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Abstract 

We show that non-principal piezooptic coefficients can be quite accurately 
determined after a distribution of shear strain components under torsion of 
LiNbO3 crystal rod has been studied. The piezooptic coefficient 14  of LiNbO3 

crystals found in this way is 13 2
14 (8.87 0.28) 10 m /N    , while the 

corresponding error is very low and amounts to 3.1%. 
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1. Introduction 
The piezooptic effect consists in changes of optical impermeability coefficients ijB  (or 

refractive indices 2(1/ )ij ijB n ) of a medium under the action of mechanical strains kl . 

It can be described by the relation 
0

ij ij ij ijkl klB B B      ,      (1) 

where ijkl  is a fourth rank piezooptic tensor, and ijB  and 0
ijB  denote impermeability 

tensors of strained and mechanically free samples, respectively. Usually this effect is 
studied while applying to samples homogeneous mechanical stresses. 

It is well known (see, e.g., [1]) that the piezooptic coefficients are usually measured 
with a high error which can exceed 30%. This error is caused by misalignments of 
loading and, what is more important, by a so called barrel-shaped distortion that appears 
due to a friction force existing among sample faces, a cover cap and a substrate, which 
are used for sample loading. As a result, the distribution of stresses inside a sample is 
generally unknown. In order to determine the piezooptic coefficients more precisely, a so-
called three-point bend technique is often used [2]. Then the distribution of stresses inside 
the sample is determined in advance. The same should be true for the application of 
torsion moment to the sample. Moreover, using of the torsion seems to be advantageous 
since it enables determining the piezooptic coefficients which usually cannot be measured 
due to a complicated experimental geometry or which should be recalculated in a 
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cumbersome way from the indirect measurement results [3, 4], thus leading to increasing 
error that can exceed typical mean values of the piezooptic coefficients. The components 
of the piezooptic tensor belonging to this type are   (in the matrix notation), where 

1, 2, ...6   and 4, 5, 6  . 
As shown in our earlier works [5–9], the application of torsion [5, 6, 8, 9] or bending 

[6, 7, 9] stresses would lead to specific distributions of the optical birefringence and the 
optical indicatrix rotation in crystals. Under the torsion around a Z axis, a special point of 
zero induced birefringence has been revealed in the geometrical centre of a sample of XY 
cross section, which corresponds to a zero shift stress components 13  and 23 . This 
point lies on the torsion axis. It has been found that the birefringence increases linearly 
with increasing distance from the geometrical centre of the XY cross section of a sample. 
Moreover, it has been shown that the birefringence distribution forms a conical surface in 
the coordinates ( , ,X Y n ) [1, 2]. A single-laser beam polarimetric technique has been 
used in those experiments, involving a beam scanning across XY-face of a sample. This 
technique has a low resolution limited by a laser beam diameter and so it could be 
successfully replaced with a method of imaging polarimetry.  

When a torsion deformation around Z axis is applied to a cylindrical sample, the 
strain tensor components may be defined as [10]: 

4 54
2 ( )zM X Y

R    


  ,    (2) 

where z
S

M r PdS  , 4 5,    is the Kronecker delta, R the cylinder radius, S the 

square of the cylinder basis, and P the stress. Therefore we deal with two shear 
components of the stress tensor, 32  and 31 : 

4 32 4
2 zM X

R
 


       (3) 

and 

5 31 4
2 zM Y

R
 


  ,     (4) 

which linearly depend on the coordinates. The latter dependences enable one to determine 
unambiguously a distribution of shear strain tensor components inside a sample under 
study. Moreover, application of the torsion moment can provide purely tangential 
displacements (or shear strain components), which otherwise (i.e., under other geometries 
of sample loading) are usually accompanied by normal displacements, thus leading to 
simultaneous appearance of compression and/or extension strain components. Actually, a 
situation in which many strain components simultaneously appear in the same experiment 
triggers a necessary consideration of many complicated relationships among whole sets of 
piezooptic tensor components and mechanical strains. In its turn, this is one of the reasons 
for increasing typical errors of determination of particular piezooptic coefficients.  
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As a consequence of the above consideration, the present work is devoted to analysis 
of the conditions under which a non-principle piezooptic tensor component 14  can be 
determined using a torsion deformation of LiNbO3 crystals. 

