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Abstract

The solutions are obtained to vector wave equation for nonparaxia beams
propagating along the optic axis in a uniaxial birefringent crystal. We have re-
vealed that circularly polarised nonparaxial beams may be presented as a set of
transverse electric and transverse magnetic waves keeping their structure up to a
scale factor when propagating. A beam with arbitrary field distribution may be
written as a composition of such the wave fields. We have shown that a circu-
larly symmetric vortex beam with the initial circular polarisation preserves its
structure inside the crystal. A circular symmetry of nonparaxial vortex beam with
the initial linear polarisation gets lost as the beam transmits through the crystal.
The circular symmetry is not recovered in the paraxial case, being an inherent
property of the linearly polarised beams.
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1. Introduction

Propagation of vortex beams in anisotropic crystalsis of obvious interest from both prac-
tical and theoretical points of view. On the one hand, modern technology needs specia
tools permitting to trap and transport micro objects. Optica vortices embedded in light
beams can implement this task. A comparatively simple way to produce singular beamsis
a computer-generated hologram technique (or phase masks method) [1]. However, it is
very difficult to employ the holograms in rea-time-scale systems without special com-
plex mechanical gadgets. At the same time, optically uniaxia crystals are capable of per-
forming the same operations without additional devices[2, 3].

On the other hand, theoretical description of singular optical processes in optically
birefringent crystals encounters too often mathematical difficulties. In particular, solu-
tions to the Maxwell egquations involve evolution integrals that very seldom lead to closed
expressions. As a rule, one obtains uncertain results for tightly focused (i.e., nonparaxial)
beams, which are right out of amajor interest for modern technologies.

To the present time, there has been a great number of works targeting propagation of
nonparaxial beams in free space or homogeneous media (see, e.g., [4-10] and references
therein). The key point in these studies is a right choice of vector-potential that can lead
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to awanted solution. A classical way for analysing the propagation of light in crystalsisa
plane-wave technique [11] that enables one to probe each direction in a crystal, looking
after the polarisation state transformations. However, any beam involves a great number
of rays (plane waves) propagating in different directions with different velocities. In order
to reproduce a picture as a whole, it is necessary to use a spectral integral technique [5].
Employing of this method for paraxial beams propagating through both uniaxial [12—14]
and biaxial [15-17] crystals has entailed fruitful results, while the expansion of this tech-
nique to nonparaxial beams again has resulted in solutions that need asymptotic or nu-
merical methods for their analysis.

Another approach to the problem is a technique of wave modes with eigen polarisa-
tions or, otherwise, a complex-source-point technique [18-22]. This method has been
used for the first time for atilted propagation of extraordinary Gaussian beam in a uniax-
ia birefringent crystal (see the work [19]). In the studies [23, 24], variations of the above
method have been employed for tilted vortex beams of the highest orders.

The aim of our work is to study the main properties of nonparaxial beams which
have their analogues among Laguerre-Gaussian paraxial beams propagating along the
optic axis of uniaxial birefringent crystals, using the technique of wave modes with eigen
polarisations.

2. Generatrix beams

Let us consider at first a genera solution to the Maxwell equations for the waves propa-
gating in an optically uniaxial birefringent crystal, with the permittivity tensor presented
as é=diag(¢,€,6;). For the case of monochromatic waves containing the factor

expliat}, the Maxwell equations acquire the following form:
VxE=-ik,H, VxH =ik,E,
VEE=0, VH =0.

Among a variety of different vector-potential forms used for free-propagating non-
paraxial beams [5], we choose the solutions for anisotropic case which possess a circular
symmetry of circularly polarised components of the field. Such a requirement corre-
sponds to two different cases related to (1) a transverse electric wave (E, =0) and (2) a

(D)

transverse magnetic one (H, =0), where the vector-potential A in the work [8] is di-
rected along z axis.
(1) Thetransverse electric wave field (E, =0):

The field components of the electric field may be presented as
EX =ay‘1’1, Ey =—8X‘I’1, EZ :O (2)
From Eqg. (1) one can write
(V><E)Z =—ikgH,

so that the longitudinal component of the magnetic field is as follows:
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HZ=—i—V2‘P. 3
PRARRE ©)

Moreover, we have
VH =9,H, +d,H, —'Eazvillfl -0.
Thus, the transverse components of the magnetic field may be written as

Hy = 'Eaiz\yl, H,
In order to find equation for the function ¥, , we use the relation
(VxH )X =—ikoeE, .
Substituting Egs. (3) and (4) in the above equation, we come to the Helmholtz scalar
equation:

- 'Eaf,z\{'l . (4)

VW, +02¥, +kie W, =0. (5)

The wave of such a type spreads over a crystal in a manner similar to the case of

homogeneous medium with the refractive index n, =+/e . We call this wave beam as a
nonparaxial ordinary generatrix beam.

