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Abstract 

It is shown that, under the conditions of coexisting natural optical activity and non-
zero linear optical birefringence, reversal of the light wave vector sign can result in 
changing angle of Faraday rotation. 
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Introduction 

The effect of additional optical rotation observed earlier in a number of absorbing  
non-centrosymmetric crystals under the influence of external magnetic field [1–3], which 
has been explained as a magnetogyration (MG) [4–6], is usually distinguished from  
the Faraday rotation (FR) via reversing the wave vector of light or rotating a crystal  
sample by 180o around the axis perpendicular to the optic axis of the crystal. In relation to 
this problem, it is worth noticing that the MG as a spatial dispersion effect induced  
by magnetic field should not, in principle, manifest itself as an optical rotation. Indeed, 
according to the known Onsager principle, it should lead to changes in the real part of  
the dielectric permittivity (or the refractive indices), as a result of the so-called  

‘ kH -effect’ [7]. The MG effect has been widely discussed in the last decades [8–11], 

though the common point of view has not yet been established. In our recent papers  
it has been shown that non-complete non-reciprocity of the Faraday rotation exists  
even in quartz crystals, in spite of the fact that the MG effect is forbidden by the  
point symmetry of those crystals [12, 13] for the experimental geometry used  

in the works [12, 13] ( k H Z� � ). Thus, the effect observed has no relation with  

the MG phenomenon. Moreover, non-complete non-reciprocity of the Faraday  
rotation has been observed in crystals which possess natural optical activity (for compari-
son see [12–14]). In the present paper we will demonstrate how natural optical activity 
and non-zero linear optical birefringence can lead to the non-complete non-reciprocal 
Faraday rotation. 
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Theoretical analysis 

The relation for the electric field iE  of optical wave with accounting for the spatial dis-

persion effects can be written as follows [15]: 
 

( )j
i ij j ijk ij ijk k j

k

D
E B D i B i k D

x
η η

∂
= + = +

∂
,     (1) 

where jD  is the electric induction at the optical frequency, ijB  optical-frequency imper-

meability tensor, kk  the wave vector of light, ijkη  a polar antisymmetric ( ijk jikη η= − ) 

third-rank tensor. Using the known duality relation and normalizing factor 
2π
λ

, one can 

rewrite the tensor ijkη  as a second-rank axial tensor (the gyration tensor): 

 

2
lk lij ijkg e

π η
λ

= ,      (2) 

where lije  denotes the unit completely antisymmetric Levi-Civita tensor and λ  the wave-

length of optical radiation. If external magnetic field kH  exists, a term should be included 

in Eq. (1) that describes the Faraday effect: 
 

( ) ( )i ij ijk lk k jik lk k j ij ijk lk k lk k jE B ie g m ie F H D B ie g m F H D = + + = + +  , (3) 

where lkF  is the Faraday tensor. The wave vector k  can be written as 

2
k m

π
λ

= ,      (4) 

with m  representing the unit wave-normal vector. 

Let us now consider the relations for ellipticity of eigen waves and orientation of the 
azimuth of polarization ellipse for the material media with different properties. In the case 
of existence of only natural optical activity in a transparent optically uniaxial crystal and 

the conditions 3 33 11 22 33; ;m g B B B= ≠  Eq. (3) can be rewritten in the following form: 
 

( )i ij ijl lk k jE B ie g m D= + .      (5) 

In the matrix representation this relation looks as follows: 

1 2 3

1 11 33 3

2 33 3 11

3 33

0

0

0 0

D D D

E B ig m

E ig m B

E B

−
.    (6) 

This can also be written as a system of equations: 
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1 11 1 33 3 2

2 33 3 1 11 2

E B D ig m D

E ig m D B D

= +
 = − +

.      (7) 

 

Taking into account the relation 11 2
0

1
B

n

 
=  
 

 (with 0n  being the refractive index not 

influenced by the optical activity), one can get 

1 1 33 3 22
0

2 33 3 1 22
0

1

1

E D ig m D
n

E ig m D D
n

  
= +  

  