2. Experimental 
LiNbO3 crystals belong to the point symmetry group 3m. The crystal used in our 
experiment was prepared as an octahedral prism, with its lateral faces being parallel to Z 
axis (see Fig. 1) and the basis parallel to XY plane. The sample had a length of 13 mm 
along the Z axis and a distance of 6 mm between the lateral faces. YZ plane was accepted 
to be parallel to one of the symmetry mirror planes. The light of a He-Ne laser (the 
wavelength of 632.8 nm  ) propagated along the Z axis which represents an optic axis 
of the crystal. 

 
Fig. 1. Shape and orientation of LiNbO3 crystal sample. 

 

 

Fig. 2. Schematic representation of the imaging polarimeter (I – light 
source section; II – polarisation generator; III – specimen section; IV – 
polarisation analyser; and V – controlling unit): 1 – He-Ne laser; 2 – ray 
shutter; 3, 8 – polarisers; 4, 9 – quarter-wave plates; 5 – coherence 
scrambler; 6 – beam expander; 7 – spatial filter; 10 – analyser;  
11 – objective lens; 12 – CCD camera; 13 – TV monitor; 14 – frame 
grabber; 15 – PC; 16 – shutter’s controller; 17 – step motors’ controllers; 
18 – step motors; 19 – reference position controller.  
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A torsion moment Mz was applied to one of the basic faces of a crystalline prism, 
while the opposite basic face was kept fixed. An experimental setup for birefringence 
measurements is shown in Fig. 2. While studying the optical birefringence, we exploited 
an imaging polarimetric setup described elsewhere (see [11] and Fig. 2). The only minor 
modifications were that a quarter-wave plate (a component 9 in Fig. 2) was removed from 
polarisation generator and that linearly polarised incident light was used. The rotation 
stage angles corresponding to minimums of transmitted light intensity detected by a CCD 
camera were ascribed to the extinction positions. The optical birefringence was studied 
with a Senarmont technique. In this case the quarter wave plate was placed behind the 
sample. The birefringence has been calculated following from the formula /n d   , 

where   is the rotation angle of polarisation plane behind the quarter wave plate with 
respect to the initial position and d the specimen thickness along the direction of light 
propagation. 

3.Experimental results 

Distributions of the birefringence induced by the torsion moment 363.77 10 N×mzM    
along the X and Y axes and the bisector of the X and Y axes are presented in Fig. 3. These 
dependences are linear, at least for the distances less than 2 mm  from the torsion axis. 
A deviation from the linear dependence is observed for larger distances. It could be 
explained by both the influence of sample boundaries and a deviation of the sample shape 
from the cylindrical one. 

The piezooptic tensor for the point symmetry group 3m is as follows: 
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 
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
 



.   (5) 

Then the equation of the optical indicatrix perturbed by the two shear strains reads as  
2 2 2

11 14 32 11 14 32 33

44 32 44 31 14 31

( ) ( )
2 2 2 1.

B X B Y B Z
YZ XZ XY

   
     

    
  

   (6) 

Now let us consider the birefringence induced by the torsion. Using Eqs. (3) and (4), 
one can represent the coordinate dependences of the birefringence as dependences on the 
strain tensor components (see Fig. 3). For example, we have the strain component 

31 0   in the Y = 0 plane and so the optical indicatrix equation is given by 
2 2 2

11 14 32 11 14 32 33 44 32( ) ( ) 2 1B X B Y B Z YZ             (7) 
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(see Fig. 3a). Then the cross section of the Fresnel ellipsoid by the plane orthogonal to the 
direction of optical wave propagation (i.e., the section by the plane Z = 0) is easily found 
as  

2 2
11 14 32 11 14 32( ) ( ) 1B X B Y       .    (8) 

-1 .5 -1 .0 -0 .5 0 .0 0 .5 1 .0 1 .5

-1 .5

-1 .0

-0 .5

0 .0

0 .5

1 .0

1 .5

-3 -2 -1 0 1 2 3

 

 

 