(2) The transverse magnetic field (H, =0):
Let us choose the components of the magnetic field as
Hy=0,¥,, H,=-0,¥,, H,=0. (6)
Then we obtain from Eq. (1)
(V><H)z =ikoesE;,
so that the longitudinal component of the electric field is given by

I 2
E,=—V{Y¥,. 7
74 | 3J_2 ()

Further, from the condition VEE =0 wefind

[
S(aXEX +ayEy)+€3az(@VJ2_lP2j:O,

so that
i .2 i 2
EX :—@aleyz, Ey :—@ayzlyz. (8)
Equation for the ¥, function may be found basing on the relation
(VXE), =~ikgH,.

It has the following form:

V2w, + 8352y, 1 K269, =0, 9)
&
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Eq. (9) shows that the wave beam has a new scale over the z axis (Z = /&/e32) and

propagates with a new wave number (kg = kng ). We call this wave beam as a nonpar-

axial extraordinary generatrix beam.
The other types of vector-potential results in non-symmetric solutions associated
with deformed intensity distributions over the beam cross-section.

3. Vortex beam propagating along the optic axis of crystals
3.1. Modefields
A particular wave solution to the Helmholtz equation (5) in the spherical coordinates may
be written as [4]

¥1=jn(koR) P (cos8 Jexp(imp), (10)
where j, (x) stands for the spherical Bessel function of the first kind, P"(x) isthe Leg-

endre polynomia, R=+r?+2z* and cos@ :%. In order to form the wave function of

the beam propagating along z axis, we make the transformation z— z+iz,, where z, is

a characteristic parameter of the ordinary beam. The shift of a point light source to imagi-
nary region is equivalent to violation of spherical symmetry of the wave and its deforma-
tion along the z axis without breaking the axial symmetry, the solution given by Eq. (10)
as before obeying the wave equation [6-9]. Then the wave function of the ordinary beam
becomes

WM™ = 1 (koR ) R (cos8, ) exp(imp), (12)

with R, =/r? +(z+iz,)° and cosé, = ZJI;;ZO .

Correspondingly, a particular solution to Eq. (9) for the extraordinary beamsis

n

P = i (kRe) R (cos6, ) exp(imyp) (12)
Z+iz,

with R, = r2+(z’+ize)2 and cosg, = , Where z, stands for a characteristic

parameter of the extraordinary beam.
We choose the wave beams of the lowest order

(00) _ _ Jo(kRy)

b4 =Y((XYV,z =0 (13)
! 1 o) Jo(ikoZo)
(00) _ sy Jo(keRe)

b4 =¥, (XY,Z,k) =" (14)
2 2( kE) JO(Ikeze)

as generatrix functions, while the lowest-order spherical Bessel function is given by
jo(x) = (15)

X
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The electric field of the lowest-order ordinary vortex beam may be found from
Eq. (2). However, it makes a sense to use new variables u= x+iy, v=Xx—iy and acircu-

larly polarised basis E, =E, —iE,, E =E, +iE,. In this case the electric field of the

ordinary beam becomes

E®=9,¥,, E°=-0,¥;, E2=0, (16)
whereas the electric field of the extraordinary beam is given by the relations
_ i — [
E, =—@852‘P2, E =—@832‘P2, (17)
= i o2 [
E,=—V{¥,=4—9,%¥,. 18
z k083 112 k053 uv 1 2 ( )
Now let us form new extraordinary beam fields given by Eq. (8):
Ee, =Kot [Edz=[02,¥,dz=0,%,, (19)
[
e ko€ (= 2
El— e J.E_dZ:'[avz\Pde =8V‘P2 y (20)
’ [
ES =4 [9,,¥ 0z (21)
€3

These equations enable us to treat the ordinary and extraordinary beams in the same
form. Notice that the components of the former magnetic field must be integrated, too.

