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Abstract 

In this work we have studied, both theoretically and experimentally, changes in 
the integral reflection coefficient of concrete during its hydration. A diffuse 
approximation method has been used for description of light scattering at 
concrete during its hydration and the results have been compared with the 
experimental data obtained. The optical diagnostics technqiue introduced by us 
allows performing diagnostics of earlier hydration stages in the concrete 
hardening process and predicting mechanical properties of the concrete 
produced. 
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1. Introduction 

Concretes are basic materials of modern construction industry and basic backfill materials 
for oil-and-gas industry. That is why it is important to predict beforehand their 
mechanical properties and solidification rate of the concretes composed. Formation of 
concrete passes through a process of hydration, interaction of cement and water. 
According to existing models, concrete induration occurs due to enlargement and 
accretion of powder cement particles [1–5]. The beginning and the end of induration of 
concrete solution is usually determined [6, 7] using Vicat apparatus. It measures 
immersion depth of needle in normal cement solution poured into a special taper. 
According to the Vicat technique, induration begins when needle does not reach taper 
bottom for 10 mm, and finishes when needle dips into the solution for less than 3 mm. 
However, the technique does not allow judging impartially hydration stages and cement 
induration, as well as predicting mechanical properties of the concrete produced. 

Optical methods for diagnostics of concrete hydration have a great potential [8, 9]. In 
this work we investigate theoretically and experimentally changes in the integral 
reflection coefficient (IRC) of concrete during its hydration. We reveal that the IRC 
changes are related to concrete hydration and that the character of these changes allows 
predicting mechanical properties of the concrete produced. 

At the beginning of hydration process, cement solution consists of gel, free water 
and unhydrated cement particles. Then formation of crystals is generated, which join the 
system and lead to increasing cement solution viscosity. The hydration process becomes 
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completed with full induration of the cement solution [1–4]. The time of hydration 
depends on specific cement powder mix, cement particle sizes and water amount. 

Cement is a complicated mixture of particles with different sizes and shapes, which 
consist by 95–97% of oxides Ca, Si2, Al2O3 and Fe2O3. These compounds constitute some 
minerals, of which the main are as follows [1–4]:  

•  tricalcic silicate (alite) 3СaО· SiO2 (40–65%); 
•  dicalcic silicate (belite) 2СaО · SiO2 (15–45%); 
•  tricalcic aluminate 3СaО · Al2O3 (4–12%); 
•  tetracalcic alumoferrite 4СaО · Al2O3 · Fe2O3 (12–25%); 
•  gypsum.  

Cement particle size distribution may differ not only for various kinds of cement, but 
for different consignments, too. Measurements of the particle size distribution are 
performed with different methods, such as Electrical Zone Sensing, Sedimentation and 
Scanning Electron Microscopy [1–5]. A standard procedure is to measure remains weight 
on a sieve while screening consecutively from the biggest mesh aperture to the smallest. 
Laser diffraction method [5] is used for studying real-time distribution of cement particle 
sizes.  

Backscattering is a promising direction in investigations of concrete properties and 
its hydration. Photos of concrete cuts [1, 2] show that the concrete should be considered 
as a disperse medium (DM). For mathematical description of light scattering at DMs, 
analytical methods and transport theory have been used [10–14]. In particular, small 
angle approximation allows getting an analytical solution for a radar probe of DM and 
radiation scattering at mobile particles [10]. Analytical solutions have been derived for 
the backscattering by the media consisting of equal-size spheres [10, 12]. For multiple 
scattering in DM, the transport theory provides quite good results, in particularly a so-
called diffuse approximation method [10, 13, 14]. We have used this method in order to 
describe the light scattering in concrete during its hydration and have compared its results 
with the experimental data obtained by us. 