N m 2


n,

 1
0-5

x, m m

(a) 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-3 -2 -1 0 1 2 3



, 106 N/m2

n
, 1

0-5

x, mm

 (b) 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
-3 -2 -1 0 1 2 3


n,

 1
0-5

, mm

, 106 N/m2

(c) 

Fig. 3. Distribution of birefringence induced by the torsion moment 
363.77 10 N×mzM    (a) along the X axis, (b) the Y axis and (c) the 

bisector of the X and Y axes: circles are the experimental data and solid 
lines the linear fitting. A scale corresponding to the shear strain 
component is also shown. 
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The principle values of the refractive indices in the XY plane and the corresponding 
birefringence are defined by the relations 

3 3
1 0 0 14 32 0 0 14 4

3 3
2 0 0 14 32 0 0 14 4

3 3
0 14 32 0 14 4

1 ,
2
1 ,
2

2 ,

z

z

z

Mn n n n n X
R

Mn n n n n X
R

Mn n n X
R

  


  


  


   

   

  

   (9) 

where 0n  is the initial ordinary refractive index.  
The results presented in Fig. 3a correspond exactly to Eqs. (9). Thus, the piezooptic 

coefficient may be determined as 

14 3
0 32

n
n





 ,     (10) 

where the refractive index is equal to 2.28647on   at the wavelength of 632.8 nm [12].  

For the X = 0 plane one has the component 32 0   (see Fig. 3b). As a result, the XY 
cross section of the optical indicatrix given by Eq. (7) reduces to 

2 2
11 11 14 312 1B X B Y XY    ,   (11) 

where 

14 3
0 31

n
n





 .     (12) 

For the case of light propagation along the bisector   of the X and Y axes (see 
Fig. 3c) one can obtain the following relation determining the birefringence value: 

3
0 14 2n n    ,     (13) 

while the relation for the piezooptic coefficient is given by 

14 3
0 2

n
n





 .     (14) 

The values of the piezooptic coefficient calculated following from the data presented 

above are 13 2
14 (8.36 0.02) 10 m /N     (Eq. (10), 13 2

14 (8.92 0.02) 10 m /N     

(Eq. (12)) and 13 2
14 (9.33 0.04) 10 m /N     (Eq. (14)). These values turn out to be 

close enough, with the mean coefficient being equal to 13 2
14 (8.87 0.28) 10 m /N    . 

Hence, the results of our experiment show that we deal with a precise enough 
technique for measuring non-principal piezooptic coefficients such as 14 . Namely, the 
torsion method suggested by us represents a new and precise technique for determining 
the piezooptic coefficients, with the error as small as 3.1%. Notice that the value of the 

14  coefficient derived by us agrees satisfactorily with that obtained in a number of other 

works with the interferometric techniques (e.g., 12 2
14 0.7 10 m /N    [13] and 
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12 2
14 0.81 10 m /N     [14]), though the relative errors of the latter is notably larger 

(15%, according to the estimations [14]). In other words, the accuracy of our technique is 
much higher than that presented in [14]. Here we should stress that determination of the 
sign of piezooptic coefficients does not represent a goal of this work. Nonetheless, this 
would be quite possible to accomplish in frame of our technique while verifying 
additionally the sign of the birefringence induced by the shear strains of predefined signs. 

It seems reasonable to consider in a more detail the following components of the 
strain tensor appearing under torsion of LiNbO3, which can lead to photoelastic coupling: 

11 14 22 14 334 4

32 44 31 55 12 144 4 4

,
2 2, 0,

2 2 4, , .

z z

z z z

M Me S X e S X e
R R
M M Me S X e S Y e S Y
R R R

 

  

   

  
   (15) 

According to Eqs. (15), five components of the strain tensor remain non-zero when 
the LiNbO3 crystals are being under torsion deformation around the Z axis. Let us write 
down the appropriate optical indicatrix perturbations separately for the X = 0 and Y = 0 
planes: 

2 2 2
11 11 33 44 13 41 12

14 13 66 12

2 2
2 2 1,

B X B Y B Z p e ZX p e ZX
p e XY p e XY

    
 