3.2. Vortex beam of the lowest order

Our aim is to match the beam we can produce at the crystal input (z=0) in an isotropic
medium with the refractive index n, with the beam field inside a crystal (in the same
z=0 plane). Our requirement is that the left-hand polarised (LHP) component of the
beam E,_(z=0) should vanish in the plane z= 0. We aso assume the reflected wave to

be negligibly small. Let usfirst verify whether the superposition
E, = aE] +bE] (22)

corresponds to our requirement for the transverse field components. Using Egs. (13),
(14), (16), (19) and (20), we write

E1,+ :au (\Pl"rlllz), Elv_:—av(lyl—\l"z), (23)
where a and b are constants. L et us choose anew normalisation in the form
_ 2z J_o(_lkozo), b—_2% lo (_Ikeze) (233
KoWo Jl('kozo) KeWo Jl('keze)
and obtain

o R i1(iKoZo) R Jr(ikeZe)
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- :_i{ii 1(6Ro) iz J1(keRe) , (25)
Wo | Ry ia(ikeZo) Re ia(ikeZe)

with w, being some constant a physical meaning of which will be defined later on. Be-

sides, we made use of therelation

( d Jm[@}(—l)mj”%ﬁ. (26)

xdx X X

In fact, we superpose transverse electric and transverse magnetic fields in Egs. (24)
and (25). For convenience, we choose the normalisation coefficients a and b in
Eq. (234) inside the crystal so that they transform as a=b before the crystal. Since we do
not solve the boundary problem, such normalisation isjustified.

In this assumption, the wave field before the crystal has only the right-hand polarised

(RHP) component, so that E, (z=0,beforethecrystal)=0. In the boundary plane z=0

the transverse electric field E(lo) before the crystal is converted into the same transverse

electric field. The transverse magnetic field E'® is converted in the same manner, though

with the refractive
index n, and the

11

0.81 other scale for the z

coordinate. Naturally,
in the z=0 plane
inside  the crys
tal, the E_(z=0,
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/
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Fig. 1. Normalised intensity distributions 3, (r,z) for the field distribution for
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component at z=0. smal, the ratio of
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total intensities for the LHP and RHP components is about 0.01. As the crystal length
increases, field oscillations are smoothed. However, a ripple seen in Fig. 1 on the enve-
lope curves for the nonparaxial beam inside the crystal testifies upon fast oscillations in
the beam at the initial plane. Evolution of the intensity distribution and the wave front
shape for the beam components near the initial plane are shown in Fig. 2.

zx10 'm zx10‘7m
8 64 20 2 4 6 8

0
-20-

‘:// \ )
::\// o

#oill 0 i
0N AN ON &~ O ®
10 Tm

i

T

rx10 m

-7
rx10 'm
0N AN O N A O

S

intensity phase front

Fig. 2. Section in r0z plane of intensity distribution and phase front for the
circularly polarised components of nonparaxial beam with w, =1um, | =-1.

Let us now consider a paraxial approximation of the above field. Obviously, the fac-
tor in the brackets in E,_ iszero at uv=r?=0,z=0. The complex radius R, in the vi-
cinity of r =0 may befound as

koRy =k, uv+(z+izo)2

, uv . k2 (27)
=k, (z+i I+ —— =k (z+izy) + ——
ko(2+17) (i) o(2+1)+ 5 iy
where uv=r? = x? + y* and we have taken into account that
2
—|<<L. (28)
(z+i2)

However, the requirement given by Eq. (28) is nothing but the paraxial approxima-
tion for the wave beams, and
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jo(x) = 30X _ Q5% (29)

In our case, we make use of therelation cosx = (e +e"x)/2,sotha1

o0l-lf%) - 2l |
2( Zo), (30

zexp<—ikoz>eXp<kozo>exp[—mé;J
with Wo=m being the beam waist at the z=0 plane, o,=1-iz/z, and
|lexp(-ik,R, )| >> [exp(ik,R, )| . We obtain finally
(2
cos(koRs) = xp(ikr) P o ( mé—aj
Let us also use the approximation kR, =k, (z+iz,) in the denominator of Eq. (29).