2. Light scattering in disperse medium in frame of the diffuse approximation 

Let us analyse light scattering in a disperse medium in frame of the diffuse approximation 
following considerations developed in the works [10, 14]. For a medium with the bulk 
concentration (i.e., the ratio of the volume of particles and the entire system volume) 
exceeding 1%, the method of diffuse approximation provides the best fit. In this case the 
intensity of radiation in randomly heterogeneous medium consists of two parts: a regular 
constituent of output radiation Iri and a diffuse scattered radiation Id. If any internal 

sources are absent at a point r
�

, then Id should satisfy the transport equation: 
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where dv is the volume element surrounding the point r
�

, 0tσ  the particle extinction 

section, cρ  the absolute concentration of particles, )',(
4

1
ssf

��ρ
π

 denotes a dimensionless 

quantity, a so-called “phase function” (it describes the radiation intensity scattered at a 

particle in the 's
�

 direction, while a plane wave falls upon it in the s
�

 direction), ),( srId

��

 

the energy flux density of diffusely scattered radiation at the point r
�

 in the s
�

 direction, 

),( srIri

��

 the energy flux density of regular radiation component at the point r
�

 in the s
�

 

direction, and 'ωd  the solid angle element in the 's
�

 direction. 

In any complicated medium, the diffuse scattering seems to be isotropic due to 

multiple reflections at many particles, i.e. )(),( rUsrI dd

��� = , where 
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is the average intensity of the diffusely scattered radiation (see Fig. 1) and ωd  the solid 

angle element in the s
�

 direction. For simplified consideration of radiation anisotropy one 

can introduce the parameter  
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,     (3) 

where с is a certain constant and the parameter,  
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represents a so-called diffuse flux vector, which shows deviation of the diffuse scattering 

from isotropic one occurring for the plane wave propagating in the fs
�

 direction (see 

Fig. 1). Let us rewrite Eq. (3) as 

( ) ( ), ( )d d fI r s U r cF r s s= + ×� � � � � �

      (5) 

and insert it in Eq. (4): 
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The first integral in Eq. (6) is equal to zero according to definition of the ( )rU d

�

 

function for isotropic distribution. The second integral is quite easy to calculate by 

directing the polar axes of spherical coordinate system along fs
�

 and considering that the 

variables fs
�

 and r
�

 are independent. Taking into account that fs
�

 is a unit vector, we 

could get 
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Hence, the constant c is equal to 3/ 4c π= . 
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Fig. 1. Representation of scattered intensity in the diffuse approximation [10]. 

 

According to Fig. 1, then the scattered intensity within the diffuse approximation 
could be written as 

s
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After substituting Eq. (8) in Eq. (1), the finite transport equation in our 
approximation would be as follows [10]: 
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where 2 3( )( )d c a c trχ ρ σ ρ σ= , aσ  means the section of light absorption by the particle, 

astr H σµσσ +−−→ )1)(1(0  the transport section, )1(0 Hss −=σσ  the corrected 

scattering section, 0sσ  the section of light scattering by the particle, H the ratio of the 
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� � � � � �  is the average cosine of the scattering angle. 

The latter describes normalised difference between the average forward and backward 
scattering at a single particle and characterises quantitatively the scattering anisotropy. 
The parameter )1( Hp −=  determines the porosity of the medium and is often used for 

its characterisation. Hereafter we will use just this parameter. In particular, the value 

0=p  means that the medium is absolutely solid, whereas 1=p  characterises absolutely 

rarefied one. 
As the scattering does not take place out of the medium, one of the boundary 

conditions of Eq. (9) is that the diffuse flux from the outside to inside medium should be 
equal to zero on its surface:  
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where n
�

 is the normal to the surface of medium at the point r
�

. Here the integration is 

carried out over the half-plane borders of the outside medium, i.e. over the half of full 
solid angle. This boundary condition, according [10], describes fairly well the scattering 
when the scattering section is equal or larger than the absorbing section. After integration, 
we could write Eq. (10) as 
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anisotropy on the scattering process and sr
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 is the point on the medium surface. 