  = − + 
 

.    (8) 

 

Let us use the relations 1
1 2

D
E

n
= , 2

2 2

D
E

n
= . Then the system of Eqs. (8) may be rep-

resented as 
 

1 33 3 22 2
0

33 3 1 22 2
0

1 1
0

1 1
0

D ig m D
n n

ig m D D
n n

  
− + =  

  


 − + − = 
 

.     (9) 

 

As one can easily see, the system of Eqs. (9) can be reduced to a quadratic equation 
with the unknown n: 

 

( )
2

2

33 32 2
0

1 1
0g m

n n

 
− − = 

 
,    (10) 

or 

( )
2 2

2

33 32 2 2 2
0 0

1 1 1 1
2 0g m

n n n n

      − + − =      
      

,   (11) 

with the solutions 

33 3 33 32 2 2 2
0 0

1 1 1 1
,g m g m

n n n n
− = ± = ∓ .    (12) 

 

Thus, the refractive indices for the right and left circularly polarized waves are as 
follows: 

3
, 0 0 33 3

33 32
0

1 1

21
r ln n n g m

g m
n

= ≈ ±
∓

,   (13) 

 

while the circular birefringence is determined by the relation 
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3
0 33 3C r ln n n n g m∆ = − = .     (14) 

 

The ellipticity of the eigen light waves can be determined from the relations 

1

2

D
i

D
κ= −  and 2

1

D
i

D
κ= . In the case described above these are equal to 1±  and so corre-

spond to the right and left circular waves. 
The optical retardation ∆  which appears when the two circularly polarized waves 

traverse the distance d  in the crystal is defined by the relation 
 

3
0 33 3

2 d
n g m

π
λ

∆ = ,       (15) 

 

while the angle of rotation of the polarization plane is given by 
 

3
0 33 3

1

2

d
n g m

πϕ
λ

= ∆ = .      (16) 

Hence, in the conditions if only the natural optical activity exists, the angle of rota-

tion of the polarization plane would change its sign ( 3 3( ) ( )m mϕ ϕ −→ − ) under reversal of 

the wave vector ( 3 3m m→ − ). 

Let now both the Faraday rotation and the natural optical activity coexist in a trans-

parent optically uniaxial crystal ( 3 33 33 11 22 33; ; ;m g F B B B= ≠ ). Then one should consider 

Eq. (3), which in the matrix representation can be written as follows: 
 

1 2 3

1 11 33 3 33 3

2 33 3 33 3 11

3 33

( ) 0

( ) 0

0 0

D D D

E B i g m F H

E i g m F H B

E B

+
− +

.  (17) 

 

Similar to the previous case, solving the system of equations 
 

1 11 1 33 3 33 3 2

2 33 3 33 3 1 11 2

( )

( )

E B D i g m F H D

E i g m F H D B D

= + +
 = − + +

,   (18) 

or 

1 1 33 3 33 3 22
0

2 33 3 33 3 1 22
0

1
( )

1
( )

E D i g m F H D
n

E i g m F H D D
n

  
= + +  

  


  = − + + 
 

,   (19) 

 

with taking the relations 1
1 2

D
E

n
=  and 2

2 2

D
E

n
=  into account, 
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1 33 3 33 3 22 2
0

33 3 33 3 1 22 2
0

1 1
( ) 0

1 1
( ) 0

D i g m F H D
n n

i g m F H D D
n n

  
− + + =  

  


 − + + − = 
 

,     (20) 

one can arrive at the quadratic equation 
 

2

2
33 3 33 32 2

0

1 1
( ) 0g m F H

n n

 
− − + = 

 
.    (21) 

Its solutions for the refractive indices of the right and left waves are given by 

3
, 0 0 33 3 33 3

33 3 33 32
0

1 1
( )

21
( )

r ln n n g m F H

g m F H
n

= ≈ ± +
+∓

.  (22) 

