2}$	

Torsion	Direction of	Refractive indices
moment	light	
and stress	propagation	
components		
1	2	3
M_x ,	$k \parallel X$	n_{2}^{3}
σ_{12} σ_{12}		$n_2 = n_o - \frac{b}{2} \times$
012,013		
		$n_o^2 n_e^2 (\pi_{45} \sigma_{13} + 2\pi_{52} \sigma_{12})^2$
		$\left(\frac{n_{25}\sigma_{13} + 2n_{62}\sigma_{12}}{n_o^2 - n_e^2 - n_o^2 n_e^2} (\pi_{25}\sigma_{13} + 2\pi_{62}\sigma_{12})\right)$
		$= n_o - n_o^3 \frac{M_x}{\pi R^4} \times$
		$\left(\pi_{2}X + 2\pi_{12}Z - \frac{n_o^2 n_e^2 \frac{2M_x}{\pi R^4} (\pi_{45}Y + 2\pi_{52}Z)^2}{\pi R^4}\right)$
		$\left(\begin{array}{c} n_{25}^{2} + 2\pi_{62}Z \\ n_{o}^{2} - n_{e}^{2} - n_{o}^{2}n_{e}^{2}\frac{2M_{x}}{\pi R^{4}}(\pi_{25}Y + 2\pi_{62}Z) \right) \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 (\pi_{45} \sigma_{13} + 2\pi_{52} \sigma_{12})^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 (\pi_{25} \sigma_{13} + 2\pi_{62} \sigma_{12})}$
		$= n_{e} - 2n^{3} - \frac{n_{o}^{2}n_{e}^{2} \frac{M_{x}^{2}}{\pi^{2}R^{8}}(\pi_{45}Y + 2\pi_{52}Z)^{2}}{\pi^{2}R^{8}}$
		$n_e^2 - 2n_e^2 n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_x}{\pi R^4} (\pi_{25}Y + 2\pi_{62}Z)$
	$k \parallel Y$	$n_1 = n_o - \frac{n_o^3}{2} \times$
		$\times \left(\pi_{25}\sigma_{13} + 2\pi_{62}\sigma_{12} - \frac{n_o^2 n_e^2 (\pi_{44}\sigma_{13} + 2\pi_{41}\sigma_{12})^2}{n_o^2 - n_o^2 - n_o^2 n_e^2 (\pi_{25}\sigma_{12} + 2\pi_{62}\sigma_{12})} \right)$
		$= n_o - n_o^3 \frac{M_x}{\pi R^4} \times$
		$\times \left(\frac{n_o^2 n_e^2 \frac{2M_x}{\pi R^4} (\pi_{44}Y + 2\pi_{41}Z)^2}{2M_e^2 \frac{2M_x}{\pi R^4} (\pi_{44}Y + 2\pi_{41}Z)^2} \right)$
		$\left(\begin{array}{ccc} 2m & n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_x}{\pi R^4} (\pi_{25}Y + 2\pi_{62}Z) \right)$
		$n_{3} = n_{e} - \frac{n_{e}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} (\pi_{44} \sigma_{13} + 2\pi_{41} \sigma_{12})^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} (\pi_{25} \sigma_{13} + 2\pi_{62} \sigma_{12})}$
		$= n - 2n^3 - \frac{n_o^2 n_e^2 \frac{M_x^2}{\pi^2 R^8} (\pi_{44}Y + 2\pi_{41}Z)^2}{\pi^2 R^8}$
		$n_e^{2} - n_e^{2} - n_e^{2} - n_o^{2} n_e^{2} \frac{2M_x}{\pi R^4} (\pi_{25}Y + 2\pi_{62}Z)$

Table 6. Changes in the optical indicatrix parameters under the torsion moment applied in crystals of the point symmetry groups 3 and $\overline{3}$

Induced birefringence	Angle of optical indicatrix rotation
4	5
$\delta(\Lambda n)_{22} = \frac{n_o^3}{(\pi_{25}\sigma_{12} + 2\pi_{62}\sigma_{12})}$	$\tan 2\zeta_X =$
2 (123013) (102012)	$- 2n_o^2 n_e^2 (\pi_{45}\sigma_{13} + 2\pi_{52}\sigma_{12})$
$-\frac{1}{2} \frac{\left(n_o^3 + n_e^3\right) n_o^2 n_e^2 \left(\pi_{45} \sigma_{13} + 2\pi_{52} \sigma_{12}\right)^2}{\left(\pi_{45} \sigma_{13} + 2\pi_{52} \sigma_{12}\right)^2}$	$-\frac{1}{n_o^2 - n_e^2 - n_o^2 n_e^2} (\pi_{25}\sigma_{13} + 2\pi_{62}\sigma_{12})$
$2 n_o^2 - n_e^2 - n_o^2 n_e^2 (\pi_{25}\sigma_{13} + 2\pi_{62}\sigma_{12})$	$4n_o^2 n_e^2 \frac{M_x}{n_e^4} (\pi_{45}Y + 2\pi_{52}Z)$
$=n_o^3 \frac{M_x}{\pi P^4} (\pi_{25}Y + 2\pi_{62}Z)$	$=\frac{\pi R}{n^2 n^2 n^2 n^2 n^2 m^2 (\pi V + 2\pi T)}$
$\frac{\pi R}{M^2} = \frac{(n_0^3 + n_0^3)n_0^2 n_0^2 (\pi_{45}Y + 2\pi_{52}Z)^2}{(\pi_{45}Y + 2\pi_{52}Z)^2}$	$n_o - n_e - n_o n_e \frac{\pi R^4}{\pi R^4} (n_{25} + 2n_{62} L)$
$-2\frac{m_x}{\pi^2 R^8}\frac{(v-v)v(v+3)}{n_o^2 - n_e^2 - n_o^2 n_e^2}\frac{2M_x}{\pi R^4}(\pi_{25}Y + 2\pi_{62}Z)$	
$\simeq \frac{n_o^3}{2} (\pi_{25} \sigma_{13} + 2\pi_{62} \sigma_{12}) =$	
$= -n_o^3 \frac{M_x}{\pi R^4} (\pi_{25}Y + 2\pi_{62}Z)$	
n^3	$\tan 2\zeta_Y =$
$\delta(\Delta n)_{13} = \frac{n_o}{2} \left(\pi_{25} \sigma_{13} + 2\pi_{62} \sigma_{12} \right)$	$2n_{2}^{2}n_{2}^{2}(\pi_{44}\sigma_{13}+2\pi_{41}\sigma_{12})$
$(n^3 + n^3)n^2n^2(\pi - \pi + 2\pi - \pi)^2$	$=\frac{1}{n_{0}^{2}-n_{e}^{2}-n_{0}^{2}n_{e}^{2}(\pi_{25}\sigma_{13}+2\pi_{62}\sigma_{12})}$
$-\frac{1}{2}\frac{(n_0+n_e)n_0n_e(n_{44}0_{13}+2n_{41}0_{12})}{(n_0+n_e)(n_0+n_e)(n_{44}0_{13}+2n_{41}0_{12})}$	$A_{2}^{2} = M_{x} (-X_{2}^{2} - Z_{1}^{2})$
$2 n_o^2 - n_e^2 - n_o^2 n_e^2 (\pi_{25} \sigma_{13} + 2\pi_{62} \sigma_{12})$	$- \frac{4n_o^2 n_e^2}{\pi R^4} \frac{\pi}{\pi R^4} (\pi_{44}Y + 2\pi_{41}Z)$
$= n_o^3 \frac{M_x}{\pi R^4} (\pi_{25} Y + 2\pi_{62} Z)$	$= n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_x}{\pi R^4} (\pi_{25}Y + 2\pi_{62}Z)$
$-2 \frac{M_x^2}{M_x^2} - \frac{\left(n_o^3 + n_e^3\right)n_o^2 n_e^2 \left(\pi_{44}Y + 2\pi_{41}Z\right)^2}{M_0^2 n_e^2 \left(\pi_{44}Y + 2\pi_{41}Z\right)^2}$	
$\int \pi^2 R^8 n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_x}{\pi R^4} (\pi_{25}Y + 2\pi_{62}Z)$	
$\simeq \frac{n_o^3}{2} (\pi_{25} \sigma_{13} + 2\pi_{62} \sigma_{12}) =$	
$= n_o^3 \frac{M_x}{\pi R^4} (\pi_{25} Y + 2\pi_{62} Z)$	

1	2	3
	<i>k</i> <i>Z</i>	$n_1 = n_0 - \frac{n_0^3}{2} ((\pi_{25} + \pi_{14})\sigma_{13} + (\pi_{66} + 2\pi_{62})\sigma_{12})$
		$= n_o - n_o^3 \frac{M_x}{\pi R^4} ((\pi_{25} + \pi_{14})Y + (\pi_{66} + 2\pi_{62})Z)$
		$n_2 = n_o - \frac{n_o^3}{2} ((\pi_{25} - \pi_{14})\sigma_{13} - (\pi_{66} - 2\pi_{62})\sigma_{12})$
		$= n_o - n_o^3 \frac{M_x}{\pi R^4} ((\pi_{25} - \pi_{14})Y - (\pi_{66} - 2\pi_{62})Z)$
M_y , σ_{12} ,	$k \parallel X$	$n_{2} = n_{o} - \frac{n_{o}^{3}}{2} \left(2\pi_{62}\sigma_{12} - \pi_{14}\sigma_{23} - \frac{n_{o}^{2}n_{e}^{2}(\pi_{44}\sigma_{23} + 2\pi_{52}\sigma_{12})^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2}n_{e}^{2}(\pi_{14}\sigma_{23} - 2\pi_{62}\sigma_{12})} \right)$
σ_{23}		$= n_o - n_o^3 \frac{M_y}{\pi R^4} \left(2\pi_{62}Z - \pi_{14}X - \frac{n_o^2 n_e^2 \frac{2M_y}{\pi R^4} (\pi_{44}X + 2\pi_{52}Z)^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \frac{2M_y}{\pi R^4} (\pi_{14}X - 2\pi_{62}Z)} \right)$
		$n_{3} = n_{e} - \frac{n_{e}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} (\pi_{44} \sigma_{23} + 2\pi_{52} \sigma_{12})^{2}}{n_{o}^{2} - n_{e}^{2} + n_{o}^{2} n_{e}^{2} (\pi_{14} \sigma_{23} - 2\pi_{62} \sigma_{12})}$
		$= n_e - 2n_e^3 \frac{n_o^2 n_e^2 \frac{M_y^2}{\pi^2 R^8} (\pi_{44}X + 2\pi_{52}Z)^2}{n_o^2 - n_e^2 + n_o^2 n_e^2 \frac{2M_y}{\pi R^4} (\pi_{14}X + 2\pi_{62}Z)}$
	k Y	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(\pi_{14}\sigma_{23} + 2\pi_{62}\sigma_{12} - \frac{n_{o}^{2}n_{e}^{2}(2\pi_{41}\sigma_{12} - \pi_{45}\sigma_{23})^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2}n_{e}^{2}(\pi_{14}\sigma_{23} + 2\pi_{62}\sigma_{12})} \right)$
		$= n_o - n_o^3 \frac{M_y}{\pi R^4} \left(\pi_{14} X + 2\pi_{62} Z - \frac{n_o^2 n_e^2 \frac{2M_y}{\pi R^4} (2\pi_{41} Z - \pi_{45} X)^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_y}{\pi R^4} (\pi_{14} X + 2\pi_{62} Z)} \right)$
		$n_{3} = n_{e} - \frac{n_{e}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} (2\pi_{41}\sigma_{12} - \pi_{45}\sigma_{23})^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} (\pi_{14}\sigma_{23} + 2\pi_{62}\sigma_{12})}$
		$= n_e - n_e^3 \frac{M_y}{\pi R^4} \frac{n_o^2 n_e^2 \frac{2M_y}{\pi R^4} (2\pi_{41}Z - \pi_{45}X)^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_y}{\pi R^4} (\pi_{14}X + 2\pi_{62}Z)}$