When the plane wave is incident upon a layer of scatterers, diminution in the regular 
constituent occurs: 

)exp( 00 LII tcri σρ−= ,      (12) 

where L denotes the thickness of the layer of scatterers and 0tσ  the extinction section of 

the particles. Then the following formulae are valid for the effective values of absorbing, 
scattering and extinction sections of the particle system [10]: 
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where )(aW  is the function of particle size distribution.  

According to the method, the coefficient of diffuse reflection at the disperse semi-
bounded medium does not depend on the absolute concentration of scatterers. It is 
determined by the medium porosity, scattering anisotropy, the transport, absorbing, 
scattering and the extinction sections and could be written as 
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In this formula, ,sσ trσ  and tσ  represent the corrected scattering section, transport 

section and the corrected extinction section, respectively. Using the porosity, they could 
be defined in the following form: 

 pss 0σσ = ,       (15) 

 ( ) astr p σµσσ +−= 10 ,      (16) 

 ast p σσσ += 0 .         (17) 

Eq. (14) is original and has never been cited before in the literature. 
Notice that for ensuring the semi-bounded medium approximation, the layer of 

scatterers has to diminish the regular constituent of radiation by 100 times at the least. 
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From Eq. (14) it follows that 1−=dR  for nonabsorbing scatterers. This means that the 

nonabsorbing porous medium could transmit all the incident light due to multiple 
scattering. The minus sign corresponds to the opposite directions of the incident and 
scattered electromagnetic radiation fluxes. On the other hand, if scatterers are absorbing, 

we have 0=dR  for absolutely solid medium. According to the Fresnel formulae, the 

boundary between the media should reflect inversely, though Eq. (14) does not take it 

into consideration. Denoting the reflection from the surface as fR , we could write the 

overall reflection coefficient as  

fd RRR += .      (18) 

A considerable advantage of the diffuse approximation method is that it can involve 
the scattering anisotropy, which could be essential in case of multiple scattering. 
Nonetheless, the method does not take into account the effect of amplification for the 
coherent radiation scattered strictly backward [12]. It is also necessary to note that, in the 
case of concrete, it is very difficult to include the coherent amplification effects at all. 

3. Calculation of scattering and absorbing sections 

While using Eq. (14), we have to calculate the corresponding sections according to 
Eqs. (15)–(17). It is known that only spherical, cylindrical and spheroidal sections have 
been mathematically treated up to date. However, the cement particles may have various 
complicated shapes, so that it would be difficult to prefer a single special shape only.  

We have calculated the extinction sections 0 0t s aσ σ σ= +  and the scattering one 

0sσ  for the single scatterers using the Mie theory [10, 11], which describes scattering of 

electromagnetic waves at a single spherical scatterer on the basis of classical 
electrodynamics. According to this theory, the quantities mentioned above may be 
defined as 
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Here a is the radius of the scatterer, which is considered to be spherical for 

simplicity, and 2x aπ λ= , where λ  denotes the light wavelength. The terms in the 

infinite series involved in Eqs. (19) and (20) could be found as 
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where m  is the complex relative refractive index of scatterer’s substance, strokes mean 

differentiation, and the functions ( )xkψ  and ( )xkζ  are defined through the Bessel 

function of first kind ( )xJ k 21+  of real argument and the Hankel function of first kind 

( ) ( )xÍ k
1

21+  in the following way: 

( ) ( )xJ
x

x kk 212 += πψ ,     (23) 

( ) ( ) ( )xH
x

x kk
1

212 += πζ .     (24) 

In our model calculations all the scatterers have been regarded as spherical. The 
refractive index of cement materials is complex ( χinm += ), with its real and 

imaginary parts diverging in different works as much as n = 1.5–1.7 and χ  = 0.003–1 

[1–5]. Finally, the average particle radius has been taken as 2.4–14 µm. 
Essential discord for the imaginary part of the refractive index found in different 

sources has led us to studies of the cement used in our experiments. With this aim, thin 
samples of cement powder suspended in immersion liquid with n = 1.51, which remains 
neutral to cement, have been made. The thicknesses of samples have been within  
40–50 µm. The samples have been measured using the setup, of which optical scheme is 
represented in Fig. 2. Using this scheme, we have measured the regular constituent of the 
scattered radiation intensity with the aid of light detector 3. The integral diffuse reflection 
and scattering coefficients have been measured with an integral sphere 1 and a light 
detector 4. 