   (16) 

and 
2 2

11 11 11 12 22 14 32 11 12 11 11 22 14 32
2

33 41 11 41 22 14 32

( ) ( )

2 2 2 1,

B p e p e p e X B p e p e p e Y

B Z p e ZY p e ZY p e ZY

      

    
  (17) 

where ijp  are the photoelastic coefficients. The cross sections of these ellipsoids by the 

Z = 0 plane take the following forms: 
2 2

11 11 14 13 66 122 2 1B X B Y p e XY p e XY    ,   (18) 
and 

2 2
11 11 11 12 22 14 32 11 12 11 11 22 14 32( ) ( ) 1.B p e p e p e X B p e p e p e Y          (19) 

The principal refractive indices and the birefringence determined from Eqs. (16) and 
(19) are given by 

3
1,2 0 0 14 13 66 12

3 3
0 14 13 66 12 0 14 55 66 14 4

1 ( )
2

( ) 2 ( 2 ) z

n n n p e p e

Mn n p e p e n p S p S Y
R

  

    
  (20) 

Eqs. (20) yield in the principle refractive indices 
3

1 0 0 11 11 12 12 14 32

3
2 0 0 12 11 11 12 14 32

1 ( ),
2
1 ( ).
2

n n n p e p e p e

n n n p e p e p e

   

   
    (21) 

Then the corresponding birefringence may be found as 
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 3
0 11 12 11 22 14 32

1 ( )( ) 2
2

n n p p e e p e     .   (22) 

Accounting for Eq. (16) and the relations 66 11 12( ) 2p p p   and 44 55S S , one can 
represent Eq. (22) as 

3
0 14 55 66 14 42 ( 2 ) zMn n p S p S X

R
   .   (23) 

Thus, Eqs. (20) and (23) are similar and the dependences of the birefringence on the 
X and Y coordinates are the same. Using these relations, one can determine the sum of the 
photoelastic coefficients: 

4

14 44 66 14 3
0

2
2 z

n Rp S p S
M Xn


  .    (24) 

The elastic compliance coefficients for the lithium niobate crystals depend essentially 
on the electric conditions of samples and are equal to 12 2

44 17.0 10 m /NES   , 
12 2

14 1.02 10 m /NES    and 12 2
44 10.8 10 m /NDS    and 12 2

14 0.87 10 m /NPS    [15]. In 
our experiments we have used no action in order to electrically shorten the sample, so that 
the elastic compliances determined under constant field conditions should be used while 
estimating the photoelastic coefficients. It has been found that 14 6617.0 2.04 0.31p p  . 
This result in fact disagrees with the data [16]. Indeed, when using the values 

11 12 66 140.02, 0.08, 0.05, 0.08p p p p      [16], one can calculate 

14 6617.0 2.04 1.26p p  , though the photoelastic data reported in [16] are scattered 
much. Actually, the disagreement mentioned above may be, most probably, caused by 
non-controlled electrical conditions of samples in the experiments reported in [16] and in 
our studies. 

4.Conclusions 
Following from the effect of torsions on the optical birefringence measured for the 
LiNbO3 crystals, we have testified that the appropriate experiment can be used for precise 
determination of some of the piezooptic coefficients. Namely, we have shown that the 
exact measurements of spatial distribution of the shear strain components, under the 
conditions of twisted rod of crystal, may serve as a technique for determining the non-
principal piezooptic coefficients. The piezooptic coefficient 14  of LiNbO3 crystals has 

been found ( 13 2
14 (8.87 0.28) 10 m /N    ) with a very low error (3.1%) which is far 

less than the typical errors of piezooptic measurements. The photoelastic coefficients of 
LiNbO3 crystals have also been estimated. 
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Анотація. В роботі показано, що не основні п’єзооптичні коефіцієнти можуть бути 
достатньо точно визначені при встановленні розподілу зсувних напружень зумовлених 
крученням стержня кристалу LiNbO3. Визначений, таким чином, пєзооптичний коефіцієнт 

14  кристалів LiNbO3  становить 13 2
14 (8.87 0.28) 10 m /N    , тоді як відповідна 

похибка вимірювання дорівнює 3.1%. 