1	2	3
	<i>k</i> <i>Z</i>	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(2\pi_{62}\sigma_{12} + \sqrt{\pi_{14}^{2}\sigma_{23}^{2} + (\pi_{25}\sigma_{23} + \pi_{66}\sigma_{12})^{2}} \right)$
		$= n_o - n_o^3 \frac{M_y}{\pi R^4} \left(2\pi_{62}Z + \sqrt{\pi_{14}^2 X^2 + (\pi_{25}X + \pi_{66}Z)^2} \right)$
		$n_2 = n_o - \frac{n_o^3}{2} \left(2\pi_{62}\sigma_{12} - \sqrt{\pi_{14}^2\sigma_{23}^2 + (\pi_{25}\sigma_{23} + \pi_{66}\sigma_{12})^2} \right)$
		$= n_o - n_o^3 \frac{M_y}{\pi R^4} \left(2\pi_{62}Z - \sqrt{\pi_{14}^2 X^2 + (\pi_{25}X + \pi_{66}Z)^2} \right)$
M_z , σ_{13} , σ_{13}	<i>k</i> <i>X</i>	$n_{2} = n_{o} - \frac{n_{o}^{3}}{2} \left(\pi_{25}\sigma_{13} - \pi_{14}\sigma_{23} - \frac{n_{o}^{2}n_{e}^{2}(\pi_{44}\sigma_{23} + \pi_{45}\sigma_{13})^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2}n_{e}^{2}(\pi_{25}\sigma_{13} - \pi_{14}\sigma_{23})} \right)$
023		$= n_o - n_o^3 \frac{M_z}{\pi R^4} \left(\pi_{25} Y - \pi_{14} X - \frac{n_o^2 n_e^2 \frac{2M_z}{\pi R^4} (\pi_{44} X + \pi_{45} Y)^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_z}{\pi R^4} (\pi_{25} Y - \pi_{14} X)} \right)$
		$n_{3} = n_{e} - \frac{n_{e}^{3}}{2} \frac{n_{o}^{2} n_{e}^{2} (\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13})^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2} n_{e}^{2} (\pi_{25} \sigma_{13} - \pi_{14} \sigma_{23})}$
		$= n_e - 2n_e^3 \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44}X + \pi_{45}Y)^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_z}{\pi R^4} (\pi_{25}Y - \pi_{14}X)}$
	k Y	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(\pi_{14}\sigma_{23} + \pi_{25}\sigma_{13} - \frac{n_{o}^{2}n_{e}^{2}(\pi_{44}\sigma_{13} - \pi_{45}\sigma_{23})^{2}}{n_{o}^{2} - n_{e}^{2} - n_{o}^{2}n_{e}^{2}(\pi_{14}\sigma_{23} + \pi_{25}\sigma_{13})} \right)$
		$= n_o - n_o^3 \frac{M_z}{\pi n^4} \left(\pi_{14} X + \pi_{25} Y - \frac{n_o^2 n_e^2 \frac{2M_z}{\pi R^4} (\pi_{44} Y - \pi_{45} X)^2}{2\pi R^4 (\pi_{44} Y - \pi_{45} X)^2} \right)$
		$\pi R \left(n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_z}{\pi R^4} (\pi_{14} X + \pi_{25} Y) \right)$
		$n_3 = n_e - \frac{n_e^3}{2} \frac{n_o^2 n_e^2 (\pi_{44} \sigma_{13} - \pi_{45} \sigma_{23})^2}{n_o^2 - n_e^2 - n_o^2 n_e^2 (\pi_{14} \sigma_{23} + \pi_{25} \sigma_{13})}$
		$= n_e - 2n_e^3 - \frac{n_o^2 n_e^2 \frac{M_z^2}{\pi^2 R^8} (\pi_{44}Y - \pi_{45}X)^2}{2M}$
		$n_o^2 - n_e^2 - n_o^2 n_e^2 \frac{2M_z}{\pi R^4} (\pi_{14}X + \pi_{25}Y)$

$$\begin{aligned} \frac{4}{\delta(\Delta n)_{12} = n_o^3 \sqrt{\pi_{14}^2 \sigma_{22}^2 + (\pi_{25} \sigma_{23} + \pi_{66} \sigma_{12})^2}}{\pi_{14} \sigma_{23}^2} & \tan 2\zeta_Z = \frac{\pi_{25} \sigma_{23} + \pi_{66} \sigma_{12}}{\pi_{14} \sigma_{23}} \\ = 2n_o^3 \frac{M_Y}{\pi R^4} \sqrt{\pi_{14}^2 X^2 + (\pi_{25} X + \pi_{66} Z)^2} & \tan 2\zeta_Z = \frac{2n_o^2 n_e^2 (\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13})}{\pi_{14} X^2} \\ = \frac{\delta(\Delta n)_{23} = \frac{1}{2} n_o^3 (\pi_{25} \sigma_{13} - \pi_{14} \sigma_{23})}{\frac{1}{2} n_o^2 - n_e^2 - n_o^2 n_e^2 (\pi_{24} \sigma_{23} + \pi_{45} \sigma_{13})^2}{\pi R^4} (\pi_{25} Y - \pi_{14} X)} & \tan 2\zeta_X = \frac{2n_o^2 n_e^2 (\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13})}{n_o^2 - n_e^2 - n_o^2 n_e^2 (\pi_{25} \sigma_{13} - \pi_{14} \sigma_{23})} \\ = n_o^3 \frac{M_Y}{\pi R^4} (\pi_{25} Y - \pi_{14} X) & \pi_{25} Y \\ = \frac{1}{2} n_o^3 (\pi_{25} \sigma_{13} - \pi_{14} \sigma_{23}) = \frac{1}{2} n_o^3 (\pi_{14} \sigma_{23} + \pi_{25} \sigma_{13}) = \frac{1}$$

1	2	3
	k Z	$n_{1} = n_{o} - \frac{n_{o}^{3}}{2} \left(\pi_{25} \sigma_{13} + \sqrt{\pi_{14}^{2} \sigma_{23}^{2} + (\pi_{25} \sigma_{23} + \pi_{14} \sigma_{13})^{2}} \right)$
		$= n_o - n_o^3 \frac{M_z}{\pi R^4} \left(\pi_{25} Y + \sqrt{\pi_{14}^2 X^2 + (\pi_{25} X + \pi_{14} Y)^2} \right)$
		$n_2 = n_o - \frac{n_o^3}{2} \left(\pi_{25} \sigma_{13} - \sqrt{\pi_{14}^2 \sigma_{23}^2 + (\pi_{25} \sigma_{23} + \pi_{14} \sigma_{13})^2} \right)$
		$= n_o - n_o^3 \frac{M_z}{\pi R^4} \left(\pi_{25} Y - \sqrt{\pi_{14}^2 X^2 + (\pi_{25} X + \pi_{14} Y)^2} \right)$

Table 7. Changes in the optical indicatrix parameters under the torsion moment applied in crystals of the point symmetry groups 222, mm2 and mmm.

Torsion	Direction of	Defrective indices
noment	light	Kenacuve mulces
and strong	ngin	
and suess	propagation	
	2	2
1		5
M_x ,	$K \parallel X$	not changed
σ_{12}, σ_{13}	k Y	$n_1' = n_1 + \frac{1}{2} \frac{n_1^5 n_3^2 \pi_{55}^2 \sigma_{13}^2}{n_1^2 - n_3^2} = n_1 + \frac{n_1^5 n_3^2 \pi_{55}^2}{n_1^2 - n_3^2} \frac{2M_x^2}{\pi^2 R^8} Y^2$
		$n'_{3} = n_{3} - \frac{1}{2} \frac{n_{1}^{2} n_{3}^{5} \pi_{55}^{2} \sigma_{13}^{2}}{n_{1}^{2} - n_{3}^{2}} = n_{3} - \frac{n_{1}^{2} n_{3}^{5} \pi_{55}^{2}}{n_{1}^{2} - n_{3}^{2}} \frac{2M_{x}^{2}}{\pi^{2} R^{8}} Y^{2}$
	k Z	$n_1' = n_1 + \frac{1}{2} \frac{n_1^5 n_2^2 \pi_{66}^2 \sigma_{12}^2}{n_1^2 - n_2^2} = n_1 + \frac{n_1^5 n_2^2 \pi_{66}^2}{n_1^2 - n_2^2} \frac{2M_x^2}{\pi^2 R^8} Z^2$
		$n_{2}' = n_{2} - \frac{1}{2} \frac{n_{1}^{2} n_{2}^{5} \pi_{66}^{2} \sigma_{12}^{2}}{n_{1}^{2} - n_{2}^{2}} = n_{2} - \frac{n_{1}^{2} n_{2}^{5} \pi_{66}^{2}}{n_{1}^{2} - n_{2}^{2}} \frac{2M_{x}^{2}}{\pi^{2} R^{8}} Z^{2}$
M_y , σ_{12} , σ_{23}	k X	$n_{2}' = n_{2} + \frac{1}{2} \frac{n_{2}^{5} n_{3}^{2} \pi_{44}^{2} \sigma_{23}^{2}}{n_{2}^{2} - n_{3}^{2}} = n_{2} + \frac{n_{2}^{5} n_{3}^{2} \pi_{44}^{2}}{n_{2}^{2} - n_{3}^{2}} \frac{2M_{y}^{2}}{\pi^{2} R^{8}} X^{2}$
		$n'_{3} = n_{3} - \frac{1}{2} \frac{n_{2}^{2} n_{3}^{5} \pi_{44}^{2} \sigma_{23}^{2}}{n_{2}^{2} - n_{3}^{2}} = n_{3} - \frac{n_{2}^{2} n_{3}^{5} \pi_{44}^{2}}{n_{2}^{2} - n_{3}^{2}} \frac{2M_{y}^{2}}{\pi^{2} R^{8}} X^{2}$
	$k \parallel Y$	not changed
	k Z	$n_1' = n_1 + \frac{1}{2} \frac{n_1^5 n_2^2 \pi_{66}^2 \sigma_{12}^2}{n_1^2 - n_2^2} = n_1 + \frac{n_1^5 n_2^2 \pi_{66}^2}{n_1^2 - n_2^2} \frac{2M_y^2}{\pi^2 R^8} Z^2$
		$n_2' = n_2 - \frac{1}{2} \frac{n_1^2 n_2^5 \pi_{66}^2 \sigma_{12}^2}{n_1^2 - n_2^2} = n_2 - \frac{n_1^2 n_2^5 \pi_{66}^2}{n_1^2 - n_2^2} \frac{2M_y^2}{\pi^2 R^8} Z^2$

4	5
$\delta(\Delta n)_{12} = n_o^3 \sqrt{\pi_{14}^2 \sigma_{23}^2 + (\pi_{25} \sigma_{23} + \pi_{14} \sigma_{13})^2}$ = $2n_o^3 \frac{M_z}{\pi R^4} \sqrt{\pi_{14}^2 X^2 + (\pi_{25} X + \pi_{14} Y)^2}$	$\tan 2\zeta_Z = \frac{\pi_{25}\sigma_{23} + \pi_{14}\sigma_{13}}{\pi_{14}\sigma_{23}}$ $= \frac{\pi_{25}X + \pi_{14}Y}{\pi_{14}X}$

Induced birefringence	Angle of optical indicatrix rotation
4	5
$\delta(\Delta n)_{23} = 0$	$\frac{\zeta}{\tan 2\zeta_X = 0}$
$\delta(\Delta n)_{13} = \frac{1}{2} \frac{n_1^2 n_3^2 (n_1^3 + n_3^3)}{n_1^2 - n_3^2} \pi_{55}^2 \sigma_{13}^2$	$\tan 2\zeta_Y = \frac{2n_1^2 n_3^2 \pi_{55} \sigma_{13}}{n_1^2 - n_3^2}$
$=\frac{2n_1^2n_3^2(n_1^3+n_3^3)}{n_1^2-n_3^2}\pi_{55}^2\frac{M_x^2}{\pi^2R^8}Y^2$	$=\frac{4n_1^2n_3^2\pi_{55}}{n_1^2-n_3^2}\frac{M_x}{\pi R^4}Y$
$\delta(\Delta n)_{12} = \frac{1}{2} \frac{n_1^2 n_2^2 (n_1^3 + n_2^3)}{n_1^2 - n_2^2} \pi_{66}^2 \sigma_{12}^2$	$\tan 2\zeta_Z = \frac{2n_1^2 n_2^2 \pi_{66} \sigma_{12}}{n_1^2 - n_2^2}$
$=\frac{2n_1^2n_2^2(n_1^3+n_2^3)}{n_1^2-n_2^2}\pi_{66}^2\frac{M_x^2}{\pi^2R^8}Z^2$	$=\frac{4n_1^2n_2^2\pi_{66}}{n_1^2-n_2^2}\frac{M_x}{\pi R^4}Z$
$\delta(\Delta n)_{23} = \frac{1}{2} \frac{n_2^2 n_3^2 (n_2^3 + n_3^3)}{n_2^2 - n_3^2} \pi_{44}^2 \sigma_{23}^2$	$\tan 2\zeta_X = \frac{2n_3^2 n_2^2 \pi_{44} \sigma_{23}}{n_3^2 - n_2^2}$
$=\frac{2n_2^2n_3^2(n_2^3+n_3^3)}{n_2^2-n_3^2}\pi_{44}^2\frac{M_y^2}{\pi^2R^8}X^2$	$=\frac{4n_3^2n_2^2\pi_{44}}{n_3^2-n_2^2}\frac{M_y}{\pi R^4}X$
$\delta(\Delta n)_{13} = 0$	$\tan 2\zeta_Y = 0$
$\delta(\Delta n)_{12} = \frac{1}{2} \frac{n_1^2 n_2^2 (n_1^3 + n_2^3)}{n_1^2 - n_2^2} \pi_{66}^2 \sigma_{12}^2$	$\tan 2\zeta_Z = \frac{2n_1^2 n_2^2 \pi_{66} \sigma_{12}}{n_2^2 - n_1^2}$
$= \frac{2n_1^2 n_2^2 (n_1^3 + n_2^3)}{n_1^2 - n_2^2} \pi_{66}^2 \frac{M_y^2}{\pi^2 R^8} Z^2$	$=\frac{4n_1^2n_2^2\pi_{66}}{n_2^2-n_1^2}\frac{M_y}{\pi R^4}Z$
$= \frac{2n_1^2 n_2^2 (n_1^3 + n_2^3)}{n_1^2 - n_2^2} \pi_{66}^2 \frac{M_y^2}{\pi^2 R^8} Z^2$	$= \frac{4n_1^2n_2^2\pi_{66}}{n_2^2 - n_1^2} \frac{M_y}{\pi R^4} Z$

1	2	3
$M_z, \\ \sigma_{13}, \sigma_{23}$	k X	$n_{2}' = n_{2} + \frac{1}{2} \frac{n_{2}^{5} n_{3}^{2} \pi_{44}^{2} \sigma_{23}^{2}}{n_{2}^{2} - n_{3}^{2}} = n_{2} + \frac{n_{2}^{5} n_{3}^{2} \pi_{44}^{2}}{n_{2}^{2} - n_{3}^{2}} \frac{2M_{z}^{2}}{\pi^{2} R^{8}} X^{2}$ $n_{3}' = n_{3} - \frac{1}{2} \frac{n_{2}^{2} n_{3}^{5} \pi_{44}^{2} \sigma_{23}^{2}}{n_{2}^{2} - n_{3}^{2}} = n_{3} - \frac{n_{2}^{2} n_{3}^{5} \pi_{44}^{2}}{n_{2}^{2} - n_{3}^{2}} \frac{2M_{z}^{2}}{\pi^{2} R^{8}} X^{2}$
	k Y	$n_{1}' = n_{1} + \frac{1}{2} \frac{n_{1}^{5} n_{3}^{2} \pi_{55}^{2} \sigma_{13}^{2}}{n_{1}^{2} - n_{3}^{2}} = n_{1} + \frac{n_{1}^{5} n_{3}^{2} \pi_{55}^{2}}{n_{1}^{2} - n_{3}^{2}} \frac{2M_{z}^{2}}{\pi^{2} R^{8}} Y^{2}$ $n_{3}' = n_{3} - \frac{1}{2} \frac{n_{1}^{2} n_{3}^{5} \pi_{55}^{2} \sigma_{13}^{2}}{n_{1}^{2} - n_{3}^{2}} = n_{3} - \frac{n_{1}^{2} n_{3}^{5} \pi_{55}^{2}}{n_{1}^{2} - n_{3}^{2}} \frac{2M_{z}^{2}}{\pi^{2} R^{8}} Y^{2}$
	$k \parallel Z$	not changed

Table 8. Changes in the optical indicatrix parameters under the torsion moment applied in crystals of the point symmetry groups 2/m, m and $2(2 || Y, m \perp Y)$.