For the case of single scattering, the absorbed radiation is determined as  

)exp(0 LII acσρ−≈ .     (25) 

Therefore, when the scattering remains too small, decrease in the regular constituent 
occurs due to radiation absorption by the particles. It is clear that the radiation absorption 
during multiple scattering also occurs, due to absorbing properties of the particles. 
Moreover, the track of multiply scattered radiation would be always longer than the 

 

Fig. 2. Scheme for optical studies of thin cement samples: 1 – integral 
sphere, 2 – sample, 3 and 4 – light detectors and  5 – He-Ne laser. 
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sample thickness. Once we know the integral reflection coefficient, the decrease in the 
regular constituent, the particle size distribution and the sample thickness, we can 
evaluate the maximum permissible value of the refractive index on the basis of Eqs. (12), 
(13), (19), (20) and (25). 

The particle size distribution has been obtained through the measurements of 

remains weight with the sieves. The corresponding results are shown in Fig. 3a.  

 

Fig. 3. Weight distribution of the cement particles (a) and qualified 
quantitative size distribution of the cement particles (b). 

 

The approximate formula for estimating relative amount of particles with the 

diameter id  and the mass content iw  could be derived from the following considerations. 

Assume that there are 
33

icem

i

d

w

πρ
 particles with the diameter id  in the mass unit of 

cement, where cemρ  is the cement density referred to its completely solid stage. 

According to [1, 2], we have 3120=cemρ kg/m3. So, the relative part under interest is 

equal to 

 
∑

−

−

=

i
ii

ii
i aw

aw
n

3

3

.   (26) 

We have made qualification of the content of particles with the sizes less than 3 µm 
using a microscope. The qualified distribution for the cement powder under analysis is 
shown in Fig. 3b. Note that the cement brand M-500 has been used in our investigation. 

The measurements with the scheme described in Fig. 2 for the case of sample with 
the thickness of 40 µm gives us the transmission coefficient 2.5% and the integral diffuse 

reflection and scattering coefficients 66%. Then the values 0 0.092c tρ σ ≈ µm–1 

0.01c aρ σ ≤ µm–1 might be obtained from Eqs. (10) and (25), respectively. The 

appropriate sections have been found subject to the particle size distribution given by 
Eqs. (13). If the real part of the refractive index is considered to be equal to 1.5, then the 
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complex refractive index should satisfy the calculated ratio 0 9.2t

a

σ
σ

≥  and so we get 

( )31.5 1 1.6 10m i−≈ + × . 

In order that the diffuse approximation be valid, the condition 0s aσ σ≥  must be 

satisfied. The ratio of the sections 0 0, ,s a tσ σ σ  and the geometrical section of particles is 

shown in Fig. 4 for different particle sizes and the case of scattered radiation with the 
wavelength of 0.63 µm characteristic for He-Ne laser. The values of the refractive index 

correspond to the cement particles based in air ( ( )31.5 1 1.6 10m i−≈ + × , see Fig. 4a) and 

in water ( ( )31.13 1 1.6 10m i−≈ + × , see Fig. 4b). After analysing the plots in Fig. 4, one 

can see that the scattering section is larger than the absorption section. This allows us to 
employ the diffuse approximation method when describing the scattering in concrete.  

 

Fig. 4. Dependences of ratios of the extinction section (1), the scattering 
section (2) and the absorption section (3) to the particle section on the 
particle radius (µm) for the wavelength of 0.63 µm and the relative refractive 
indices 1.5(1+0.0016і) (a) and 1.13(1+0.0016і) (b). 