<<|(z+ izo)|7l in Eq. (29), we come to the expression

exp(koZo) &xP(-iko2) (_ r’ ] (31

Assuming that ‘ko(z+izo)2 N

Jl(kORO)z 2 kO(Z-HZO) W02(70

For the extraordinary beam we have
2

005(koRe) ~ &4p(-ik:2) ("eze)exp[—m;—a)

At the same time, using the same relations and Eq. (9), we obtain the relation
koZ = kng z\/eles = kO\/Z z=Kkyz, implying that both the ordinary and the extraordi-
nary beams propagate with the same phase velocities along the z axis. Also, since we

have ae=1—ii=1—i1/5/g3z/(k0\/gwg/2)=1—i2 with  Z,=Kwg/2 and

ki =&3 I\e ko = N3 /nyK,), the complex amplitude of the paraxial extraordinary beam is

characterised by its own wave number k. =n3/n2k,, contrary to the situation with the
ordinary paraxia beam (the wave number k). Note also that

lo(koRo) =1 e6p( 7 zixo‘z(z“_'fzj)exp(—méi ]:ih(kom @)

Thus, we arrive at the transverse electric field for the paraxia vortex beams of the
lowest order in the following form:

E:L+ ~_(G G J —ikoz, El_ ~i[&_gje—ik‘jzl (33)
Wol\Op Og '
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where G, . = exp(—r2 /wgao,e)laoye :

Evolution of the beam profiles shown in Fig. 3 demonstrates gradual transition of the
beam state from the nonparaxial to paraxial region of the beam’ s parameters.

0

Fig. 3. Radial intensity distribution3, in the RHP component for different beam
waists W, in the z =0 plane: curve 1 — wp =1.0 um, curve 2 — wo = 1.5 um, and
curve 3 —wp = 3.0 um.

3.3. Nonparaxial Gaussian beam
3.3.1. Circular polarisation

Generally speaking, wave fields with a smooth envelope lacking phase singularities do
not represent mode beams with eigen polarisations, in contrast to the vortex-bearing
beams which can be obtained by simple differentiation over u and v variables, as made in
the previous section. Nevertheless, these fields may be found by means of integral opera-
tors. Indeed, let us integrate Egs. (16) over the u variable:

E8’+ = J.au\Pldu = lI"l,
Eg’_ = J-aleldu.
Choosing the generatrix function ¥, in the form of Eq. (13) and using Eq. (32) for
the paraxia approximation, we come to the Gaussian envelope for the RHP component:

Jo(koRo)
E8, XY,2Ky) =——7. (35)
+ ) jo(ikoZ)
With the aid of Eq. (26) we obtain
ES- =——Jo (koRo)+ on koRo) du
for the LHP component. Taking into account Eq. (15), we find

E(()),—:_{_Jo(koRo)_ko_COS(koRo)}/jo(ikozo)- (36)

(34)
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Similarly we obtain the partial extraordinary field:

e / 1y = Jo(keRe)
For (0¥ 2be) =5 i) e

E&_<x,y,z:ke>={%m(m)—éms(ke&)}/jo<ikeze>. @)

However, the above partial ordinary and extraordinary beams cannot exist by them-
selves because they have amplitude singularities at the r = 0 axis. The partial beams

produce a stable superposition E, = Ej + Eg lacking amplitude singularities:

jo(koRo) , Jo(keRe)
olikezo) * olikeze)” >

=] it Bl ]| eloR)._sollR) [ g
o {v o(ikoZo) Jo(ikeZe) | V2| K3io(ikoZo) K& lo(ikeZe)

The expressions obtained above transform into typical paraxial ones under the parax-
ia condition given by Eq. (28):

Eo. (X ¥,2) ~ (Go + G )€ %7, (41)

Eos (% Y,2)=

0]

<N|o§\)

Bo- ~ _{%[Go = Ge]+—[04Go - O'eGe]} e, (42)

The field thus obtained describes propagation of the beam with the Gaussian enve-
lope in the initial plane z=0. The RHP component has also the Gaussian envelope in
each partial beam, whereas the LHP component has more complex shape of the envelope,
bearing a doubly charged centred optical vortex.