Torsion moment and stress components	Direction of light propagation	Refractive indices
1	2	3
$M_x, \\ \sigma_{12}, \sigma_{13}$	<i>k</i> <i>X</i>	$n_{2}' = n_{2} - \frac{n_{2}^{3}}{2} \left(\pi_{25}\sigma_{13} + \frac{n_{2}^{2}n_{3}^{2}\pi_{46}^{2}\sigma_{12}^{2}}{n_{3}^{2} - n_{2}^{2} + (\pi_{25} - \pi_{35})\sigma_{13}n_{2}^{2}n_{3}^{2}} \right)$
		$= n_2 - \frac{n_2^3}{2} \left(\pi_{25} \frac{2M_x}{\pi R^4} Y + \frac{n_2^2 n_3^2 \pi_{46}^2 \frac{4M_x^2}{\pi^2 R^8} Z^2}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \frac{2M_x}{\pi R^4} Y} \right)$
		$\simeq n_2 - \frac{n_2^3}{2}\pi_{25}\sigma_{13} = n_2 - n_2^3\pi_{25}\frac{M_x}{\pi R^4}Y$
		$n'_{3} = n_{3} - \frac{n_{3}^{3}}{2} \left(\pi_{35} \sigma_{13} - \frac{n_{2}^{2} n_{3}^{2} \pi_{46}^{2} \sigma_{12}^{2}}{n_{3}^{2} - n_{2}^{2} + (\pi_{25} - \pi_{35}) \sigma_{13} n_{2}^{2} n_{3}^{2}} \right)$
		$= n_3 - \frac{n_3^3}{2} \left(\pi_{35} \frac{2M_x}{\pi R^4} Y - \frac{n_2^2 n_3^2 \pi_{46}^2 \frac{4M_x^2}{\pi^2 R^8} Z^2}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \frac{2M_x}{\pi R^4} Y} \right)$
		$\simeq n_3 - \frac{n_3^3}{2}\pi_{35}\sigma_{13} = n_3 - n_3^3\pi_{35}\frac{M_x}{\pi R^4}Y$

4	5
$\delta(\Delta n)_{23} = \frac{1}{2} \frac{n_2^2 n_3^2 (n_2^3 + n_3^3)}{n_2^2 - n_3^2} \pi_{44}^2 \sigma_{23}^2$	$\tan 2\zeta_X = \frac{2n_3^2 n_2^2 \pi_{44} \sigma_{23}}{n_3^2 - n_2^2}$
$=\frac{2n_2^2n_3^2(n_2^3+n_3^3)}{n_2^2-n_3^2}\pi_{44}^2\frac{M_z^2}{\pi^2R^8}X^2$	$=\frac{4n_3^2n_2^2\pi_{44}}{n_3^2-n_2^2}\frac{M_z}{\pi R^4}X$
$\delta(\Delta n)_{13} = \frac{1}{2} \frac{n_1^2 n_3^2 (n_1^3 + n_3^3)}{n_1^2 - n_3^2} \pi_{55}^2 \sigma_{13}^2$	$\tan 2\zeta_Y = \frac{2n_1^2 n_3^2 \pi_{55} \sigma_{13}}{n_1^2 - n_3^2}$
$=\frac{2n_1^2n_3^2(n_1^3+n_3^3)}{n_1^2-n_3^2}\pi_{55}^2\frac{M_z^2}{\pi^2R^8}Y^2$	$=\frac{4n_1^2n_3^2\pi_{55}}{n_1^2-n_3^2}\frac{M_z}{\pi R^4}Y$
$\delta(\Delta n)_{12} = 0$	$\tan 2\zeta_Z = 0$

Induced birefringence	Angle of optical indicatrix rotation
4	5
$\delta(\Delta n)_{23} = \frac{1}{2}(n_3^3\pi_{35} - n_2^3\pi_{25})\sigma_{13}$ $+ \frac{1}{2}\frac{(n_3^3 - n_2^3)n_2^2n_3^2\pi_{46}^2\sigma_{12}^2}{n_3^2 - n_2^2 + (\pi_{25} - \pi_{35})\sigma_{13}n_2^2n_3^2}$ $= (n_3^3\pi_{35} - n_2^3\pi_{25})\frac{M_x}{\pi R^4}Y$ $+ 2\frac{(n_3^3 - n_2^3)n_2^2n_3^2\pi_{46}^2\frac{M_x^2}{\pi^2 R^8}Z^2}{n_3^2 - n_2^2 + n_2^2n_3^2(\pi_{25} - \pi_{35})\frac{2M_x}{\pi R^4}Y}$ $\approx \frac{1}{2}(n_3^3\pi_{35} - n_2^3\pi_{25})\sigma_{13}$ $= (n_3^3\pi_{35} - n_2^3\pi_{25})\frac{M_x}{\pi R^4}Y$	$\tan 2\zeta_X = \frac{2n_2^2 n_3^2 \pi_{46} \sigma_{12}}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \sigma_{13}}$ $= \frac{4n_2^2 n_3^2 \pi_{46} \frac{M_x}{\pi R^4} Z}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \frac{2M_x}{\pi R^4} Y}$

1	2	3
	k Y	$n_{1}' = n_{1} - \frac{n_{1}^{3}}{2} \left(\pi_{15} \sigma_{13} - \frac{n_{1}^{2} n_{3}^{2} \pi_{55}^{2} \sigma_{13}^{2}}{n_{1}^{2} - n_{3}^{2} + n_{1}^{2} n_{3}^{2} (\pi_{35} - \pi_{15}) \sigma_{13}} \right)$
		$= n_1 - \frac{n_1^3}{2} \left(\pi_{15} \frac{2M_x}{\pi R^4} Y - \frac{n_1^2 n_3^2 \pi_{55}^2 \frac{4M_x^2}{\pi^2 R^8} Y^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_x}{\pi R^4} Y} \right)$
		$\simeq n_1 - \frac{n_1^3}{2} \pi_{15} \sigma_{13} = n_1 - n_1^3 \pi_{15} \frac{M_x}{\pi R^4} Y$
		$n_{3}' = n_{3} - \frac{n_{3}^{3}}{2} \left(\pi_{35}\sigma_{13} + \frac{n_{1}^{2}n_{3}^{2}\pi_{55}^{2}\sigma_{13}^{2}}{n_{1}^{2} - n_{3}^{2} + n_{1}^{2}n_{3}^{2}(\pi_{35} - \pi_{15})\sigma_{13}} \right)$
		$= n_3 - \frac{n_3^3}{2} \left(\pi_{35} \frac{2M_x}{\pi R^4} Y + \frac{n_1^2 n_3^2 \pi_{55}^2 \frac{4M_x^2}{\pi^2 R^8} Y^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_x}{\pi R^4} Y} \right)$
		$\simeq n_3 - \frac{n_3^3}{2} \pi_{35} \sigma_{13} = n_3 - n_3^3 \pi_{35} \frac{M_x}{\pi R^4} Y$
	k Z	$n_{1}' = n_{1} - \frac{n_{1}^{3}}{2} \left(\pi_{15}\sigma_{13} + \frac{n_{1}^{2}n_{2}^{2}\pi_{66}^{2}\sigma_{12}^{2}}{n_{2}^{2} - n_{1}^{2} + n_{1}^{2}n_{2}^{2}(\pi_{15} - \pi_{25})\sigma_{13}} \right)$
		$= n_1 - \frac{n_1^3}{2} \left(\pi_{15} \frac{2M_x}{\pi R^4} Y + \frac{n_1^2 n_2^2 \pi_{66}^2 \frac{4M_x^2}{\pi^2 R^8} Z^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_x}{\pi R^4} Y} \right)$
		$\simeq n_1 - \frac{n_1^3}{2} \pi_{15} \sigma_{13} = n_1 - n_1^3 \pi_{15} \frac{M_x}{\pi R^4} Y$
		$n_{2}' = n_{2} - \frac{n_{2}^{3}}{2} \left(\pi_{25} \sigma_{13} - \frac{n_{1}^{2} n_{2}^{2} \pi_{66}^{2} \sigma_{12}^{2}}{n_{2}^{2} - n_{1}^{2} + n_{1}^{2} n_{2}^{2} (\pi_{15} - \pi_{25}) \sigma_{13}} \right)$
		$= n_2 - \frac{n_2^3}{2} \left(\pi_{25} \frac{2M_x}{\pi R^4} Y - \frac{n_1^2 n_2^2 \pi_{66}^2 \frac{4M_x^2}{\pi^2 R^8} Z^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_x}{\pi R^4} Y} \right)$
		$\simeq n_2 - \frac{n_2^3}{2} \pi_{25} \sigma_{13} = n_2 - n_2^3 \pi_{25} \frac{M_x}{\pi R^4} Y$

Δ	5
4	5
$\delta(\Delta n)_{13} = \frac{1}{2} (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \sigma_{13}$ $+ \frac{1}{2} \frac{(n_1^3 + n_3^3) n_1^2 n_3^2 \pi_{55}^2 \sigma_{13}^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \sigma_{13}}$ $= (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \frac{M_x}{\pi R^4} Y$ $+ 2 \frac{(n_1^3 + n_3^3) n_1^2 n_3^2 \pi_{55}^2 \frac{M_x^2}{\pi^2 R^8} Y^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_x}{\pi R^4} Y}$ $\approx \frac{1}{2} (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \sigma_{13}$	$\tan 2\zeta_Y = \frac{2n_1^2 n_3^2 \pi_{55} \sigma_{13}}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \sigma_{13}}$ $= \frac{4n_1^2 n_3^2 \pi_{55} \frac{M_x}{\pi R^4} Y}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_x}{\pi R^4} Y}$
2 	
$= (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \frac{M_x}{\pi R^4} Y$	
$\begin{split} \delta(\Delta n)_{12} &= \frac{1}{2} (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \sigma_{13} \\ &+ \frac{1}{2} \frac{(n_2^3 - n_1^3) n_1^2 n_2^2 \pi_{66}^2 \sigma_{12}^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \sigma_{13}} \\ &= (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \frac{M_x}{\pi R^4} Y \\ &+ 2 \frac{(n_2^3 - n_1^3) n_1^2 n_2^2 \pi_{66}^2 \frac{M_x^2}{\pi^2 R^8} Z^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_x}{\pi R^4} Y} \\ &\simeq \frac{1}{2} (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \sigma_{13} \\ &= (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \frac{M_x}{\pi R^4} Y \end{split}$	$\tan 2\zeta_Z = \frac{2n_1^2 n_2^2 \pi_{66} \sigma_{12}}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \sigma_{13}}$ $= \frac{4n_1^2 n_2^2 \pi_{66} \frac{M_x}{\pi R^4} Z}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_x}{\pi R^4} Y}$

1	2	3
M_{ν} ,	$k \parallel X$	$\sim 2M^2$
σ_{12} ,		$n_{1}' = n_{2} - \frac{1}{n_{2}} \frac{n_{2}^{5} n_{3}^{2} (\pi_{44} \sigma_{23} + \pi_{46} \sigma_{12})^{2}}{\pi^{2} n_{2}} - n_{2} - \frac{n_{2}^{5} n_{3}^{2} \frac{2m_{y}}{\pi^{2} R^{8}} (\pi_{44} X + \pi_{46} Z)^{2}}{\pi^{2} R^{8}}$
σ_{23}		$n_2 - n_2 - \frac{1}{2} - \frac{1}{n_3^2 - n_2^2} - \frac{1}{n_2^2 - n_2^2} - \frac{1}{n_3^2 - n_2^2}$
		$n'_{3} = n_{3} + \frac{1}{2} \frac{n_{2}^{2} n_{3}^{5} (\pi_{44} \sigma_{23} + \pi_{46} \sigma_{12})^{2}}{n_{3}^{2} - n_{2}^{2}} = n_{3} + \frac{n_{2}^{2} n_{3}^{5} \frac{2M_{y}^{2}}{\pi^{2} R^{8}} (\pi_{44} X + \pi_{46} Z)^{2}}{n_{3}^{2} - n_{2}^{2}}$
	$k \parallel Y$	not changed
	k Z	$n_{1}' = n_{1} - \frac{1}{2} \frac{n_{1}^{5} n_{2}^{2} (\pi_{64} \sigma_{23} + \pi_{66} \sigma_{12})^{2}}{n_{2}^{2} - n_{1}^{2}} = n_{1} - \frac{n_{1}^{5} n_{2}^{2} \frac{2M_{y}^{2}}{\pi^{2} R^{8}} (\pi_{64} X + \pi_{66} Z)^{2}}{n_{2}^{2} - n_{1}^{2}}$
		$n_{2}' = n_{2} + \frac{1}{2} \frac{n_{1}^{2} n_{2}^{5} (\pi_{64} \sigma_{23} + \pi_{66} \sigma_{12})^{2}}{n_{2}^{2} - n_{1}^{2}} = n_{2} + \frac{n_{1}^{2} n_{2}^{5} \frac{2M_{y}^{2}}{\pi^{2} R^{8}} (\pi_{64} X + \pi_{66} Z)^{2}}{n_{2}^{2} - n_{1}^{2}}$
$M_z, \sigma_{13}, \sigma_{23}$	k X	$n_{2}' = n_{2} - \frac{n_{2}^{3}}{2} \left(\pi_{25} \sigma_{13} + \frac{n_{2}^{2} n_{3}^{2} \pi_{44}^{2} \sigma_{23}^{2}}{n_{3}^{2} - n_{2}^{2} + (\pi_{25} - \pi_{35}) \sigma_{13} n_{2}^{2} n_{3}^{2}} \right)$
		$= n_2 - \frac{n_2^3}{2} \left(\pi_{25} \frac{2M_z}{\pi R^4} Y + \frac{n_2^2 n_3^2 \pi_{44}^2 \frac{4M_z^2}{\pi^2 R^8} X^2}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \frac{2M_z}{\pi R^4} Y} \right)$
		$\simeq n_2 - \frac{n_2^3}{2}\pi_{25}\sigma_{13} = n_2 - n_2^3\pi_{25}\frac{M_z}{\pi R^4}Y$
		$n_{3}' = n_{3} - \frac{n_{3}^{3}}{2} \left(\pi_{35} \sigma_{13} - \frac{n_{2}^{2} n_{3}^{2} \pi_{44}^{2} \sigma_{23}^{2}}{n_{3}^{2} - n_{2}^{2} + (\pi_{25} - \pi_{35}) \sigma_{13} n_{2}^{2} n_{3}^{2}} \right)$
		$= n_3 - \frac{n_3^3}{2} \left(\pi_{35} \frac{2M_z}{\pi R^4} Y - \frac{n_2^2 n_3^2 \pi_{44}^2 \frac{4M_z^2}{\pi^2 R^8} X^2}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \frac{2M_z}{\pi R^4} Y} \right)$
		$\approx n_3 - \frac{n_3^3}{2} \pi_{35} \sigma_{13} = n_3 - n_3^3 \pi_{35} \frac{M_z}{\pi R^4} Y$