4. Experiments 

To evaluate diffuse reflection coefficient for the cement solutions it is necessary to find 
the average cosine of the scattering angle µ . The exact calculation of µ  for the case of 

cement with real breakup and the particle shapes differing from spherical one, is very 
complicated. However, we can evaluate the anisotropy rate for the light scattering by 
concrete, so that the theoretical calculations on the basis of Eq. (14), with taking Eqs. (13) 

and (15)–(24) into account, have given us the values of diffuse reflection coefficient dR  

close to those observed in experiments. 
Experimental investigation of backward light scattering of concrete has been 

performed according to the scheme depicted in Fig. 5. Here a sample 5 is placed inside a 
chamber 2 with an optical window 6, through which the sample is illuminated by a laser 4 
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(the wavelength of 0.63 µm). The intensity of diffusely scattered radiation is measured 
with an integral sphere 1. Signals from a light detector 3 come to computer through an 
analog-to-digital converter. The light beam reflected from the window 6 is disposed 
outside the integral sphere 1. 

 

 

Fig. 5. Scheme for measurements of integral 
coefficient of the backward scattering for the 
concrete under hydrogenation:  

1 – integral sphere,  
2 – chamber,  
3 – light detector,  
4 – He-Ne laser,  
5 – sample and  
6 – optical window. 

 

Table 1. Experimental data for the integral backward light scattering in cement 
and concrete (* means consideration of the corrected surface reflection) 

 Cement powder Solid cement Solid cement in water Cement powder 
mixed with water 

dR  24–26% * 17–22% * 6.5–7.5% * 9.5–13% * 
 

Let us first examine the light scattering in the dry cement powder (see Table 1). The 

diffuse light reflection coefficient for the cement powder is dR = 24–26%. Considering 

that the powder porosity is equal to 0.48p =  [1, 2], we obtain µ = -0.0152 ÷ 0.0765. So, 

the scattering in the dry cement is close to isotropic. It is easily seen that, even for the 
same consignment of cement, the coefficients of backward light scattering differ for 

different experiments. Form the viewpoint of general considerations, the coefficient dR  

depends upon size, chemistry and arrangement of particles. Deviation in the dR  

parameter may be a result of changing average cosine value in the limits mentioned 
above.  

Let us analyse the light scattering in the cement powder with the composition 
determined above directly after it is mixed with water. One needs to find the  
parameter p . The entire system mass is 1 w+ , if the cement mass equals to 1 and w  is 

the water-to-cement ratio (i.e., the ratio of the water and cement masses). Then the water 

volume is 1
wwρ−  and the cement volume 1

cemρ− . In other words, the parameter p  could be 

calculated with the aid of formula 

 
1

1 1 1
w

cem w w cem

w w
p

w w

ρ
ρ ρ ρ ρ

−

− − −= =
+ +

.    (27) 
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In particular, we have 0.483p =  when 0.3, 1000ww ρ= = kg/m3 and 0.46p =  

when 275.0=w . However, the porosity of freshly solved cement could not be less than 

that for the dry powder. That is why, for the case of 275.0=w  we have also taken the 

value 0.48p = , while for the case of 35.0=w  one has 52.0=p . Then, under the same 

assumptions as those made for the dry powder, basing on the diffuse reflection coefficient 
9.5–13% (see Table 1) and the refractive index 1.33 of water, we could get the complex 

relative refractive index ( )31.13 1 1.6 10m i−= + ⋅ . Hence, we have 0.592 0.659µ = ÷ , i.e. 

the cement particles suspended in water scatter light mainly forward. Notice that the 
deviation of the average cosine is almost the same as that typical for the dry powder 

( 0.07 ≈∆µ ). 