3.3.2. Linear polarisation

A treatment of nonparaxial Gaussian beam with the initial linear polarisation needs a
more detailed consideration of the structure of nonparaxial field. Any linearly polarised
field may be presented as a sum of two circularly polarised ones, with the same field dis-
tributions in the RHP and LHP components at the crystal input. The beam with the initial
field distribution like that given by Egs. (30) and (31) may be formed when integration in
Eq. (34) is performed over the v variable rather than u one. Then the field components
may be written as

= n_ V] Jo(kRo) _Jo(keRe) | 2| c0S(k;R,) — cos(keRe)
R o) {u{joakozo) jo<ikeze>} u{k&joakozo) ksjoakeze)}}’ o

- | io(koRo) | Jo(keRe)
Fo- (x y’z){ o (kozo) " jo<ikeze>}' @2
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z/k =200 z/k =40 z/k =200

Fig. 4. Evolution of conoscopic pattern for the E, and Ey components of

nonparaxial beam with the initial linear polarization directed along x and the
waist radius Wy /k =1, which is observed along the crystal with ny/ng =1.1.

The components of the beam with the initial linear polarisation are EJ(F") =E, +E,

and EE") = E_+ E_. This beam composition includes the beams with different vortices

(I'=0, =2 and | =-2). Besides, the scales for the partial beams along the z axis are
different. As aresult, the projection of linearly polarised electric field onto the cross sec-
tion of the beam has also different scales along the x and y axes, unlike the circularly po-
larised beams. The pattern observed must be elliptically deformed. Fig. 4 illustrates the
evolution of the conoscopic patterns for the field components E, and E, aong the crys-

tal length, provided that the initial linearly polarised field at the crystal input has the cir-
cular symmetry. As the nonparaxial beam propagates along the crystal, a contour of the
conoscopic pattern shows through a dark background. Although the Maltese cross for the
Ey component has a standard shape, the pattern for the E, component is slightly de-

formed even at a small propagation distance comparable with the light wavelength. The
vortex positions in a set of topological quadruples forming “the white cross’, have differ-
ent coordinates along the x and y axes. Deformation of the conoscopic pattern for the E,

component increases when the beam propagates further on. The eliptical deformation is
nonuniformly distributed through the cross section of the beam. It grows quickly as the
observation point moves away from the optic axis, vanishing in practice nearby this axis.
However, the elliptical deformation cannot exceed the value a/b=n,/ng, with a and b
being the axes of the intensity ellipse. Such a deformation effect represents geometrical
manifestation of the interference between nonparaxial wave beams (ordinary and extraor-
dinary) having different spatial scales.
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Notice that deformation of the pattern does not vanish even in the paraxial case [14,
18, 24], being inherent to linearly polarised beams. The above results are consistent with
the theoretical analysis [18, 25, 26] for paraxia beams propagating perpendicular or
nearly perpendicular to the optic axis in crystals. At the same time, this deformation is
very difficult to detect experimentally for the beams propagating along the optic axis of
any real crystals, since it is proportional to the ratio of refractive indices for the ordinary
and extraordinary beams. The effect is comparable with an astigmatic aberration imposed
by lens systems in nonparaxial beams. Nevertheless, the elliptical deformation has been
experimentally observed when the beam propagates nearly perpendicular to the optic axis
[25]. Inthe latter case rotation of the crystal would entail a precession of the beam axis.

3.4. High-order nonparaxial vortex beams

High-order wave beams bearing optical vortices and ring dislocations in a uniaxial crys-
tal, which have standard analogues in the paraxial approximation, may be produced by
means of the following procedure:

E\n—r‘d,(o,e) _ alerla\r/] : 43

m | _ant1am JO(ko,eRo,e)’ ( )
Fdy 9,

with the signs (F) being associated with the ordinary and extraordinary beams, respec-

tively. Indeed, at first we will assumethat n>m and find the function

an . n koe ; u " .