5
$\tan 2\zeta_X = \frac{2n_2^2 n_3^2 (\pi_{44} \sigma_{23} + \pi_{46} \sigma_{12})}{n_3^2 - n_2^2}$
$=\frac{4n_2^2n_3^2\frac{M_y}{\pi R^4}(\pi_{44}X+\pi_{46}Z)}{n_3^2-n_2^2}$
$\tan 2\zeta_Y = 0$
$\tan 2\zeta_Z = \frac{2n_1^2 n_2^2 (\pi_{64} \sigma_{23} + \pi_{66} \sigma_{12})}{n_2^2 - n_1^2}$
$=\frac{4n_1^2n_2^2\frac{M_y}{\pi R^4}(\pi_{64}X+\pi_{66}Z)}{n_2^2-n_1^2}$
$\tan 2\zeta_X = \frac{2n_2^2 n_3^2 \pi_{44} \sigma_{23}}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \sigma_{13}}$ $4n_2^2 n_3^2 \pi_{44} \frac{M_z}{\pi R^4} X$
$= \frac{1}{n_3^2 - n_2^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \frac{2M_z}{\pi R^4} Y}$

1	2	3
	k Y	$n_{1}' = n_{1} - \frac{n_{1}^{3}}{2} \left(\pi_{15} \sigma_{13} - \frac{n_{1}^{2} n_{3}^{2} \pi_{55}^{2} \sigma_{13}^{2}}{n_{1}^{2} - n_{3}^{2} + n_{1}^{2} n_{3}^{2} (\pi_{35} - \pi_{15}) \sigma_{13}} \right)$
		$= n_1 - \frac{n_1^3}{2} \left(\pi_{15} \frac{2M_z}{\pi R^4} Y - \frac{n_1^2 n_3^2 \pi_{55}^2 \frac{4M_z^2}{\pi^2 R^8} Y^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_z}{\pi R^4} Y} \right)$
		$\simeq n_1 - \frac{n_1^3}{2} \pi_{15} \sigma_{13} = n_1 - n_1^3 \pi_{15} \frac{M_z}{\pi R^4} Y$
		$n_{3}' = n_{3} - \frac{n_{3}^{3}}{2} \left(\pi_{35}\sigma_{13} + \frac{n_{1}^{2}n_{3}^{2}\pi_{55}^{2}\sigma_{13}^{2}}{n_{1}^{2} - n_{3}^{2} + n_{1}^{2}n_{3}^{2}(\pi_{35} - \pi_{15})\sigma_{13}} \right)$
		$= n_3 - \frac{n_3^3}{2} \left(\pi_{35} \frac{2M_z}{\pi R^4} Y + \frac{n_1^2 n_3^2 \pi_{55}^2 \frac{4M_z^2}{\pi^2 R^8} Y^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_z}{\pi R^4} Y} \right)$
		$\simeq n_3 - \frac{n_3^3}{2} \pi_{35} \sigma_{13} = n_3 - n_3^3 \pi_{35} \frac{M_z}{\pi R^4} Y$
	k Z	$n_{1}' = n_{1} - \frac{n_{1}^{3}}{2} \left(\pi_{15}\sigma_{13} + \frac{n_{1}^{2}n_{2}^{2}\pi_{64}^{2}\sigma_{23}^{2}}{n_{2}^{2} - n_{1}^{2} + n_{1}^{2}n_{2}^{2}(\pi_{15} - \pi_{25})\sigma_{13}} \right)$
		$= n_1 - \frac{n_1^3}{2} \left(\pi_{15} \frac{2M_z}{\pi R^4} Y + \frac{n_1^2 n_2^2 \pi_{64}^2 \frac{4M_z^2}{\pi^2 R^8} X^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_z}{\pi R^4} Y} \right)$
		$\simeq n_1 - \frac{n_1^3}{2} \pi_{15} \sigma_{13} = n_1 - n_1^3 \pi_{15} \frac{M_z}{\pi R^4} Y$
		$n_{2}' = n_{2} - \frac{n_{2}^{3}}{2} \left(\pi_{25} \sigma_{13} - \frac{n_{1}^{2} n_{2}^{2} \pi_{64}^{2} \sigma_{23}^{2}}{n_{2}^{2} - n_{1}^{2} + n_{1}^{2} n_{2}^{2} (\pi_{15} - \pi_{25}) \sigma_{13}} \right)$
		$= n_2 - \frac{n_2^3}{2} \left(\pi_{25} \frac{2M_z}{\pi R^4} Y - \frac{n_1^2 n_2^2 \pi_{64}^2 \frac{4M_z^2}{\pi^2 R^8} X^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_z}{\pi R^4} Y} \right)$
		$\simeq n_2 - \frac{n_2^3}{2}\pi_{25}\sigma_{13} = n_2 - n_2^3\pi_{25}\frac{M_z}{\pi R^4}Y$

4	5
$\delta(\Delta n)_{13} = \frac{1}{2} (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \sigma_{13}$ $+ \frac{1}{2} \frac{(n_1^3 + n_3^3) n_1^2 n_3^2 \pi_{55}^2 \sigma_{13}^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \sigma_{13}}$ $= (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \frac{M_z}{\pi R^4} Y$ $+ 2 \frac{(n_1^3 + n_3^3) n_1^2 n_3^2 \pi_{55}^2 \frac{M_z^2}{\pi^2 R^8} Y^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_z}{\pi R^4} Y}$ $= \frac{1}{2} (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \sigma_{13}$ $= (n_3^3 \pi_{35} - n_1^3 \pi_{15}) \frac{M_z}{\pi R^4} Y$	$\tan 2\zeta_Y = \frac{2n_1^2 n_3^2 \pi_{55} \sigma_{13}}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \sigma_{13}}$ $= \frac{4n_1^2 n_3^2 \pi_{55} \frac{M_z}{\pi R^4} Y}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{35} - \pi_{15}) \frac{2M_z}{\pi R^4} Y}$
$\begin{split} \delta(\Delta n)_{12} &= \frac{1}{2} (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \sigma_{13} \\ &- \frac{1}{2} \frac{(n_1^3 + n_2^3) n_1^2 n_2^2 \pi_{24}^2 \sigma_{23}^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \sigma_{13}} \\ &= (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \frac{M_z}{\pi R^4} Y \\ &- 2 \frac{(n_1^3 + n_2^3) n_1^2 n_2^2 \pi_{24}^2 \frac{M_z^2}{\pi^2 R^8} X^2}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_z}{\pi R^4} Y} \\ &\simeq \frac{1}{2} (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \sigma_{13} \\ &= (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \frac{M_z}{\pi R^4} Y \end{split}$	$\tan 2\zeta_Z = \frac{2n_1^2 n_2^2 \pi_{64} \sigma_{23}}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \sigma_{13}}$ $= \frac{4n_1^2 n_2^2 \pi_{64} \frac{M_z}{\pi R^4} X}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{15} - \pi_{25}) \frac{2M_z}{\pi R^4} Y}$

Table 9. Changes in the optical indicatrix parameters under the torsion moment applied in crystals of the point symmetry groups 1 and $\overline{1}$: M_x , σ_{12} , σ_{13} , $k \parallel X$

	$n_{2}^{3}\left(n_{2}^{2}n_{2}^{2}(\pi_{AS}\sigma_{12} + \pi_{AS}\sigma_{12})^{2} \right)$
	$n_{2}' = n_{2} - \frac{n_{2}}{2} \left(\pi_{25}\sigma_{13} + \pi_{26}\sigma_{12} + \frac{n_{2}n_{3}(\pi_{45}\sigma_{13} + \pi_{46}\sigma_{12})}{n_{3}^{2} - n_{2}^{2} + n_{2}^{2}n_{3}^{2}((\pi_{25} - \pi_{35})\sigma_{13} + (\pi_{26} - \pi_{36})\sigma_{12}) \right)$
	$\begin{pmatrix} 2 & 2 & 2 & 3 & 2 & 3 & 3 & 3 & 3 & 3 &$
	$= n n^{3} M_{x} \left[\pi V + \pi Z \right]$
	$= n_2 - n_2 \frac{\pi R^4}{\pi R^4} \left[\frac{n_{25}T + n_{26}Z + \frac{\pi R^2}{n_2^2 - n_2^2 + n_2^2 n_2^2} \frac{2M_x}{n_2^2 - n_2^2 + n_2^2 n_2^2} \frac{2M_x}{(\pi R^2 - \pi R^2)Y + (\pi R^2 - \pi R^2)Z} \right]$
SS	$(\pi^{3} + \pi^{2} + \pi^{2} + \pi^{2} + \pi^{3} + \pi^{4} + \pi^{4} + \pi^{2} + \pi^{3} + \pi^{4} + \pi^{3} + \pi^{4} + \pi^{3} + \pi^{$
ndice	$\simeq n_2 - \frac{n_2^3}{(\pi_{25}\sigma_{12} + \pi_{26}\sigma_{12})} = n_2 - n_2^3(\pi_{25}Y + \pi_{26}Z)\frac{M_x}{M_x}$
ve ir	$\frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}$
racti	$n_{2}' = n_{2} - \frac{n_{3}^{2}}{n_{3}} \left(\pi_{25} \sigma_{12} + \pi_{26} \sigma_{12} - \frac{n_{2}^{2} n_{3}^{2} (\pi_{45} \sigma_{13} + \pi_{46} \sigma_{12})^{2}}{2 n_{3}^{2} (\pi_{45} \sigma_{13} + \pi_{46} \sigma_{12})^{2}} \right)$
Ref	$2\left(\frac{33}{13},\frac{35}{13},\frac{35}{12},\frac$
	$n_2^2 n_3^2 \frac{2M_x}{4} (\pi_{45}Y + \pi_{46}Z)^2$
	$= n_3 - n_3^3 \frac{M_x}{R^4} \pi_{35}Y + \pi_{36}Z - \frac{2 N_x R^4}{R^4} \pi_{35}Y + \pi_{36}Z - 2 N_x $
	$\pi R^{+} \left(n_{3}^{2} - n_{2}^{2} + \frac{2M_{x}}{\pi R^{4}} n_{2}^{2} n_{3}^{2} \left((\pi_{25} - \pi_{35})Y + (\pi_{26} - \pi_{36})Z \right) \right)$
	n_2^3 M
	$\simeq n_3 - \frac{n_3}{2} (\pi_{35}\sigma_{13} + \pi_{36}\sigma_{12}) = n_3 - n_3^3 (\pi_{35}Y + \pi_{36}Z) \frac{n_x}{\pi R^4}$
	$S(An) = \frac{1}{n^3} (n^3 \pi + n^3 \pi) (\pi + \frac{1}{n^3} (n^3 \pi + n^3 \pi)) (\pi + n^3 \pi)) (\pi + \frac{1}{n^3} (n^3 \pi + n^3 \pi)) (\pi + \frac{1}{n^3} (n^3 \pi + n^3 \pi)) (\pi + \frac{1}{n^3} (n^3 \pi + n^3 \pi)) (\pi + n^3 \pi)) (\pi + \frac{1}{n^3} (n^3 \pi)) (\pi + n^3$
	$O(\Delta n)_{23} - \frac{1}{2}(n_3n_{35} - n_2n_{25})O_{13} + \frac{1}{2}(n_3n_{36} - n_2n_{26})O_{12}$
	$- \frac{1}{(n_3^3 + n_2^3)n_2^2 n_3^2 (\pi_{45}\sigma_{13} + \pi_{46}\sigma_{12})^2}$
0	$2 n_3^2 - n_2^2 + (\pi_{25} - \pi_{35})\sigma_{13}n_2^2n_3^2 + (\pi_{26} - \pi_{36})\sigma_{12}n_2^2n_3^2$
ence	$= \frac{M_x}{(n_2^3 \pi_{25} - n_2^3 \pi_{25})Y + (n_2^3 \pi_{25} - n_2^3 \pi_{25})Z - n_2^3 \pi_{25}}$
fring	πR^4 ((13,135) (12,125)) (13,136) (12,126))
bire	$(n_3^3 + n_2^3)n_2^2n_3^2 \frac{2M_x}{4}(\pi_{45}Y + \pi_{46}Z)^2$
lced	$\frac{\pi R^4}{2} \left(\frac{\pi R^4}{2} \right)$
Indu	$n_3^2 - n_2^2 + \frac{2m_x}{\pi R^4} n_2^2 n_3^2 \left((\pi_{25} - \pi_{35})Y + (\pi_{26} - \pi_{36})Z \right)^2$
	$1_{(3-3-3-)} = 1_{(3-3-3-)}$
	$ \simeq \frac{-(n_3\pi_{35} - n_2\pi_{25})\sigma_{13} + -(n_3\pi_{36} - n_2\pi_{26})\sigma_{12}}{2} = $
	$\frac{M_x}{d} \left((n_3^3 \pi_{35} - n_2^3 \pi_{25}) Y + (n_3^3 \pi_{36} - n_2^3 \pi_{26}) Z \right)$
	$\pi R^4 (333223) (3330223)$
optical rotation	$\tan 2\zeta_X = \frac{2n_2^2 n_3^2 (\pi_{45}\sigma_{13} + \pi_{46}\sigma_{12})}{2n_2^2 n_3^2 (\pi_{45}\sigma_{13} + \pi_{46}\sigma_{12})}$
	$n_2^2 - n_3^2 + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \sigma_{13} + n_2^2 n_3^2 (\pi_{26} - \pi_{36}) \sigma_{12}$
e of - trix 1	$4n_2^2n_3^2\frac{M_x}{n_4}(\pi_{45}Y+\pi_{46}Z)$
Angle	$=\frac{\pi K}{2}$
in A	$n_{\tilde{2}}^{2} - n_{\tilde{3}}^{2} + n_{\tilde{2}}^{2} n_{\tilde{3}}^{2} \frac{1}{\pi R^{4}} ((\pi_{25} - \pi_{35})Y + (\pi_{26} - \pi_{36})Z)$