Let us now examine the light scattering by completely hydrated cement. Completely 
hydrated dry cement materials seem to be described by the same complex refractive 

index, as for the cement powder ( ( )31.5 1 1.6 10m i−= + × ). After hydration of cement 

materials the porosity decreases, which could be associated with some growth in the 
particle sizes. In this case we could arrive at the following rule for the crystal radius 
growth depending on the porosity: 

 ( ) ( )
3

0
0 )1(

1

p

p
apa

−
−= ,   (28) 

where р0 means the porosity after suspending in water and 0a  the initial radius of particle. 

 

Fig. 6. Dependences of reflection coefficient vs. porosity for the dry and 
moist concretes in the calculated limits of µ  values. 

Using particle sizes dependences vs. porosity given by Eq. (28) and Eqs. (13)–(24) 
we have obtained dependences of the diffuse reflection coefficient vs. the porosity for the 
dry (Fig. 6a) and moist (Fig. 6b) concretes. They refer to the distribution shown in Fig. 2b 
and the limits for the µ  parameter calculated above. The values measured for the solid 

concrete (see Table 1) are located between the horizontal lines. It is also seen that the 
porosity values coincide, thus confirming the right choice of the working method. 
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Let us next model the time dependences of diffuse light reflection index during 
concrete hydration. According to the simplified rule for crystal growth [1], the porosity 
changes depend on the concrete hydration time t as follows: 
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While the particles grow, water bounding is happening and, accordingly, the relative 
refractive index changes, too. Assume that the bounding is ruled the same way as that 
given by Eq. (29). Then we have the relation between the relative refractive index m and 
the corresponding average cosine µ  of scattering: 
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Here ,i fp p , ,i fµ µ  and ,i fm m  are the initial and final values of the porosity, the 

anisotropic index of light scattering and the relative refractive index, respectively,  
τ  denotes the time constant of crystal growth process, and α  is the parameter describing 

time dependence of the relative crystal growth velocity. While modelling the time 
dependences of diffuse light reflection coefficient, it is necessary to insert the parameters 

( )tµ  and ( )tp  into Eqs. (13), (14) and (19)–(20), considering Eqs. (15)–(17) and (28). 

Those dependences refer to the situation when the crystals are generated from the fat 
solution and they consider no dilution of particles at the initial stage. In any real situation 
with the formation of cement stone, not all of the water bounds at once. As a 
consequence, the cement stone includes not only pores filled with air but also those filled 
with water, crystalline hydrate solutions etc., and even transparent capillaries [1–4].  

According to the study [6], measurements of hardening time using the Vicat needle 
hold on cement solutions with the normal density. Historically (see [1]), the normal 
density of cement solutions has been obtained experimentally as an optimal integration of 
good plasticity of the solution with the best mechanical properties of solid concrete. The 
water-to-cement ratio for getting normal-density cement solution measured according to 
[6] amounts to 0.3w = . 

During our experiment, we have made concrete samples with different water-to-
cement ratios ( 0.275w = , 0.3 and 0.35). Each sample divides in two parts. For one part, 

the integral diffuse reflection coefficient has been measured and for the other the 
immersion depth of the Vicat needle has been checked, according to the technique [6]. 

The dependence of dR  upon time is shown in Fig. 7, while the immersion depth of the 

Vicat needle vs. the time is given in Fig. 8. Here the curves 1, 2 and 3 correspond to 
0.275w = , 0.3w =  and 0.35w = . 
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Fig. 7. Experimental dependences of 
integral diffuse reflection coefficient on the 
time of concrete hydration for different 
water-to-cement ratios:  

0.275w =  – curve 1,  

0.3w =  – curve 2, 

0.35w =  – curve 3. 

 

 

Fig. 8. Dependence of immersion depth of 
the Vicat needle on the time of concrete 
hydration for different water-to-cement 
ratios: 

0.275w =  – curve 1,  

0.3w =  – curve 2, 

0.35w =  – curve 3. 