87 Jo(ko,eRo,e> =(-1) [T] (a] In (ko,eRo,e) , (44)
where we have used Eq. (26). It is seen from Eq. (44) that the operator d,, corresponds to
an event of birth of the vortex with a positive topological charge, whereas the operator

dy begets the n-charged optical vortex. Similarly, the operator 9, corresponds to an
event of birth of the vortex with a negative topological charge, whereas the operator 9"

gives rise to the m-charged optical vortex. At the same time, the operator 90} is topo-

logically neutral, being responsible for appearance of ring dislocations in the beam, at
least inthe z= 0 plane.

The common action of the operators 9}

iﬂ _(_1\" kO,e " am n jn(ko,eRo,e)
o ooefoe) = [ ? j au”“[u [ Roe ﬂ

:(_1){@}”%( m'j a" [a”ﬂ' nd jn(ko,eRo,e)} )

2 ) \m=jjoumou™ " qul Ry

.nlnun—mlmm m ko,erzj.
T T 5 i

0y manifestsitself as follows:
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where a; =n(n-1)(n-2)..(n-m+j-1) and we have employed the rules

i[f-o]= Z[ Jaj follp and £, = 1+L2. Thus, we obtain a wave
(z+izole)

beam bearing a centred optical vortex with the (n—m) -topological charge, while aradia

dependence of the wave beam is defined by a complex function

n-m,(o,e) 1 " koe at .
-] _J]a(ZROJ i locRee) (@

Let us derive some simple rules for transition from the nonparaxial to paraxial beams
with the Gaussian envelope. A recurrence relation for the spherical Bessel functions is

2n+1jn(x). Then, taking into account the paraxia re-

given by jn—l(x)+ jn+1(x)=

quirement given by Eq. (28), we cometo the relations for the paraxial transition [10]:

i2p (KoeRoe) > —izp-2(koeRoe) (47)

2pi1(KoeRoe) = —J2p-1(KoeRoe) (48)
aswell as complimentary relations obtained from Eq. (32):

i1 (Ko.eRoe) = lo (KoeRoe) (49)

j2 (Ko gRoe) = —o (koeRoe) (50)

1 1 1
Ro,e 'Zo,ego,e 'Zo,eo-o,e
Finally, the radial function Q(r) in Eq. (46) may be transformed to a standard

(51)

expression:

er:—m,(o,e) (r)— (_1)rmn n!%l_(nn—m)[ r2 JGO‘e’ (52

o Wgo_o,e
where we have made use of definition of the generalised Laguerre polynomial:
n (—1)j [n+/1j -
A(x)=S 1L Cx!.
Thus, Egs. (43) finally normalised for the high-order nonparaxial beams under the
condition n>m may be rewritten as

( (
) )

m-(4] Lo () ( J o™ >r>, 54
"G Jo(ikoZ Se

jo(ikeZe
56 Ukr. J. Phys. Opt. 2009, V11, Nel




Nonparaxial wave

whereas for the case of n<m we have

] ]
Qs () (

o v m-n+1 m—n+L I’) m—n—lerT]]q_n_l I‘)
Fm- [f_oJ JO('kozo) (%J jo(ikeZe) %9

If n>m, the beam carries over a centred positively charged vortex with the topo-

D ()

logical charge (n—m-1) and n-ring dislocations (toroidal vortices in the z= 0 plane)
in the RHP component, whereas the LHP component carries over a positively charged
vortex with the topological charge (n—m+1) and n+1-ring dislocations (toroidal vor-
ticesinthe z= 0 plane). If m> n, the beam carries over a negatively charged vortex with
the topological charge (m-n-1) and m-ring dislocations (toroidal vorticesin thez=0
plane) in the RHP component and the LHP component carries over a hegatively charged
vortex with the topological charge (m-n+1) and m+1-ring dislocations (toroidal vor-

ticesin thez= 0 plane).

~ ~

S, S

17 1

0.87 =1 0.81 o 45

k

0.6 0.6

0.4 0.4

0.2 0.2

-10 -6 4-20 2 4 6 810 -10 -6 -4-20 2 4 6 810 210 -6 -4-20 2 4 6 810
r/k r’k r’k

Fig. 5. Transformation of nonparaxial beam with m=1 and =0 into a
standard paraxial Laguerre-Gaussian beam under the condition of

increasing beam waist W, .

nn n E ‘10“(

w, k=1 w,/ k=12 w,/k=15 w,/ k=2

Fig. 6. Transformation of intrinsic annular structure of the intensity for the
RHP component of nonparaxial beam with | =0 and m =2 into a standard

Laguerre-Gaussian beam under the condition of increasing beam waist W,
at the crystal input z=0.
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Fig. 7. Conversion of intrinsic annular structure of the RHP component of
nonparaxial beam with =0 and m =2 into a typical conoscopic pattern
along the crystal length.