Torsion moment - M_x , stress tensor components - σ_{12} , σ_{13} and direction of light propagation- $k \parallel Y$

	$n_{2}' = n_{2} - \frac{n_{3}^{3}}{n_{1}^{2} \sigma_{12} + \pi_{26} \sigma_{12} + \frac{n_{1}^{2} n_{3}^{2} (\pi_{55} \sigma_{13} + \pi_{56} \sigma_{12})^{2}}{n_{1}^{2} n_{3}^{2} (\pi_{55} \sigma_{13} + \pi_{56} \sigma_{12})^{2}}$
indices	$n_{3}^{2} n_{3}^{2} = 2 \left(n_{35}^{2} + n_{36}^{2} + n_{12}^{2} + n_{11}^{2} + n_{11}^{2} n_{3}^{2} ((\pi_{35} - \pi_{15})\sigma_{13} + (\pi_{36} - \pi_{16})\sigma_{12}) \right)$
	$n_1^2 n_3^2 \frac{2M_x}{-n^4} (\pi_{55}Y + \pi_{56}Z)^2$
	$= n_3 - n_3^3 \frac{\pi R^3}{\pi R^4} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2 (1 - 1)^2} \pi_{35} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2} \pi_{36} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2} \pi_{36} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2} \pi_{36} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2} \pi_{36} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2} \pi_{36} Y + \pi_{36} Z + \frac{\pi R^3}{\pi^2 (1 - 1)^2} \pi_{36} Z $
	$\left(n_{1} - n_{3} + n_{1} n_{3} \frac{1}{\pi R^{4}} ((\pi_{35} - \pi_{15})Y + (\pi_{36} - \pi_{16})Z) \right)$
	$\simeq n_3 - \frac{n_3^3}{2}(\pi_{35}\sigma_{13} + \pi_{36}\sigma_{12}) = n_3 - n_3^3(\pi_{35}Y + \pi_{36}Z)\frac{M_x}{\pi R^4}$
ctive	$n' = n_{1} - \frac{n_{1}^{3}}{n_{1}} \left(\pi_{12} \sigma_{12} + \pi_{12} \sigma_{12} - \frac{n_{1}^{2} n_{3}^{2} (\pi_{55} \sigma_{13} + \pi_{56} \sigma_{12})^{2}}{n_{1}^{2} n_{2}^{2} (\pi_{55} \sigma_{13} + \pi_{56} \sigma_{12})^{2}} \right)$
kefra	$n_{1} - n_{1} = 2 \left(\frac{n_{15}\sigma_{13} + n_{16}\sigma_{12}}{n_{1}^{2} - n_{3}^{2} + n_{1}^{2}n_{3}^{2}((\pi_{35} - \pi_{15})\sigma_{13} + (\pi_{36} - \pi_{16})\sigma_{12}) \right)$
H	$n_1^2 n_3^2 \frac{2M_x}{\pi^4} (\pi_{55}Y + \pi_{56}Z)^2$
	$= n_1 - n_1^3 \frac{M_x}{\pi R^4} \left[\pi_{15} Y + \pi_{16} Z - \frac{\pi R^4}{2 - 2M_x - 2 - 2M_x} \right]$
	$\left(n_{1}^{-} - n_{3}^{-} + \frac{\pi}{\pi R^{4}} n_{1}^{-} n_{3}^{-} ((\pi_{35} - \pi_{15})Y + (\pi_{36} - \pi_{16})Z) \right)$
	$\simeq n_1 - \frac{n_1^3}{(\pi_{15}\sigma_{12} + \pi_{16}\sigma_{12})} = n_1 - n_1^3(\pi_{15}Y + \pi_{16}Z)\frac{M_x}{(\pi_{15}Y + \pi_{16}Z)}$
	$2^{(13)}$ $10^{(12)}$ $1^{(13)}$ $10^{(12)}$ πR^4
	$\delta(\Delta n)_{12} = \frac{1}{2} (n_1^3 \pi_{12} - n_2^3 \pi_{22}) \sigma_{12} + \frac{1}{2} (n_1^3 \pi_{12} - n_2^3 \pi_{22}) \sigma_{12}$
	$2^{(n_1 n_{15} + n_3 n_{35}) \circ 13} + 2^{(n_1 n_{16} + n_3 n_{36}) \circ 12}$
	$-\frac{1}{2}(n_3^3+n_1^3)\frac{n_1^2n_3^2(\pi_{55}\sigma_{13}+\pi_{56}\sigma_{12})^2}{n_1^2-n_1^2+(\pi_1-\pi_2)\sigma_1n_2^2n_2^2+(\pi_2-\pi_2)\sigma_2n_2^2n_2^2}$
JCe	$M_{11} = \frac{1}{10} + $
inger	$= \frac{m_x}{\pi R^4} \left((n_1^3 \pi_{15} - n_3^3 \pi_{35})Y + (n_1^3 \pi_{16} - n_3^3 \pi_{36})Z \right)$
birefr	$n_1^2 n_2^2 \frac{2M_x}{(\pi_{55}Y + \pi_{56}Z)^2}$
iced l	$-(n_3^3 + n_1^3) - \frac{\pi R^4}{2} - 2 \frac{2M}{2} - 2 \frac{2M}{2$
Indu	$n_1^2 - n_3^2 + \frac{2M_x}{\pi R^4} n_1^2 n_3^2 \left((\pi_{35} - \pi_{15})Y + (\pi_{36} - \pi_{16})Z \right)^{-2}$
	$\simeq \frac{1}{2}(n_1^3\pi_{15} - n_3^3\pi_{35})\sigma_{13} + \frac{1}{2}(n_1^3\pi_{16} - n_3^3\pi_{36})\sigma_{12}$
	$=\frac{M_x}{\pi R^4} \Big((n_1^3 \pi_{15} - n_3^3 \pi_{35})Y + (n_1^3 \pi_{16} - n_3^3 \pi_{36})Z \Big)$
Angle of optical indicatrix rotation	$\tan 2\zeta_{11} - \frac{2n_1^2 n_3^2 (\pi_{55} \sigma_{13} + \pi_{56} \sigma_{12})}{2n_1^2 n_3^2 (\pi_{55} \sigma_{13} + \pi_{56} \sigma_{12})}$
	$m_{12} \zeta_{y} = n_{1}^{2} - n_{3}^{2} + n_{1}^{2} n_{3}^{2} (\pi_{35} - \pi_{15}) \sigma_{13} + n_{1}^{2} n_{3}^{2} (\pi_{36} - \pi_{16}) \sigma_{12}$
	$4n_1^2n_3^2\frac{M_x}{\pi R^4}(\pi_{55}Y+\pi_{56}Z)$
	$=\frac{n_1^2}{n_1^2-n_2^2+n_1^2n_2^2}\frac{2M_x}{2M_x}((\pi_{25}-\pi_{15})Y+(\pi_{26}-\pi_{16})Z)$
	πR^4

Torsion moment - M_x , stress tensor components - σ_{12} , σ_{13} and direction of light propagation - $k \parallel Z$

	3(2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
	$n_{1}' = n_{1} - \frac{n_{1}'}{2} \left[\pi_{15}\sigma_{13} + \pi_{16}\sigma_{12} + \frac{n_{1}'n_{2}'(\pi_{65}\sigma_{13} + \pi_{66}\sigma_{12})^{2}}{2 - 2 + 2 - 2 - 2} \right]$
	$2 \left(n_{2}^{2} - n_{1}^{2} + n_{1}^{2} n_{2}^{2} ((\pi_{15} - \pi_{25})\sigma_{13} + (\pi_{16} - \pi_{26})\sigma_{12}) \right)$
	$n_1^2 n_2^2 \frac{2M_x}{n_4^4} (\pi_{65}Y + \pi_{66}Z)^2$
	$= n_1 - n_1^3 \frac{m_x}{\pi P^4} \left[\pi_{15} Y + \pi_{16} Z + \frac{\pi R^3}{2 - 2 - 2 - 2 \cdot $
	$n_2^2 - n_1^2 + n_1^2 n_2^2 \frac{1 - x_1}{\pi R^4} ((\pi_{15} - \pi_{25})Y + (\pi_{16} - \pi_{26})Z))$
dices	n_1^3 (7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1
/e in	$ = n_1 - \frac{1}{2} (\pi_{15}\sigma_{13} + \pi_{16}\sigma_{12}) = n_1 - n_1 (\pi_{15}I + \pi_{16}Z) \frac{1}{\pi R^4} $
activ	$n_{2}' = n_{2} - \frac{n_{2}^{3}}{n_{1}^{2} n_{2}^{2} (\pi_{65} \sigma_{13} + \pi_{66} \sigma_{12})^{2}} - \frac{n_{1}^{2} n_{2}^{2} (\pi_{65} \sigma_{13} + \pi_{66} \sigma_{12})^{2}}{n_{1}^{2} n_{2}^{2} (\pi_{65} \sigma_{13} + \pi_{66} \sigma_{12})^{2}}$
Refi	$n_2 = n_2 \qquad 2 \left(\frac{n_{25} \sigma_{13} + n_{26} \sigma_{12}}{n_2^2 - n_1^2 + n_2^2 n_1^2} ((\pi_{15} - \pi_{25})\sigma_{13} + (\pi_{16} - \pi_{26})\sigma_{12}) \right)$
	$n_1^2 n_2^2 \frac{2M_x}{t} (\pi_{65}Y + \pi_{66}Z)^2$
	$= n_2 - n_2^3 \frac{M_x}{n^4} \left \pi_{25} Y + \pi_{26} Z - \frac{1 2 \pi R^4}{n^4} \right = n_2 - \frac{1}{n^4} \frac{\pi R^4}{n^4} = 0$
	$\pi R^{2} \left(n_{2}^{2} - n_{1}^{2} + \frac{2M_{x}}{\pi R^{4}} n_{1}^{2} n_{2}^{2} \left((\pi_{15} - \pi_{25})Y + (\pi_{16} - \pi_{26})Z \right) \right)$
	n_2^3 M_r
	$= n_2 - \frac{2}{2} (\pi_{25} \sigma_{13} + \pi_{26} \sigma_{12}) = n_2 - n_2^2 (\pi_{25} Y + \pi_{26} Z) \frac{x}{\pi R^4}$
	$\delta(\Delta n)_{12} = \frac{1}{n_1^2} (n_2^3 \pi_{25} - n_1^3 \pi_{15}) \sigma_{13} + \frac{1}{n_1^2} (n_2^3 \pi_{26} - n_1^3 \pi_{16}) \sigma_{12}$
	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $
	$-\frac{1}{2}(n_1^3 + n_2^3) \frac{n_1^2 n_2^2 (\pi_{65} \sigma_{13} + \pi_{66} \sigma_{12})^2}{n_1^2 n_2^2 (\pi_{65} \sigma_{13} + \pi_{66} \sigma_{12})^2 (\pi_{65} \sigma_{13} + \pi_{66} \sigma_{12})^2}$
	$2 \qquad n_2 - n_1 + (\pi_{15} - \pi_{25})\sigma_{13}n_1n_2 + (\pi_{16} - \pi_{26})\sigma_{12}n_1n_2$
ence	M
fring	$= \frac{m_x}{\pi R^4} \left((n_2^3 \pi_{25} - n_1^3 \pi_{15})Y + (n_2^3 \pi_{26} - n_1^3 \pi_{16})Z \right)$
bire	$2 2 2M_{\rm r}$ ($M = 72^2$
Iced	$n_1^2 n_2^2 \frac{\pi}{\pi R^4} (\pi_{65}Y + \pi_{66}Z)^2$
Indu	$-(n_1 + n_2) \frac{1}{n_2^2 - n_1^2 + \frac{2M_x}{4} n_1^2 n_2^2 ((\pi_{15} - \pi_{25})Y + (\pi_{16} - \pi_{26})Z)})$
	$\pi R^4 = 2 \left(\left(15 - 25 \right) \right) \left(10 - 20 \right) \right)$
	$\simeq \frac{1}{2}(n_2^3\pi_{25} - n_1^3\pi_{15})\sigma_{13} + \frac{1}{2}(n_2^3\pi_{26} - n_1^3\pi_{16})\sigma_{12}$
	$M_{\rm r}$ (c 3 3 $M_{\rm r}$ (c 3 3 $M_{\rm r}$ (c 3 3 $M_{\rm r}$
	$=\frac{1}{\pi R^{4}}\left((n_{2}^{2}\pi_{25}-n_{1}^{2}\pi_{15})Y+(n_{2}^{2}\pi_{26}-n_{1}^{2}\pi_{16})Z\right)$
ptical otation	$\tan 2\zeta_{\pi} = \frac{2n_1^2 n_2^2 (\pi_{65}\sigma_{13} + \pi_{66}\sigma_{12})}{2n_1^2 n_2^2 (\pi_{65}\sigma_{13} + \pi_{66}\sigma_{12})}$
	$m_{2} \sigma_{2}^{2} = n_{1}^{2} - n_{1}^{2} + n_{1}^{2} n_{2}^{2} (\pi_{15} - \pi_{25}) \sigma_{13} + n_{1}^{2} n_{2}^{2} (\pi_{16} - \pi_{26}) \sigma_{12}$
: of o rix re	$4n_1^2n_2^2 \frac{M_x}{4}(\pi_{65}Y + \pi_{66}Z)$
ngle licat	$=\frac{\pi R^4}{2\pi R^4}$
A inc	$n_2^2 - n_1^2 + n_1^2 n_2^2 \frac{2m_x}{\pi R^4} ((\pi_{15} - \pi_{25})Y + (\pi_{16} - \pi_{26})Z)$