From the relations 1

2

D
i

D
κ= −  and 2

1

D
i

D
κ=  it follows that the eigen waves should be 

again circularly polarized, with the ellipticities 1κ = ± .  
The circular birefringence, the optical retardation and the angle of rotation of the po-

larization plane are respectively equal to 
 

3
0 33 3 33 3( )C r ln n n n g m F H∆ = − = + ,    (23) 

3
0 33 3 33 3

2
( )

d
n g m F H

π
λ

∆ = + ,    (24) 

3
0 33 3 33 3

1
( )

2

d
n g m F H

πϕ
λ

= ∆ = + .    (25) 

 

As one can see from Eqs. (25), alteration of the light propagation direction to the op-

posite one ( 3 3m m→ − ) leads to a difference of the corresponding rotation angles of the 

polarization plane. Moreover, these angles differ by both their signs and magnitudes: 
 

3 3( ) ( )3 3
0 33 3 33 3 0 33 3 33 3

1 1
( ), ( )

2 2
m md d

n g m F H n g m F H
π πϕ ϕ
λ λ

−= ∆ = + = ∆ = − + .    (26) 

 

Thus, we have 3 3( ) ( )m mϕ ϕ −≠ . Such the difference follows from different behav-

iours of the natural optical activity and the Faraday rotation under reversing wave vector: 
the optical activity is then compensated, while the Faraday rotation becomes doubled. 

Finally, let us consider the case when the natural optical activity, the Faraday rota-
tion and some non-zero linear optical birefringence coexist in a transparent optically 

(quasi-) uniaxial crystal. We have 3 33 33 11 22 33; ; ;m g F B B B≠ ≠  and the matrix given by 

Eq. (17) should be rewritten as 
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1 2 3

1 11 33 3 33 3

2 33 3 33 3 22

3 33

( ) 0

( ) 0

0 0

D D D

E B i g m F H

E i g m F H B

E B

+
− +

.   (27) 

Then the system of equations 
 

1 11 1 33 3 33 3 2

2 33 3 33 3 1 22 2

( )

( )

E B D i g m F H D

E i g m F H D B D

= + +
 = − + +

,    (28) 

 

which can be finally rewritten as 

1 33 3 33 3 22 2
01

33 3 33 3 1 22 2
02

1 1
( ) 0

1 1
( ) 0

D i g m F H D
n n

i g m F H D D
n n

  
− + + =  

  


 − + + − = 
 

,   (29) 

 

leads to the following quadratic equations: 
 

2
33 3 33 32 2 2 2

01 02

1 1 1 1
( ) 0g m F H

n n n n

  
− − − + =  

  
,  (30) 

or 

2
33 3 33 32 2 2 2 2 2 4

01 02 01 02

1 1 1 1
( ) 0g m F H

n n n n n n n
− − + − + = .  (31) 

 

where 01n  and 02n  are the refractive indices that disregard the influence of the optical 

activity. Introducing the notation 
2

1
x

n
= , one can represent Eq. (31) as follows: 

 

2 2
33 3 33 32 2 2 2

01 02 01 02

1 1 1
( ) 0x x g m F H

n n n n

 
− + + − + = 
 

.   (32) 

 

Its solutions are given by the relations 
 

2

2
33 3 33 32 2 2 2 2 2

01 02 01 02 01 02

2

2
33 3 33 32 2 2 2

01 02 01 02

2

2
33 3 332 2 2 2

01 02 01 02

1 1 1 1 1 1
4 ( )

2

1 1 1 1 1
4( )

2

1 1 1 1 1
4( ) 4(

2

x g m F H
n n n n n n

g m F H
n n n n

g m F
n n n n

       = + ± + − − + =            

     = + ± − + + =        

   
= + ± − + +   

   

2
3 33 33 3 3) 8 .H g F H m

 
 +
 
 

 (33) 
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Let us make use of the notation 33 3 33 3g m F HΞ = + . Then the ellipticity of the eigen 

waves can be represented as 
 

( ) ( )( )