Fig. 5 and Fig. 6 illustrate transformations of the beam profiles for the case of low
orders | =m-n-1=0,n=1and | =0, n=2 and the nonparaxial beam into those typi-
cal for the paraxial Laguerre-Gaussian beam. Notice that the lateral oscillations of the
beam intensity become nearly completely smoothed for the beam waist about w, ~ 24,

when the influence of evanescent waves even on higher-order nonparaxial beam profileis
essentially weakened. When the nonparaxial beam of the highest order propagates along
the crystal, an intrinsic annular pattern vanishes, being replaced by the typical conoscopic
pattern. Fig. 7 shows a gradual transition of the annular picture into the conoscopic pat-
tern peculiar for divergent light in auniaxial crystal.

4. Conclusions

We have treated the propagation of nonparaxial beams along the optic axis of a uniaxia
crystal. We have chosen a shape of generatrix beam in such away that it have a standard
form of Laguerre-Gaussian beam in the paraxial approximation. We have revealed that
the behaviour of nonparaxial beams may be described in the framework of complex-
source-point technique. The above method leads to nonparaxial beams with the eigen po-
larisations. This means that this mode beam propagates along the crystal without struc-
tural transformations of itsfield up to a scale factor.

There are two types of those mode beams, the transverse electric (TE) and transverse
magnetic (TM) fields, that propagate in the crystal with different wave parameters. The
mode beams have different scales along the z axis. A beam with arbitrary field distribu-
tion at the crystal input is described as a superposition of the beams with eigen polarisa-
tions. These types of nonparaxial vortex beams have a circular symmetry through the
beam cross section, being smoothly converted into their paraxial analogues. The centred
optical vortices embedded in the beams do not lose their structural stability when either
propagating or being focused tightly. The circular symmetry in the field distribution gets
lost when the beam waist of the linearly polarised field becomes comparable with the
light wavelength. Its cross section is deformed, i.e. the scales along the x and y axes be-
come different. The beam deformation diminishes, though does not vanish completely,
for the paraxial linearly polarised beams.
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Anomauin. Ompumani po3e’ a3Ku 6eKMOPHO2O XBUNLOBO2O PIBHAHHI OISl He NAPAKCIATbHO20 Npo-
MeHsl, AKULl NOWUPIOEMBCS 83006C ONMUYHOT OCI 8 OOHOGICHOMY 0803ANOMIIOIOUOMY KPUCMAII.
Busieunocw, wjo yupKkyispHo noaspu3oeanuil He NApakciaitbHull nPOMiHb Modice Oymu npedcmasiie-
HUtl, SIK HAOIP NONEPEYHUX eNeKMPULHUX | MASHIMHUX X8Ub, SIKI NPU NOWUPEHHT 30epieaiomb 8010
CMPYKMypy 3 mMOYHiCmio 00 macumabrnozo gakmopy. I[Ipomine 3 008inbHUM PO3NOOIIOM MO
Modice bymu 3anucanuil, KK KOMRO3UYISL MAKUX XGUIboeux nonie. Ilokazano, wo yupkyispHo-
CUMEMPUYHUTI BUXPOBUTLI NPOMIHL 3 NOYAMKOBO YUPKYISPHOIO NOIAPU3AYielo 30epizae c8oio cmpy-
Kmypy 6 Kpucmaii, mooi K YupKyispHa CUMempisi He napaxcianbHO20, 8UXPOBO20 NPOMEHSL 3 NO-
4amKo60 NIHINIHOIO NONAPUZAYICIO 8MPAYAEMbC NPU NOWUpenHi yepe3 kpucman. Llupkyisapua
cumempis He 30epicacmvcsl 6 NAPAKCIarbHOMY GURAOKY, 0YOYUU NPUPOOHOIO B1ACIUBICINIO NiHili-
HO-NONAPUZ08AHO20 NPOMEHS.
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