r	
	$n_{2}' = n_{2} - \frac{n_{2}^{3}}{2} \left(\pi_{24}\sigma_{23} + \pi_{26}\sigma_{12} + \frac{n_{2}^{2}n_{3}^{2}(\pi_{44}\sigma_{23} + \pi_{46}\sigma_{12})^{2}}{2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -$
	$2 \left(n_{3}^{2} - n_{2}^{2} + n_{2}^{2}n_{3}^{2}((\pi_{24} - \pi_{34})\sigma_{23} + (\pi_{26} - \pi_{36})\sigma_{12}) \right)$
	$n_2^2 n_3^2 \frac{2M_y}{\pi R^4} (\pi_{44}X + \pi_{46}Z)^2$
	$= n_2 - n_2^2 \frac{y}{\pi R^4} \pi_{24} X + \pi_{26} Z + \frac{n R}{n^2 + n^2 n^2} \frac{2M_y}{2M_y} ((\pi - \pi) X + (\pi - \pi) Z)$
es	$\left(\frac{n_3 - n_2 + n_2 n_3}{\pi R^4} \frac{(n_{24} - n_{34}) x + (n_{26} - n_{36}) z}{\pi R^4} \right)$
Refractive indice	$\simeq n_2 - \frac{n_2^3}{2}(\pi_{24}\sigma_{23} + \pi_{26}\sigma_{12}) = n_2 - n_2^3(\pi_{24}X + \pi_{26}Z)\frac{M_y}{\pi R^4}$
	$n_{3}' = n_{3} - \frac{n_{3}^{3}}{2} \left(\pi_{34}\sigma_{23} + \pi_{36}\sigma_{12} - \frac{n_{2}^{2}n_{3}^{2}(\pi_{44}\sigma_{23} + \pi_{46}\sigma_{12})^{2}}{n_{3}^{2} - n_{2}^{2} + n_{2}^{2}n_{3}^{2}((\pi_{24} - \pi_{34})\sigma_{23} + (\pi_{26} - \pi_{36})\sigma_{12})} \right)$
	$= n_3 - n_3^3 \frac{M_y}{\pi M_y} \left(\frac{n_2^2 n_3^2 \frac{2M_y}{\pi R^4} (\pi_{44} X + \pi_{46} Z)^2}{\pi R^4 (\pi_{44} X + \pi_{46} Z)^2} \right)$
	$n_{3}^{2} - n_{2}^{2} + \frac{2M_{y}}{\pi R^{4}} n_{2}^{2} n_{3}^{2} \left((\pi_{24} - \pi_{34})X + (\pi_{26} - \pi_{36})Z \right) \right)$
	$\simeq n_3 - \frac{n_3^3}{2}(\pi_{34}\sigma_{23} + \pi_{36}\sigma_{12}) = n_3 - n_3^3(\pi_{34}X + \pi_{36}Z)\frac{M_y}{\pi R^4}$
	$\delta(\Delta n)_{23} = \frac{1}{2}(n_3^3 \pi_{34} - n_2^3 \pi_{24})\sigma_{23} + \frac{1}{2}(n_3^3 \pi_{36} - n_2^3 \pi_{26})\sigma_{12}$
	$-\frac{1}{2}(n_3^3+n_2^3)\frac{n_2^2n_3^2(\pi_{44}\sigma_{23}+\pi_{46}\sigma_{12})^2}{n_3^2-n_2^2+(\pi_{24}-\pi_{34})\sigma_{23}n_2^2n_3^2+(\pi_{26}-\pi_{36})\sigma_{12}n_2^2n_3^2}$
ingence	$= \frac{M_y}{\pi R^4} \left((n_3^3 \pi_{34} - n_2^3 \pi_{24}) X + (n_3^3 \pi_{36} - n_2^3 \pi_{26}) Z \right)$
Induced birefri	$(n^{3} + n^{3}) \qquad \qquad n_{2}^{2} n_{3}^{2} \frac{2M_{y}}{\pi R^{4}} (\pi_{44} X + \pi_{46} Z)^{2} $
	$-(n_{3}+n_{2})\frac{1}{n_{3}^{2}-n_{2}^{2}+\frac{2M_{y}}{\pi R^{4}}n_{2}^{2}n_{3}^{2}\left((\pi_{24}-\pi_{34})X+(\pi_{26}-\pi_{36})Z\right)}$
	$\simeq \frac{1}{2} (n_3^3 \pi_{34} - n_2^3 \pi_{24}) \sigma_{23} + \frac{1}{2} (n_3^3 \pi_{36} - n_2^3 \pi_{26}) \sigma_{12}$
	$=\frac{M_y}{\pi R^4} \Big((n_3^3 \pi_{34} - n_2^3 \pi_{24}) X + (n_3^3 \pi_{36} - n_2^3 \pi_{26}) Z \Big)$
gle of optical catrix rotation	$\tan 2\zeta_{Y} = \frac{2n_{2}^{2}n_{3}^{2}(\pi_{44}\sigma_{23} + \pi_{46}\sigma_{12})}{2n_{2}^{2}n_{3}^{2}(\pi_{44}\sigma_{23} + \pi_{46}\sigma_{12})}$
	$n_2^2 - n_3^2 + n_2^2 n_3^2 (\pi_{24} - \pi_{34}) \sigma_{23} + n_2^2 n_3^2 (\pi_{26} - \pi_{36}) \sigma_{12}$
	$= \frac{4n_2^2 n_3^2 \frac{M_y}{\pi R^4} (\pi_{44} X + \pi_{46} Z)}{\pi R^4}$
An indi	$n_2^2 - n_3^2 + n_2^2 n_3^2 \frac{2M_y}{\pi R^4} ((\pi_{24} - \pi_{34})X + (\pi_{26} - \pi_{36})Z)$

Torsion moment - M_y , stress tensor components- σ_{12} , σ_{23} and direction of light propagation- $k \parallel X$

Torsion moment - M_y , stress tensor components- σ_{12}, σ_{23} and direction of light propagation- $k \parallel Y$

	$n_{3}' = n_{3} - \frac{n_{3}^{2}}{2} \left(\pi_{34} \sigma_{23} + \pi_{36} \sigma_{12} + \frac{n_{1}^{2} n_{3}^{2} (\pi_{54} \sigma_{23} + \pi_{56} \sigma_{12})^{2}}{n_{2}^{2} + n_{2}^{2} + n_{3}^{2} + n_{3}^{2}$
	$2 \left(n_{1} - n_{3} + n_{1} n_{3} \left((\pi_{34} - \pi_{14}) \sigma_{23} + (\pi_{36} - \pi_{16}) \sigma_{12} \right) \right)$
	$n_1^2 n_3^2 \frac{2M_y}{-n^4} (\pi_{54}X + \pi_{56}Z)^2$
	$= n_3 - n_3^3 \frac{\pi Y}{\pi R^4} \left[\pi_{34} X + \pi_{36} Z + \frac{\pi R}{2 - 2 - 2 - 2 \cdot 2 \cdot 2M} \right]$
	$\left(n_{1}^{2} - n_{3}^{2} + n_{1}^{2} n_{3}^{2} \frac{y}{\pi R^{4}} ((\pi_{34} - \pi_{14})X + (\pi_{36} - \pi_{16})Z) \right)$
dices	n_3^3 (M_y
/e inc	$= n_3 - \frac{1}{2} (\pi_{34} \sigma_{23} + \pi_{36} \sigma_{12}) = n_3 - n_3 (\pi_{34} X + \pi_{36} Z) \frac{1}{\pi R^4}$
activ	$n_1' = n_1 - \frac{n_1^3}{n_1^2} \left(\pi_{14}\sigma_{22} + \pi_{14}\sigma_{12} - \frac{n_1^2 n_3^2 (\pi_{54}\sigma_{23} + \pi_{56}\sigma_{12})^2}{n_1^2 n_2^2 (\pi_{54}\sigma_{23} + \pi_{56}\sigma_{12})^2} \right)$
Refr	$n_{1} = n_{1} = 2 \left(\frac{n_{14}\sigma_{23} + n_{16}\sigma_{12}}{n_{1}^{2} - n_{3}^{2} + n_{1}^{2}n_{3}^{2}((\pi_{34} - \pi_{14})\sigma_{23} + (\pi_{36} - \pi_{16})\sigma_{12}) \right)$
	$n_{x}^{2}n_{z}^{2}\frac{2M_{y}}{(\pi_{z},X+\pi_{z},Z)^{2}}$
	$= n_1 - n_1^3 \frac{M_y}{4} \pi_{14} X + \pi_{16} Z - \frac{\pi R^4 (\pi_{54} X + \pi_{56} Z)}{\pi R^4 (\pi_{54} X + \pi_{56} Z)}$
	$n_{1}^{2} - n_{3}^{2} + \frac{2M_{y}}{p_{4}^{4}} n_{1}^{2} n_{3}^{2} \left((\pi_{34} - \pi_{14})X + (\pi_{36} - \pi_{16})Z \right) $
	πR^3 M
	$\simeq n_1 - \frac{n_1}{2} (\pi_{14}\sigma_{23} + \pi_{16}\sigma_{12}) = n_1 - n_1^3 (\pi_{14}X + \pi_{16}Z) \frac{m_y}{\pi R^4}$
	$S(An) = \frac{1}{n^3} (n^3 \pi + n^3 \pi) (\pi + \frac{1}{n^3} (n^3 \pi + n^3 \pi)) (\pi + n^3 \pi)) (\pi + \frac{1}{n^3} (n^3 \pi + n^3 \pi)) (\pi + n^3 \pi)) (\pi + \frac{1}{n^3} (n^3 \pi)) (\pi + n^3 \pi)) $
	$O(\Delta n)_{13} = \frac{1}{2}(n_1 n_{14} - n_3 n_{34})O_{23} + \frac{1}{2}(n_1 n_{16} - n_3 n_{36})O_{12}$
	$-\frac{1}{(n_3^3+n_1^3)} \frac{n_1^2 n_3^2 (\pi_{54}\sigma_{23}+\pi_{56}\sigma_{12})^2}{2n_1^2 n_2^2 (\pi_{54}\sigma_{23}+\pi_{56}\sigma_{12})^2}$
0	$2^{n_{1}^{2}} n_{1}^{2} - n_{3}^{2} + (\pi_{34} - \pi_{14})\sigma_{23}n_{1}^{2}n_{3}^{2} + (\pi_{36} - \pi_{16})\sigma_{12}n_{1}^{2}n_{3}^{2}$
jence	$=\frac{M_{y}}{4}\left((n_{1}^{3}\pi_{14}-n_{3}^{3}\pi_{34})X+(n_{1}^{3}\pi_{16}-n_{3}^{3}\pi_{36})Z \right)$
fring	πR^4
bire	$n_1^2 n_3^2 \frac{2M_y}{-n^4} (\pi_{54}X + \pi_{56}Z)^2$
nced	$-(n_3^3+n_1^3)\frac{\pi R}{2}$
Ind	$n_1^2 - n_3^2 + \frac{y}{\pi R^4} n_1^2 n_3^2 \left((\pi_{34} - \pi_{14}) X + (\pi_{36} - \pi_{16}) Z \right)$
	$\sim \frac{1}{(n^3 \pi_{++} - n^3 \pi_{++})} \sigma_{++} + \frac{1}{(n^3 \pi_{++} - n^3 \pi_{++})} \sigma_{++}$
	$= \frac{2}{2} \left(\frac{n_1 n_{14}}{n_1 n_2 n_3 n_{34}} \right) \left(\frac{n_2 n_3 n_{36}}{n_2 n_3 n_{36}} \right) \left(\frac{n_1 n_{16}}{n_2 n_{16}} \right) \left(\frac{n_1 n_{16}}{n_2 n_{16}} \right) \left(\frac{n_1 n_{16}}{n_2 n_{16}} \right) \left(\frac{n_1 n_{16}}{n_1 n_{16}} \right) \left(\frac{n_1 n_{16}}{n_{16}} \right) \left(\frac{n_1 n_{16}}{n_{16$
	$= \frac{M_{y}}{r^{4}} \Big((n_{1}^{3} \pi_{14} - n_{3}^{3} \pi_{34}) X + (n_{1}^{3} \pi_{16} - n_{3}^{3} \pi_{36}) Z \Big)$
	πR^{+}
sal ion	$\tan 2\zeta_Y = \frac{2n_1^2 n_3^2 (\pi_{54}\sigma_{23} + \pi_{56}\sigma_{12})}{n_2^2 n_2^2 n_2^2 n_3^2 (\pi_{54}\sigma_{23} + \pi_{56}\sigma_{12})}$
optic rotat	$n_1 - n_3 + n_1 n_3 (\pi_{34} - \pi_{14})\sigma_{23} + n_1 n_3 (\pi_{36} - \pi_{16})\sigma_{12}$
le of utrix	$4n_1^2n_3^2\frac{m_y}{\pi P^4}(\pi_{54}X+\pi_{56}Z)$
Angl Idica	$=\frac{n\pi}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \frac{2M_{y}}{2} + \frac{2}{2} +$
т. П	$n_{1}^{-} - n_{3}^{-} + n_{1}^{-} n_{3}^{-} \frac{1}{\pi R^{4}} ((\pi_{34} - \pi_{14})X + (\pi_{36} - \pi_{16})Z)$