02 01

2

22 2
2 2 2 2 202
02 01 02 01 02

2

2
2 2 2 2
02 01 01 02

33 3 33 3

2
2 2

33 33 33 3 3 33 33 3

1 1
1 1 1 1 1 1

4
2 2 2

1 1 1 1 1
4

2

,
1

4 2
2

n n

n n
n n n n n

n n n n

g m F H

n n
g g F H m F H

n n

κ

≥

Ξ Ξ= = =
 − − − − + Ξ 
 

Ξ= =
     − − + Ξ   
     

+=
∆ ∆  + + + 

 

∓

∓

∓

 (34) 

 

where n∆  and n  are the optical birefringence and the mean refractive index, respec-

tively. 
As one can see, the ellipticity of the eigen waves is not equal to unity, i.e. the eigen 

waves are elliptically polarized, the electric field vectors of each of them being right- or 

left-handed. The refractive indices of those elliptically polarized waves ,r ln , the elliptical 

birefringence ,r ln∆  and the optical retardation are defined respectively by the relations 
 

( ) ( )

,
2

2
2 3

2
2 23

33 33 33 3 3 33 33

1

1

1
2 ,

2

r ln
n

n n

n
n n g g F H m F H

n

= ≈
∆ ± + Ξ 

 

∆ ≈ + + + 
 

∓

   (35) 

 

( ) ( )
2

2 23
, 33 33 33 3 3 33 33

2r l

n
n n g g F H m F H

n

∆ ∆ = + + + 
 

,   (36) 

 

( ) ( )
2

2 23
33 33 33 3 3 33 33

2
2

d n
n g g F H m F H

n

π
λ

∆ ∆ = + + + 
 

.  (37) 

 

Let us remind that for the incident azimuths 0α =  the relation for the rotation of the 

polarization ellipse includes both the eigen wave ellipticity and the optical retardation: 
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2

2 22

2 2

2
sin

1tan 2
1 2

cos
1 1

κ
κϕ

κ κ
κ κ

∆
+= −

 −  + ∆   + +  

.   (38) 

Hence, the additional term ( 33 33 3 32g F H m ) is available in Eqs. (34) and (37), which 

finally define the rotation angle of the light polarization ellipse. As a result, this angle 
should depend on both the magnetic field and the sign of the light wave vector. Actually, 
this term is a one that combines the natural optical activity and the Faraday effect. It ap-
pears owing to existence of a non-zero linear birefringence. Under the reversal of the 
wave vector, the corresponding elliptical retardations and the ellipticities of the eigen 
waves will differ due to existence of the term mentioned above. Then the rotation angles 
of the polarization ellipse would differ, too. In such a case non-complete non-reciprocity 
of the Faraday rotation not related to the MG effect would appear. 

Hence, we deal here with an effect associated with superposition of circular optical 
birefringence (due to the natural optical activity and the Faraday rotation) and a linear 
birefringence. Such a superposition is known to may lead to some effects impossible for 
observing in a plane case of pure circular birefringence. A relevant example may be the 
influence of periodic structural modulation in crystals on their optical anisotropy charac-
teristics, which cannot be reduced to that for the case of light propagation strictly along 
an optic axis direction [16]. Still closer to our subject is another example related to multi-
ple light reflections in anisotropic dielectric media [17]: contrary to the case of the Fara-
day rotation, those reflections do not affect the optical rotation due to pure optical activ-
ity, though the effect appears whenever a small accompanying linear birefringence exists.  

Conclusions 

In the present work we have shown that, under the conditions of coexistence of the  
natural optical activity, the Faraday effect and some non-zero linear optical birefringence, 
a non-complete non-reciprocity of the Faraday rotation can appear in transparent,  
optically quasi-uniaxial crystals. In particular, such the conditions may be reached in  
optically uniaxial crystals that manifest some residual linear birefringence along the optic 
axis direction. 
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