 

After measuring dR  during hydration, final porosity of hydrated samples has been 

evaluated according to Fig. 6a. For this aim, we have preliminarily dried the samples, 

since they could contain water remains after hydration. Then we measured the dR  value 

with the scheme of Fig. 5. After drying the samples with 0.3w =  and 0.275, the dR  value 

does not differ from those obtained in the end of hydration process (see Fig. 7). At the 

same time, dR  for the dry sample characterised with 0.35w =  is 17%, while the 

corresponding value is 13% in the end of hydration process. That indicates a clear 
presence of water remains. The average cosine for the dry cement should be 0µ = , i.e. 

scattering at the dry cement is isotropic. The refractive index and the average cosine for 
the samples with 0.3w =  and 0.275 change in the limits peculiar for the dry and moist 

cements quoted above. For the sample with 0.35w = , subject to presence of water 

remains and evaluation of final porosity, the final average cosine and refractive index 

have been calculated (   0.29µ =  and ( )31.34 1 1.6 10m i−= + × ). The final form of 

theoretical dependence dR  on time is determined by the time constant τ  for crystal 

growth process and the α  parameter that describes temporal dependence of the relative 

crystal growth velocity.  
The corresponding experimental and theoretical dependences are shown in Fig. 9 

with dots and lines, respectively. Here vertical lines show the beginning and the end of 
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hardening detected using the Vicat apparatus. For the cases of 0.3w = , 0.275w =  and 

0.35w =  (see Fig. 9a to Fig. 9c), the constants of crystal growth are respectively 

140τ = min and 1.5α = , 180τ = min and 2α = , and 220τ = min and 4α = . 

The results of our modelling correlate fairly well with the experimental data, thus 
evidencing again the right choice of the method. Small mismatches of experimental and 
theoretical plots could be explained by a number of simplifications adopted within the 
model. For instance, dissolving of particles at the initial hydration stage is not taken into 
account, leading to ‘disappearance’ of small particles and the corresponding changes in 
the particle size distribution [1–4]. This effect is shown in Fig. 9с, where reflective index 
decreases in the beginning. Besides, it is possible that the crystal growth continues after 
bounding of all water [1–4]. Then the constants τ  and α  governing the growth process 

(see Eq. (29)) and the water bound processes (see Eqs. (30) and (31)) are different. This 
effect is shown in Fig. 9b and Fig. 9a. Taking these effects into account would have 
complicated our model calculations drastically and, in particular, would have needed 
introducing additional parameters. 

In 45 days after induration the samples under analysis have been tested on its 
compression strength. For the sample with The destructive pressures are 46 MPa, 33 MPa 
and 38 MPa for 0.3w = , 0.275w =  and 0.35w = , respectively. This means that the 

concrete made of cement grout with the normal density is the most pressure-proof.  

5. Conclusions 

The measurements based upon the Vicat apparatus have shown that the induration time is 
in a direct dependence on the amount of water. Furthermore, the induration time 
decreases if this amount does, and vice versa. However, the method does not provide 
information about the crystal growth that binds concrete. The optical method consisting in 
measurements of the light backscattering coefficient enables one to study the processes of 
crystal growth and bonding of water with hydratable minerals. 

The analysis of modelling results testifies that the normal cement grout density 
( 0.3w = ) is associated with the smallest time constant of crystal growth and, accordingly, 

the smallest water bonding velocity (see Fig. 9a). From the point of view of chemistry, 

 

Fig. 9. Experimental (dots) and theoretical (lines) dependences of integral 
diffuse reflection coefficients on the time for hydrating concrete: 0.3w =  (a), 

0.275w =  (b), 0.35w =  (с). Vertical lines show the beginning and the end of 
hardening derived using the Vicat needle. 
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this implies that the optimal conditions for crystal growth are just reached. As seen from 
Fig. 9, the crystal growth has finished long before the induration start detected with the 
Vicat apparatus. So, the induration in this case progresses without mechanical stresses, 
thus influencing positively final mechanical properties of the concrete. At the same time, 
slowing-down of the crystal growth occurs when the water amount is less ( 0.275w = , see 