Torsion moment - M_y , stress tensor components- σ_{12}, σ_{23} and direction of light propagation - $k \parallel Z$

Refractive indices	$n_{1}' = n_{1} - \frac{n_{1}^{3}}{2} \left(\pi_{14}\sigma_{23} + \pi_{16}\sigma_{12} + \frac{n_{1}^{2}n_{2}^{2}(\pi_{64}\sigma_{23} + \pi_{66}\sigma_{12})^{2}}{n_{1}^{2} - n_{1}^{2} + n_{1}^{2}n_{2}^{2}((\pi_{-} - \pi_{-})\sigma_{-} + (\pi_{-} - \pi_{-})\sigma_{-})} \right)$
	$= n_1 - n_1^3 \frac{M_y}{\pi R^4} \left[\pi_{14}X + \pi_{16}Z + \frac{n_1^2 n_2^2 \frac{2M_y}{\pi R^4} (\pi_{64}X + \pi_{66}Z)^2}{n_1^2 - n_1^2 + n_1^2 n_2^2 \frac{2M_y}{\pi R^4} (\pi_{64}X + \pi_{66}Z)^2} ((\pi_{14} - \pi_{24})X + (\pi_{16} - \pi_{26})Z) \right]$
	$\simeq n_1 - \frac{n_1^3}{2} (\pi_{14}\sigma_{23} + \pi_{16}\sigma_{12}) = n_1 - n_1^3 (\pi_{14}X + \pi_{16}Z) \frac{M_y}{\pi R^4}$
	$n_{2}' = n_{2} - \frac{n_{2}^{2}}{2} \left(\pi_{24}\sigma_{23} + \pi_{26}\sigma_{12} - \frac{n_{1}^{2}n_{2}^{2}(\pi_{64}\sigma_{23} + \pi_{66}\sigma_{12})^{2}}{n_{2}^{2} - n_{1}^{2} + n_{2}^{2}n_{1}^{2}((\pi_{14} - \pi_{24})\sigma_{23} + (\pi_{16} - \pi_{26})\sigma_{12})} \right)$
	$=n_{2}-n_{2}^{3}\frac{M_{y}}{\pi R^{4}}\left(\pi_{24}X+\pi_{26}Z-\frac{n_{1}^{2}n_{2}^{2}\frac{2M_{y}}{\pi R^{4}}(\pi_{64}X+\pi_{66}Z)^{2}}{n_{2}^{2}-n_{1}^{2}+\frac{2M_{y}}{\pi R^{4}}n_{1}^{2}n_{2}^{2}((\pi_{14}-\pi_{24})X+(\pi_{16}-\pi_{26})Z)}\right)$
	$\approx n_2 - \frac{n_2^3}{2}(\pi_{24}\sigma_{23} + \pi_{26}\sigma_{12}) = n_2 - n_2^3(\pi_{24}X + \pi_{26}Z)\frac{M_y}{\pi R^4}$
	$\delta(\Delta n)_{12} = \frac{1}{2}(n_2^3 \pi_{24} - n_1^3 \pi_{14})\sigma_{23} + \frac{1}{2}(n_2^3 \pi_{26} - n_1^3 \pi_{16})\sigma_{12}$
	$-\frac{1}{2}(n_1^3+n_2^3)\frac{n_1^2n_2^2(\pi_{64}\sigma_{23}+\pi_{66}\sigma_{12})^2}{n_2^2-n_1^2+(\pi_{14}-\pi_{24})\sigma_{23}n_1^2n_2^2+(\pi_{16}-\pi_{26})\sigma_{12}n_1^2n_2^2}$
Induced birefringence	$= \frac{M_y}{\pi R^4} \left((n_2^3 \pi_{24} - n_1^3 \pi_{14}) X + (n_2^3 \pi_{26} - n_1^3 \pi_{16}) Z \right)$
	$-(n_{1}^{3}+n_{2}^{3})\frac{n_{1}^{2}n_{2}^{2}\frac{2M_{y}}{\pi R^{4}}(\pi_{64}Y+\pi_{66}Z)^{2}}{n_{2}^{2}-n_{1}^{2}+\frac{2M_{y}}{\pi R^{4}}n_{1}^{2}n_{2}^{2}\left((\pi_{14}-\pi_{24})X+(\pi_{16}-\pi_{26})Z\right)}$
	$\simeq \frac{1}{2} (n_2^3 \pi_{24} - n_1^3 \pi_{14}) \sigma_{23} + \frac{1}{2} (n_2^3 \pi_{26} - n_1^3 \pi_{16}) \sigma_{12}$
	$=\frac{M_y}{\pi R^4} \Big((n_2^3 \pi_{24} - n_1^3 \pi_{14}) X + (n_2^3 \pi_{26} - n_1^3 \pi_{16}) Z \Big)$
gle of optical catrix rotation	$\tan 2\zeta_Z = \frac{2n_1^2 n_2^2 (\pi_{64} \sigma_{23} + \pi_{66} \sigma_{12})}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{14} - \pi_{24}) \sigma_{23} + n_1^2 n_2^2 (\pi_{16} - \pi_{26}) \sigma_{12}}$
	$= \frac{4n_1^2 n_2^2 \frac{M_y}{\pi R^4} (\pi_{64} X + \pi_{66} Z)}{\pi R^4}$
An indi	$n_2^2 - n_1^2 + n_1^2 n_2^2 \frac{2M_y}{\pi R^4} ((\pi_{14} - \pi_{24})Y + (\pi_{16} - \pi_{26})Z)$

Torsion moment- M_z , stress tensor components- σ_{13} , σ_{23} and direction	rection of light propagation- $k \parallel X$
---	---

	$n_{2}' = n_{2} - n_{2}^{3} (\pi_{44}\sigma_{23} + \pi_{45}\sigma_{13})^{2}$
Refractive indices	$m_2 - m_2 = \frac{1}{2} \left(\frac{n_{24}\sigma_{23} + n_{25}\sigma_{13} + \frac{1}{n_3^2 - n_2^2 + n_2^2 n_3^2} ((\pi_{24} - \pi_{34})\sigma_{23} + (\pi_{25} - \pi_{35})\sigma_{13})}{n_3^2 - n_2^2 + n_2^2 n_3^2 ((\pi_{24} - \pi_{34})\sigma_{23} + (\pi_{25} - \pi_{35})\sigma_{13})} \right)$
	$= n_2 - n_2^3 \frac{M_z}{\pi R^4} \left(\pi_{24} X + \pi_{25} Y + \frac{n_2^2 n_3^2 \frac{2M_z}{\pi R^4} (\pi_{44} X + \pi_{45} Y)^2}{n_3^2 - n_2^2 + n_2^2 n_3^2 \frac{2M_z}{\pi R^4} ((\pi_{24} - \pi_{34}) X + (\pi_{25} - \pi_{35}) Y)} \right)$
	$\simeq n_2 - \frac{n_2^3}{2} (\pi_{24}\sigma_{23} + \pi_{25}\sigma_{13}) = n_2 - n_2^3 (\pi_{24}X + \pi_{25}Y) \frac{M_z}{\pi R^4}$
	$n_{3}' = n_{3} - \frac{n_{3}^{3}}{2} \left(\pi_{34}\sigma_{23} + \pi_{35}\sigma_{13} - \frac{n_{2}^{2}n_{3}^{2}(\pi_{44}\sigma_{23} + \pi_{45}\sigma_{13})^{2}}{n_{3}^{2} - n_{2}^{2} + n_{2}^{2}n_{3}^{2}((\pi_{24} - \pi_{34})\sigma_{23} + (\pi_{25} - \pi_{35})\sigma_{13})} \right)$
	$= n_3 - n_3^3 \frac{M_z}{\pi R^4} \left(\pi_{34} X + \pi_{35} Y - \frac{n_2^2 n_3^2 \frac{2M_z}{\pi R^4} (\pi_{44} X + \pi_{45} Y)^2}{n_3^2 - n_2^2 + \frac{2M_z}{\pi R^4} n_2^2 n_3^2 ((\pi_{24} - \pi_{34}) X + (\pi_{25} - \pi_{35}) Y)} \right)$
	$\approx n_3 - \frac{n_3^3}{2}(\pi_{34}\sigma_{23} + \pi_{35}\sigma_{13}) = n_3 - n_3^3(\pi_{34}X + \pi_{35}Y)\frac{M_z}{\pi R^4}$
	$\delta(\Delta n)_{23} = \frac{1}{2}(n_3^3\pi_{34} - n_2^3\pi_{24})\sigma_{23} + \frac{1}{2}(n_3^3\pi_{35} - n_2^3\pi_{25})\sigma_{13}$
Induced birefringence	$-\frac{1}{2}(n_3^3+n_2^3)\frac{n_2^2n_3^2(\pi_{44}\sigma_{23}+\pi_{45}\sigma_{13})^2}{n_3^2-n_2^2+(\pi_{24}-\pi_{34})\sigma_{23}n_2^2n_3^2+(\pi_{25}-\pi_{35})\sigma_{13}n_2^2n_3^2}$
	$= \frac{M_z}{\pi R^4} \left((n_3^3 \pi_{34} - n_2^3 \pi_{24}) X + (n_3^3 \pi_{35} - n_2^3 \pi_{25}) Y \right)$
	$-(n_{3}^{3}+n_{2}^{3})\frac{n_{2}^{2}n_{3}^{2}\frac{2M_{z}}{\pi R^{4}}(\pi_{44}X+\pi_{45}Y)^{2}}{n_{3}^{2}-n_{2}^{2}+\frac{2M_{z}}{\pi R^{4}}n_{2}^{2}n_{3}^{2}\left((\pi_{24}-\pi_{34})X+(\pi_{25}-\pi_{35})Y\right)}$
	$\simeq \frac{1}{2}(n_3^3\pi_{34} - n_2^3\pi_{24})\sigma_{23} + \frac{1}{2}(n_3^3\pi_{35} - n_2^3\pi_{25})\sigma_{13}$
	$= \frac{M_z}{\pi R^4} \Big((n_3^3 \pi_{34} - n_2^3 \pi_{24}) X + (n_3^3 \pi_{35} - n_2^3 \pi_{25}) Y \Big)$
ptical	$\tan 2\zeta_X = \frac{2n_2^2 n_3^2 (\pi_{44} \sigma_{23} + \pi_{45} \sigma_{13})}{n_2^2 - n_3^2 + n_2^2 n_3^2 (\pi_{24} - \pi_{34}) \sigma_{23} + n_2^2 n_3^2 (\pi_{25} - \pi_{35}) \sigma_{13}}$
ngle of o icatrix re	$=\frac{4n_2^2n_3^2\frac{M_z}{\pi R^4}(\pi_{44}X+\pi_{45}Y)}{2M}$
Ar indi	$n_{2}^{2} - n_{3}^{2} + n_{2}^{2} n_{3}^{2} \frac{2M_{z}}{\pi R^{4}} ((\pi_{24} - \pi_{34})X + (\pi_{25} - \pi_{35})Y)$

Torsion moment - M_z , stress tensor components- σ_{13}, σ_{22}	, and direction of light propagation - $k \parallel$	Y
---	--	---

	$n_{3}' = n_{3} - \frac{n_{3}^{3}}{2} \left(\pi_{34}\sigma_{23} + \pi_{35}\sigma_{13} + \frac{n_{1}^{2}n_{3}^{2}(\pi_{54}\sigma_{23} + \pi_{55}\sigma_{13})^{2}}{n_{1}^{2} - n_{2}^{2} + n_{1}^{2}n_{2}^{2}((\pi_{24} - \pi_{14})\sigma_{22} + (\pi_{25} - \pi_{15})\sigma_{12})} \right)$
	$= n_3 - n_3^3 \frac{M_z}{\pi R^4} \left(\pi_{34} X + \pi_{35} Y + \frac{n_1^2 n_3^2 \frac{2M_z}{\pi R^4} (\pi_{54} X + \pi_{55} Y)^2}{n_1^2 - n_3^2 + n_1^2 n_3^2 \frac{2M_z}{\pi R^4} ((\pi_{34} - \pi_{14}) X + (\pi_{35} - \pi_{15}) Y)} \right)$
e indices	$\simeq n_3 - \frac{n_3^3}{2}(\pi_{34}\sigma_{23} + \pi_{35}\sigma_{13}) = n_3 - n_3^3(\pi_{34}X + \pi_{35}Y)\frac{M_z}{\pi R^4}$
Refractiv	$n_{1}' = n_{1} - \frac{n_{1}^{3}}{2} \left(\pi_{14}\sigma_{23} + \pi_{15}\sigma_{13} - \frac{n_{1}^{2}n_{3}^{2}(\pi_{54}\sigma_{23} + \pi_{55}\sigma_{13})^{2}}{n_{1}^{2} - n_{3}^{2} + (\pi_{34} - \pi_{14})\sigma_{23}n_{1}^{2}n_{3}^{2} + (\pi_{35} - \pi_{15})\sigma_{13}n_{1}^{2}n_{3}^{2}} \right)$
-	$= n_1 - n_1^3 \frac{M_z}{\pi R^4} \left(\pi_{14} X + \pi_{15} Y - \frac{n_1^2 n_3^2 \frac{2M_z}{\pi R^4} (\pi_{54} X + \pi_{55} Y)^2}{n_1^2 - n_3^2 + \frac{2M_z}{\pi R^4} n_1^2 n_3^2 ((\pi_{34} - \pi_{14}) X + (\pi_{35} - \pi_{15}) Y)} \right)$
	$\simeq n_1 - \frac{n_1^3}{2} (\pi_{14} \sigma_{23} + \pi_{15} \sigma_{13}) = n_1 - n_1^3 (\pi_{14} X + \pi_{15} Y) \frac{M_z}{\pi R^4}$
	$\delta(\Delta n)_{13} = \frac{1}{2}(n_1^3\pi_{14} - n_3^3\pi_{34})\sigma_{23} + \frac{1}{2}(n_1^3\pi_{15} - n_3^3\pi_{35})\sigma_{13}$
ė	$-\frac{1}{2}(n_3^3+n_1^3)\frac{n_1^2n_3^2(\pi_{54}\sigma_{23}+\pi_{55}\sigma_{13})^2}{n_1^2-n_3^2+(\pi_{34}-\pi_{14})\sigma_{23}n_1^2n_3^2+(\pi_{35}-\pi_{15})\sigma_{13}n_1^2n_3^2}$
ingenc	$= \frac{M_z}{\pi R^4} \left((n_1^3 \pi_{14} - n_3^3 \pi_{34}) X + (n_1^3 \pi_{15} - n_3^3 \pi_{35}) Y \right)$
nduced birefr	$-(n_{3}^{3}+n_{1}^{3})\frac{n_{1}^{2}n_{3}^{2}\frac{2M_{z}}{\pi R^{4}}(\pi_{54}X+\pi_{55}Y)^{2}}{n_{1}^{2}-n_{3}^{2}+\frac{2M_{z}}{\pi R^{4}}n_{1}^{2}n_{3}^{2}\left((\pi_{34}-\pi_{14})X+(\pi_{35}-\pi_{15})Y\right)} \Big)$
	$\approx \frac{1}{2}(n_1^3 \pi_{14} - n_3^3 \pi_{34})\sigma_{23} + \frac{1}{2}(n_1^3 \pi_{15} - n_3^3 \pi_{35})\sigma_{13}$
	$= \frac{M_z}{\pi R^4} \Big((n_1^3 \pi_{14} - n_3^3 \pi_{34}) X + (n_1^3 \pi_{15} - n_3^3 \pi_{35}) Y \Big)$
otical itation	$\tan 2\zeta_Y = \frac{2n_1^2 n_3^2 (\pi_{54}\sigma_{23} + \pi_{55}\sigma_{13})}{n_1^2 - n_3^2 + n_1^2 n_3^2 (\pi_{34} - \pi_{14})\sigma_{23} + n_1^2 n_3^2 (\pi_{35} - \pi_{15})\sigma_{13}}$
le of o _l atrix ro	$4n_1^2n_3^2\frac{M_z}{\pi R^4}(\pi_{54}X+\pi_{55}Y)$
Ang indic	$=\frac{1}{n_1^2-n_3^2+n_1^2n_3^2\frac{2M_z}{\pi R^4}((\pi_{34}-\pi_{14})X+(\pi_{35}-\pi_{15})Y)}$

Torsion moment- M_z , stress tensor co	omponents- σ_{13}, σ_{23} and	l direction of light propagation-	$k \parallel Z$
--	---	-----------------------------------	-----------------

-	
	$n_{1}' = n_{1} - \frac{n_{1}^{3}}{2} \left(\pi_{14}\sigma_{23} + \pi_{15}\sigma_{13} + \frac{n_{1}^{2}n_{2}^{2}(\pi_{64}\sigma_{23} + \pi_{65}\sigma_{13})^{2}}{n_{2}^{2} - n_{1}^{2} + n_{2}^{2}n_{2}^{2}((\pi_{14} - \pi_{64})\sigma_{23} + (\pi_{15} - \pi_{65})\sigma_{13})} \right)$
	$n_{1}^{2}n_{2}^{2} = \frac{2M_{z}}{n_{1}^{2}} \left(\pi_{64}X + \pi_{65}Y\right)^{2}$
	$= n_1 - n_1^3 \frac{\pi r_z}{\pi R^4} \left(\pi_{14} X + \pi_{15} Y + \frac{\pi R}{n_2^2 - n_1^2 + n_1^2 n_2^2 \frac{2M_z}{\pi R^4} ((\pi_{14} - \pi_{24}) X + (\pi_{15} - \pi_{25}) Y)} \right)$
indices	$\simeq n_1 - \frac{n_1^3}{2} (\pi_{14}\sigma_{23} + \pi_{15}\sigma_{13}) = n_1 - n_1^3 (\pi_{14}X + \pi_{15}Y) \frac{M_z}{\pi R^4}$
Refractive	$n_{2}' = n_{2} - \frac{n_{2}^{3}}{2} \left(\pi_{24}\sigma_{23} + \pi_{25}\sigma_{13} - \frac{n_{1}^{2}n_{2}^{2}(\pi_{64}\sigma_{23} + \pi_{65}\sigma_{13})^{2}}{n_{2}^{2} - n_{1}^{2} + n_{2}^{2}n_{1}^{2}((\pi_{14} - \pi_{24})\sigma_{23} + (\pi_{15} - \pi_{25})\sigma_{13})} \right)$
Ł	$= n_2 - n_2^3 \frac{M_z}{\pi R^4} \left(\pi_{24} X + \pi_{25} Y - \frac{n_1^2 n_2^2 \frac{2M_z}{\pi R^4} (\pi_{64} X + \pi_{65} Y)^2}{n_2^2 - n_1^2 + \frac{2M_z}{\pi R^4} n_1^2 n_2^2 ((\pi_{14} - \pi_{24}) X + (\pi_{15} - \pi_{25}) Y)} \right)$
	$ \approx n_2 - \frac{n_2^3}{2} (\pi_{24}\sigma_{23} + \pi_{25}\sigma_{13}) = n_2 - n_2^3 (\pi_{24}X + \pi_{25}Y) \frac{M_z}{\pi R^4} $
	$\delta(\Delta n)_{12} = \frac{1}{2}(n_2^3 \pi_{24} - n_1^3 \pi_{14})\sigma_{23} + \frac{1}{2}(n_2^3 \pi_{25} - n_1^3 \pi_{15})\sigma_{13}$
	$-\frac{1}{2}(n_1^3+n_2^3)\frac{n_1^2n_2^2(\pi_{64}\sigma_{23}+\pi_{65}\sigma_{13})^2}{n_2^2-n_1^2+(\pi_{14}-\pi_{24})\sigma_{23}n_1^2n_2^2+(\pi_{15}-\pi_{25})\sigma_{13}n_1^2n_2^2}$
ingence	$= \frac{M_z}{\pi R^4} \left((n_2^3 \pi_{24} - n_1^3 \pi_{14})X + (n_2^3 \pi_{25} - n_1^3 \pi_{15})Y \right)$
ed birefr	$n_1^2 n_2^2 \frac{2M_z}{\pi R^4} (\pi_{64} X + \pi_{65} Y)^2$
Induce	$-(n_{1} + n_{2}) \frac{1}{n_{2}^{2} - n_{1}^{2} + \frac{2M_{z}}{\pi R^{4}} n_{1}^{2} n_{2}^{2} ((\pi_{14} - \pi_{24})X + (\pi_{15} - \pi_{25})Y) $
	$\simeq \frac{1}{2}(n_2^3\pi_{24} - n_1^3\pi_{14})\sigma_{23} + \frac{1}{2}(n_2^3\pi_{25} - n_1^3\pi_{15})\sigma_{13}$
	$=\frac{M_z}{\pi R^4} \Big((n_2^3 \pi_{24} - n_1^3 \pi_{14}) X + (n_2^3 \pi_{25} - n_1^3 \pi_{15}) Y \Big)$
otical tation	$\tan 2\zeta_Z = \frac{2n_1^2 n_2^2 (\pi_{64}\sigma_{23} + \pi_{65}\sigma_{13})}{n_2^2 - n_1^2 + n_1^2 n_2^2 (\pi_{14} - \pi_{24})\sigma_{23} + n_1^2 n_2^2 (\pi_{15} - \pi_{25})\sigma_{13}}$
gle of op atrix ro	$4n_1^2n_2^2\frac{M_z}{\pi R^4}(\pi_{64}X+\pi_{65}Y)$
Ang indic	$=\frac{1}{n_{2}^{2}-n_{1}^{2}+n_{1}^{2}n_{2}^{2}\frac{2M_{z}}{\pi R^{4}}((\pi_{14}-\pi_{24})Y+(\pi_{15}-\pi_{25})Y)}$

accompanied by additional normal displacements in any other geometry of sample loading, thus leading to appearance of the compression and/or extension stress components. As a matter of fact, this is one of the reasons why complicated relations appear that couple so many piezooptic tensor components with the mechanical stresses. This is also a clear reason for increasing error of determination of a particular piezooptic coefficient.

In spite of promises associated with the piezooptic experiments that use torsion loading, the relations for the optical indicatrix perturbed by the torsion in crystals have not yet been derived. As a result, the goal of the present work is to deduce theoretical relations for the refractive indices, the birefringence and the optical indicatrix rotation describing the torsion of crystals belonging to different point groups of symmetry.

2. Results

In general, the piezooptic tensor may be presented as

	σ_{11}	σ_{22}	σ_{33}	σ_{32}	σ_{31}	σ_{21}
ΔB_{11}	π_{11}	π_{12}	π_{13}	π_{14}	π_{15}	π_{16}
ΔB_{22}	π_{21}	π_{22}	π_{23}	π_{24}	π_{25}	π_{26}
ΔB_{33}	π_{31}	π_{32}	π_{33}	π_{34}	π_{35}	π_{36} .
ΔB_{32}	π_{41}	π_{42}	π_{43}	π_{44}	π_{45}	π_{46}
ΔB_{31}	π_{51}	π_{52}	π_{53}	π_{54}	π_{55}	π_{56}
ΔB_{21}	π_{61}	π_{62}	π_{63}	π_{64}	π_{65}	π_{66}

The piezooptic coefficients under our interest are indicated by the blue colour. The general form of equation for the optical indicatrix subjected to the torsions around the X, Y and Z axes (the torque moments M_x , M_y and M_z , respectively) is as follows:

$$B_{11}X^2 + B_{22}Y^2 + B_{33}Z^2 + 2B_{23}YZ + 2B_{13}XZ + 2B_{12}XZ = 1,$$
(6)

where B_{ij} denote the coefficients depending upon the stress tensor components and, subsequently, on the torque moments.

The optical indicatrix parameters may be derived basing on eigen values of the optical impermeability tensor for different cross sections perpendicular to the light wave vector direction. The principal refractive indices, the optical birefringence and the angles of the optical indicatrix rotation thus obtained by us for the crystals and textures of different symmetry systems are presented in Tables 1 to 9.

3. Conclusion

In the present work we have derived the relations that describe the optical indicatrix changes appearing for all of the point symmetry groups for different cases of geometries concerned with the torque moment application and the light propagation. The aim of this study has not included a comprehensive analysis of the relations presented above, so that

the paper has mainly a systematic value. A detailed analysis should be performed separately for each specific experimental situation.

References

- 1. Narasimhamurty T S, Photoelastic and electro-optic properties of crystals. New York: Plenum, (1981).
- Mytsyk B, 2003. Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. I. Methodology for the studies of piezo-optical effect. Ukr. J. Phys. Opt. 4: 1–26.
- Mytsyk B, 2003. Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. II. Analysis of experimental data. Ukr. J. Phys. Opt. 4: 105–118.
- Vasylkiv Yu, Kvasnyuk O, Krupych O, Mys O, Maksymuk O and Vlokh R, Reconstruction of 3D stress fields basing on piezooptic experiment. 2009. Ukr. J. Phys. Opt. 10: 22–37.
- 5. Peng H J, Wong S P and Ho H P, 2004. Measurement of orientation dependent stressoptic coefficient of GaAs single crystals. Appl. Phys. Lett. **84**: 1829–1831.
- 6. Vlokh RO, Pyatak YA and Skab IP, 1991. The elasto-optic effect in LiNbO₃ crystals under the torsion. Fiz. Tverd. Tela. **33**: 2467–2470.
- 7. Vlokh R, Kostyrko M and Skab I, 1998. Principle and application of crystallo-optical effects induced by inhomogeneous deformation. Japan. J. Appl. Phys. **37**: 5418–5420.
- 8. Vlokh R, Pyatak Y and Skab I, 1992. Elasto-optic effect in LiNbO₃ under the crystal bending. Ferroelectrics. **126**: 239–242.
- 9. Vlokh R, Kostyrko M and Skab I, 1997. The observation of "neutral" birefringence line in LiNbO₃ crystals under torsion. Ferroelectrics. **203**: 113–117.
- 10. Vlokh R O, Kostyrko M E and Skab I P, 1997. Description of gradients of piezogyration and piezo-optics caused by twisting and bending. Crystallogr. Rep. **42**: 1011–1013.
- 11. Sirotin Yu I and Shaskolskaya M P. Fundamentals of crystal physics. Moscow: Nauka (1979).

Skab I., Vasylkiv Yu., Savaryn V. and Vlokh R., 2010. Relations for optical indicatrix parameters in the conditions of crystal torsion. Ukr.J.Phys.Opt. **11**: 193–240.

Анотація. В роботі отримані співвідношення, які описують зміни оптичних індикатрис в кристалах всіх точкових груп симетрії при різних геометріях прикладання торсійного моменту і напрямках поширення світла.