Fig. 9b). The crystals continue to grow even after finish of the induration detected with 
the Vicat apparatus. This leads to arising additional mechanical stresses, which worsen 
mechanical properties of the concrete. Finally, the highest amount of water ( 0.35w = ) 

also slows the crystal growth and a part of water remains unbounded. Crystal growth is 
then finished almost simultaneously with the beginning of concrete setting, according to 
the Vicat technique. However, it follows from the results obtained with the Vicat 
technique that the induration process itself takes more time. In other words, the excess of 
water imposes formation of less durable crystals, thus worsening mechanical properties of 
the concrete.  

The optical technique presented above allows performing earlier diagnostics of 
concrete hardening process, when compare with the Vicat needle technique and, 
moreover, it carries additional information about the crystal growth process. 
Nevertheless, it is very difficult to evaluate the time of mechanical induration of concrete, 
unlike the Vicat apparatus. Therefore the most complete information about the concrete 
hydration may be provided when combining our optical diagnostics with the Vicat 
measurements. 

References 

1. Gorskiy V F, Plugging materials and solutions. Handbook. Chernivtsi: 
Oblpoligrafvydav (2006). 

2. Lee F M, The chemistry of cement and concrete, 3rd ed., New York: Chemical 
Publishing Company (1971). 

3. Ramachandran V S and Beaudoin J J, Handbook of analytical techniques in concrete, 
National Research Council of Canada, New York: William Aandrew Publishing, LLC 
(2001). 

4. Bulatov A I and Danyushevskiy V S, Plugging materials reference manual. Moscow: 
Nadra (1987).  

5. Ferraris C F, Hackley V and Aviles A I, 2004. Measurement of particle size 
distribution in Portland cement powder: analysis of ASTM round robin studies. 
Cement, Concrete and Aggregates. 26: 1-11.  

6. GOST 310.3-76. Cements. Methods of definition of normal density, terms of harden 
and uniformity of change of volume. 

7. GOST 310.1-76. Cements. Test methods. General provisions. 
8. Gorsky M P, Gorskiy V F, Maksimyak P P and Gorskiy P V, 2006. Study of cement 

hydration by coherent light scattering. Equip.Techn. for Oil and Gas Ind. 5: 42-45. . 
9. Gorsky M P, Maksimyak A P and Maksimyak P P, 2007. Study of speckle-field 



Studies of light 

Ukr. J. Phys. Opt. 2009, V10, №3 149 

dynamics scattered by surface of concrete during congelation. Proc. SPIE 6635: 
66350E. 

10. Ishimaru A, Wave propagation and scattering in random media. Vol.1, 2. New York: 
Academic Press (1978). 

11. Born M and Wolf E, Principles of optics. New York: Cambridge: University Press 
(1999). 

12. Akkermans E, Wolf P E, Maynard R and Maret G, 1988. Theoretical study of the 
coherent backscattering of light by disordered media. J. Phys. France 49: 77–98. 

13. Jos Stam, Multiple scattering as a diffusion process. Eurographics Rendering 
Workshop (1995). 

14. Morse P M and Feshbach H, Methods of theoretical physics. New-York: McGraw-
Hill (1953). 

 
 

Gorsky M.P., Maksimyak P.P. and Maksimyak A.P. 2009. Studies of light backscattering at 
concrete during its hydration. Ukr.J.Phys.Opt. 10: 134-149. 
Анотація. У даній роботі нами теоретично і експериментально досліджено зміни 

сумарного коефіцієнта відбивання бетону під час його гідратації. Для опису розсіяння 

світла бетоном, у процесі його гідратації, був використаний метод дифузного 

наближення, а результати були порівняні з отриманими експериментальними даними. 

Запропонований нами оптичний метод дозволяє забезпечувати діагностику ранніх стадій 

гідратації при затвердінні бетону і передбачити його механічні властивості. 

 

 


